BUSSTEPP: higgsgg-nlo.nb

File higgsgg-nlo.nb, 98.2 KB (added by Fabio Maltoni, 6 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 8.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 157, 7]
13NotebookDataLength[ 97158, 3262]
14NotebookOptionsPosition[ 90849, 3045]
15NotebookOutlinePosition[ 91347, 3064]
16CellTagsIndexPosition[ 91304, 3061]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell["gg \[Rule] H at NLO in the HEFT", "Title",
24 PageWidth->PaperWidth,
25 CellChangeTimes->{{3.6924444471962833`*^9, 3.6924444683925543`*^9}}],
26
27Cell[CellGroupData[{
28
29Cell["Input FeynCalc", "Subsection",
30 PageWidth->PaperWidth],
31
32Cell[CellGroupData[{
33
34Cell[BoxData[
35 RowBox[{"<<", "HighEnergyPhysics`fc`"}]], "Input",
36 PageWidth->PaperWidth],
37
38Cell[BoxData[
39 FormBox[
40 RowBox[{
41 StyleBox[
42 RowBox[{"Get", "::", "noopen"}], "MessageName"],
43 RowBox[{
44 ":", " "}], "\<\"Cannot open \
45\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"HighEnergyPhysics`fc`\\\\\\\"\\\", \
46TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
47ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
48ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
49\\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
50 CellChangeTimes->{3.6925155192937403`*^9, 3.6925217772912483`*^9,
51 3.69252240256242*^9, 3.692522450767223*^9}],
52
53Cell[BoxData[
54 FormBox["$Failed", TraditionalForm]], "Output",
55 CellChangeTimes->{3.6925217772943497`*^9, 3.692522402580044*^9,
56 3.6925224507858*^9}]
57}, Open ]],
58
59Cell[CellGroupData[{
60
61Cell[BoxData[
62 RowBox[{"<<",
63 "\"\</Users/marcozaro/Physics/feyncalc-master/FeynCalc/fc.m\>\""}]], "Input"],
64
65Cell[CellGroupData[{
66
67Cell[BoxData[
68 FormBox[
69 InterpretationBox[
70 RowBox[{
71 StyleBox["\<\"FeynCalc \"\>", "Text",
72 StripOnInput->False,
73 FontWeight->Bold], "\[InvisibleSpace]",
74 StyleBox["\<\"9.1.0 (development version). For help, use the \"\>", "Text",
75 StripOnInput->False], "\[InvisibleSpace]",
76 StyleBox[
77 TagBox[
78 ButtonBox[
79 RowBox[{"documentation", " ", "center"}],
80 BaseStyle->"Link",
81 ButtonData:>"paclet:FeynCalc/",
82 ButtonNote->"paclet:FeynCalc/"],
83 DisplayForm], "Text",
84 StripOnInput->False], "\[InvisibleSpace]",
85 StyleBox["\<\", check out the \"\>", "Text",
86 StripOnInput->False], "\[InvisibleSpace]",
87 StyleBox[
88 TagBox[
89 ButtonBox["wiki",
90 BaseStyle->"Hyperlink",
91 ButtonData:>{
92 URL["https://github.com/FeynCalc/feyncalc/wiki"], None},
93 ButtonNote->"https://github.com/FeynCalc/feyncalc/wiki"],
94 DisplayForm], "Text",
95 StripOnInput->False], "\[InvisibleSpace]",
96 StyleBox["\<\" or write to the \"\>", "Text",
97 StripOnInput->False], "\[InvisibleSpace]",
98 StyleBox[
99 TagBox[
100 ButtonBox[
101 RowBox[{"mailing", " ",
102 RowBox[{"list", "."}]}],
103 BaseStyle->"Hyperlink",
104 ButtonData:>{
105 URL["http://www.feyncalc.org/forum/"], None},
106 ButtonNote->"http://www.feyncalc.org/forum/"],
107 DisplayForm], "Text",
108 StripOnInput->False]}],
109 SequenceForm[
110 Style["FeynCalc ", "Text", Bold],
111 Style["9.1.0 (development version). For help, use the ", "Text"],
112 Style[
113 DisplayForm[
114 ButtonBox[
115 "documentation center", BaseStyle -> "Link", ButtonData :>
116 "paclet:FeynCalc/", ButtonNote -> "paclet:FeynCalc/"]], "Text"],
117 Style[", check out the ", "Text"],
118 Style[
119 DisplayForm[
120 ButtonBox["wiki", ButtonData :> {
121 URL["https://github.com/FeynCalc/feyncalc/wiki"], None}, BaseStyle ->
122 "Hyperlink", ButtonNote ->
123 "https://github.com/FeynCalc/feyncalc/wiki"]], "Text"],
124 Style[" or write to the ", "Text"],
125 Style[
126 DisplayForm[
127 ButtonBox["mailing list.", ButtonData :> {
128 URL["http://www.feyncalc.org/forum/"], None}, BaseStyle ->
129 "Hyperlink", ButtonNote -> "http://www.feyncalc.org/forum/"]], "Text"]],
130 Editable->False], TraditionalForm]], "Print",
131 CellChangeTimes->{3.692522403983714*^9, 3.692522452074922*^9}],
132
133Cell[BoxData[
134 FormBox[
135 InterpretationBox[
136 RowBox[{
137 StyleBox["\<\"See also the supplied \"\>", "Text",
138 StripOnInput->False], "\[InvisibleSpace]",
139 StyleBox[
140 TagBox[
141 ButtonBox[
142 RowBox[{"examples", "."}],
143 BaseStyle->"Hyperlink",
144 ButtonFunction:>SystemOpen[
145 FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]],
146 Evaluator->Automatic,
147 Method->"Preemptive"],
148 DisplayForm], "Text",
149 StripOnInput->False], "\[InvisibleSpace]",
150 StyleBox["\<\" If you use FeynCalc in your research, please cite\"\>",
151 "Text",
152 StripOnInput->False]}],
153 SequenceForm[
154 Style["See also the supplied ", "Text"],
155 Style[
156 DisplayForm[
157 ButtonBox[
158 "examples.", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[
159 FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]], Evaluator ->
160 Automatic, Method -> "Preemptive"]], "Text"],
161 Style[" If you use FeynCalc in your research, please cite", "Text"]],
162 Editable->False], TraditionalForm]], "Print",
163 CellChangeTimes->{3.692522403983714*^9, 3.69252245208001*^9}],
164
165Cell[BoxData[
166 FormBox[
167 StyleBox["\<\" \[Bullet] V. Shtabovenko, R. Mertig and F. Orellana, TUM-EFT \
16871/15, arXiv:1601.01167\"\>", "Text",
169 StripOnInput->False], TraditionalForm]], "Print",
170 CellChangeTimes->{3.692522403983714*^9, 3.692522452084078*^9}],
171
172Cell[BoxData[
173 FormBox[
174 StyleBox["\<\" \[Bullet] R. Mertig, M. B\[ODoubleDot]hm, and A. Denner, \
175Comput. Phys. Commun., 64, 345-359, 1991.\"\>", "Text",
176 StripOnInput->False], TraditionalForm]], "Print",
177 CellChangeTimes->{3.692522403983714*^9, 3.692522452087838*^9}]
178}, Open ]]
179}, Open ]],
180
181Cell[BoxData[
182 RowBox[{
183 RowBox[{"$LimitTo4", "=", "False"}], ";"}]], "Input",
184 PageWidth->PaperWidth]
185}, Open ]],
186
187Cell[CellGroupData[{
188
189Cell["Virtual diagrams :preliminaries", "Section",
190 PageWidth->PaperWidth],
191
192Cell[CellGroupData[{
193
194Cell["Kinematics", "Subsection",
195 PageWidth->PaperWidth],
196
197Cell["\<\
198-----I take all momenta outgoing
199
200 p1 + p2 + p3 = 0
201
202 p1^2=0
203 p2^2=0
204 p3^3=Q^2
205
206
207 \
208\>", "Text",
209 PageWidth->PaperWidth],
210
211Cell[BoxData[{
212 RowBox[{
213 RowBox[{
214 RowBox[{"ScalarProduct", "[",
215 RowBox[{"p1", ",", "p1"}], "]"}], "=", "0"}],
216 ";"}], "\[IndentingNewLine]",
217 RowBox[{
218 RowBox[{
219 RowBox[{"ScalarProduct", "[",
220 RowBox[{"p2", ",", "p2"}], "]"}], "=", "0"}],
221 ";"}], "\[IndentingNewLine]",
222 RowBox[{
223 RowBox[{
224 RowBox[{"ScalarProduct", "[",
225 RowBox[{"p3", ",", "p3"}], "]"}], "=", "Q2"}],
226 ";"}], "\[IndentingNewLine]",
227 RowBox[{
228 RowBox[{
229 RowBox[{"ScalarProduct", "[",
230 RowBox[{"p1", ",", "p3"}], "]"}], "=",
231 RowBox[{
232 RowBox[{"-", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
233 RowBox[{
234 RowBox[{
235 RowBox[{"ScalarProduct", "[",
236 RowBox[{"p1", ",", "p2"}], "]"}], "=",
237 RowBox[{"Q2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
238 RowBox[{
239 RowBox[{
240 RowBox[{"ScalarProduct", "[",
241 RowBox[{"p2", ",", "p3"}], "]"}], "=",
242 RowBox[{
243 RowBox[{"-", " ", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
244 RowBox[{
245 RowBox[{
246 RowBox[{"ScalarProduct", "[",
247 RowBox[{"p1", ",", "e1"}], "]"}], "=", "0"}],
248 ";"}], "\[IndentingNewLine]",
249 RowBox[{
250 RowBox[{
251 RowBox[{"ScalarProduct", "[",
252 RowBox[{"p2", ",", "e2"}], "]"}], "=", "0"}],
253 ";"}], "\[IndentingNewLine]",
254 RowBox[{
255 RowBox[{
256 RowBox[{"ScalarProduct", "[",
257 RowBox[{"p1", ",", "e2"}], "]"}], "=", "0"}],
258 ";"}], "\[IndentingNewLine]",
259 RowBox[{
260 RowBox[{
261 RowBox[{
262 RowBox[{"ScalarProduct", "[",
263 RowBox[{"p2", ",", "e1"}], "]"}], "=", "0"}], ";"}],
264 "\[IndentingNewLine]"}], "\[IndentingNewLine]",
265 RowBox[{
266 RowBox[{
267 RowBox[{"ScalarProduct", "[",
268 RowBox[{"p1", ",", "p1", ",",
269 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
270 ";"}], "\[IndentingNewLine]",
271 RowBox[{
272 RowBox[{
273 RowBox[{"ScalarProduct", "[",
274 RowBox[{"p2", ",", "p2", ",",
275 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
276 ";"}], "\[IndentingNewLine]",
277 RowBox[{
278 RowBox[{
279 RowBox[{"ScalarProduct", "[",
280 RowBox[{"p3", ",", "p3", ",",
281 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "Q2"}],
282 ";"}], "\[IndentingNewLine]",
283 RowBox[{
284 RowBox[{
285 RowBox[{"ScalarProduct", "[",
286 RowBox[{"p1", ",", "p3", ",",
287 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
288 RowBox[{
289 RowBox[{"-", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
290 RowBox[{
291 RowBox[{
292 RowBox[{"ScalarProduct", "[",
293 RowBox[{"p1", ",", "p2", ",",
294 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
295 RowBox[{"Q2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
296 RowBox[{
297 RowBox[{
298 RowBox[{"ScalarProduct", "[",
299 RowBox[{"p2", ",", "p3", ",",
300 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
301 RowBox[{
302 RowBox[{"-", " ", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
303 RowBox[{
304 RowBox[{
305 RowBox[{"ScalarProduct", "[",
306 RowBox[{"p1", ",", "e1", ",",
307 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
308 ";"}], "\[IndentingNewLine]",
309 RowBox[{
310 RowBox[{
311 RowBox[{"ScalarProduct", "[",
312 RowBox[{"p2", ",", "e2", ",",
313 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
314 ";"}], "\[IndentingNewLine]",
315 RowBox[{
316 RowBox[{
317 RowBox[{"ScalarProduct", "[",
318 RowBox[{"p1", ",", "e2", ",",
319 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
320 ";"}], "\[IndentingNewLine]",
321 RowBox[{
322 RowBox[{
323 RowBox[{"ScalarProduct", "[",
324 RowBox[{"p2", ",", "e1", ",",
325 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
326 ";"}], "\[IndentingNewLine]"}], "Input",
327 PageWidth->PaperWidth]
328}, Open ]],
329
330Cell[CellGroupData[{
331
332Cell["Verteces and Propagators", "Subsection",
333 PageWidth->PaperWidth],
334
335Cell[TextData[{
336 StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
337outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
338 FontSize->14],
339 Cell[BoxData[
340 FormBox[
341 SubscriptBox["g", "s"], TraditionalForm]],
342 FontSize->14],
343 StyleBox[" ) (\[ImaginaryI] ",
344 FontSize->14],
345 Cell[BoxData[
346 FormBox[
347 SuperscriptBox["f", "abc"], TraditionalForm]],
348 FontSize->14],
349 StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
350 FontSize->14],
351 Cell[BoxData[
352 FormBox[
353 SubscriptBox["g", "s"], TraditionalForm]],
354 FontSize->14],
355 ")",
356 StyleBox[" ",
357 FontSize->14],
358 Cell[BoxData[
359 FormBox[
360 SubscriptBox[
361 RowBox[{"(",
362 SuperscriptBox["T", "a"], ")"}], "ij"], TraditionalForm]],
363 FontSize->14],
364 StyleBox[" ",
365 FontSize->14],
366 Cell[BoxData[
367 FormBox[
368 SuperscriptBox["\[Gamma]", "\[Mu]"], TraditionalForm]],
369 FontSize->14],
370 StyleBox["\nGluon Propagator= ",
371 FontSize->14],
372 Cell[BoxData[
373 FormBox[
374 FractionBox[
375 StyleBox[
376 RowBox[{
377 RowBox[{"-", "\[ImaginaryI]"}], " ",
378 SuperscriptBox["g", "\[Mu]\[Nu]"]}],
379 FontSize->16],
380 SuperscriptBox["p", "2"]], TraditionalForm]],
381 FontSize->14],
382 "\nQuark ",
383 StyleBox["Propagator= ",
384 FontSize->14],
385 Cell[BoxData[
386 FormBox[
387 FractionBox[
388 StyleBox[
389 RowBox[{"\[ImaginaryI]", " "}],
390 FontSize->16],
391 OverscriptBox["p", "^"]], TraditionalForm]],
392 FontSize->14]
393}], "Text",
394 PageWidth->PaperWidth],
395
396Cell[BoxData[{
397 RowBox[{
398 RowBox[{
399 RowBox[{"GGG", "[",
400 RowBox[{
401 "p1_", ",", "p2_", ",", "p3_", ",", "m1_", ",", "m2_", ",", "m3_"}],
402 "]"}], ":=",
403 RowBox[{
404 RowBox[{
405 RowBox[{"FV", "[",
406 RowBox[{
407 RowBox[{"p1", "-", "p2"}], ",", "m3"}], "]"}], " ",
408 RowBox[{"MT", "[",
409 RowBox[{"m1", ",", "m2"}], "]"}]}], "+",
410 RowBox[{
411 RowBox[{"FV", "[",
412 RowBox[{
413 RowBox[{"p2", "-", "p3"}], ",", "m1"}], "]"}], " ",
414 RowBox[{"MT", "[",
415 RowBox[{"m2", ",", "m3"}], "]"}]}], "+",
416 RowBox[{
417 RowBox[{"FV", "[",
418 RowBox[{
419 RowBox[{"p3", "-", "p1"}], ",", "m2"}], "]"}], " ",
420 RowBox[{"MT", "[",
421 RowBox[{"m1", ",", "m3"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
422 RowBox[{
423 RowBox[{
424 RowBox[{"GGGD", "[",
425 RowBox[{
426 "p1_", ",", "p2_", ",", "p3_", ",", "m1_", ",", "m2_", ",", "m3_"}],
427 "]"}], ":=",
428 RowBox[{
429 RowBox[{
430 RowBox[{"FVD", "[",
431 RowBox[{
432 RowBox[{"p1", "-", "p2"}], ",", "m3"}], "]"}], " ",
433 RowBox[{"MTD", "[",
434 RowBox[{"m1", ",", "m2"}], "]"}]}], "+",
435 RowBox[{
436 RowBox[{"FVD", "[",
437 RowBox[{
438 RowBox[{"p2", "-", "p3"}], ",", "m1"}], "]"}], " ",
439 RowBox[{"MTD", "[",
440 RowBox[{"m2", ",", "m3"}], "]"}]}], "+",
441 RowBox[{
442 RowBox[{"FVD", "[",
443 RowBox[{
444 RowBox[{"p3", "-", "p1"}], ",", "m2"}], "]"}], " ",
445 RowBox[{"MTD", "[",
446 RowBox[{"m1", ",", "m3"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
447 RowBox[{
448 RowBox[{
449 RowBox[{"GGGG", "[",
450 RowBox[{"m1_", ",", "m2_", ",", "m3_", ",", "m4_"}], "]"}], ":=",
451 RowBox[{
452 RowBox[{"2", " ",
453 RowBox[{"MT", "[",
454 RowBox[{"m1", ",", "m2"}], "]"}], " ",
455 RowBox[{"MT", "[",
456 RowBox[{"m3", ",", "m4"}], "]"}]}], "-",
457 RowBox[{
458 RowBox[{"MT", "[",
459 RowBox[{"m1", ",", "m3"}], "]"}], " ",
460 RowBox[{"MT", "[",
461 RowBox[{"m2", ",", "m4"}], "]"}]}], "-",
462 RowBox[{
463 RowBox[{"MT", "[",
464 RowBox[{"m1", ",", "m4"}], "]"}], " ",
465 RowBox[{"MT", "[",
466 RowBox[{"m2", ",", "m3"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
467 RowBox[{
468 RowBox[{
469 RowBox[{"GGGGD", "[",
470 RowBox[{"m1_", ",", "m2_", ",", "m3_", ",", "m4_"}], "]"}], ":=",
471 RowBox[{
472 RowBox[{"2", " ",
473 RowBox[{"MTD", "[",
474 RowBox[{"m1", ",", "m2"}], "]"}], " ",
475 RowBox[{"MTD", "[",
476 RowBox[{"m3", ",", "m4"}], "]"}]}], "-",
477 RowBox[{
478 RowBox[{"MTD", "[",
479 RowBox[{"m1", ",", "m3"}], "]"}], " ",
480 RowBox[{"MTD", "[",
481 RowBox[{"m2", ",", "m4"}], "]"}]}], "-",
482 RowBox[{
483 RowBox[{"MTD", "[",
484 RowBox[{"m1", ",", "m4"}], "]"}], " ",
485 RowBox[{"MTD", "[",
486 RowBox[{"m2", ",", "m3"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
487 RowBox[{
488 RowBox[{"PropQuark", "=", "I"}], ";"}], "\[IndentingNewLine]",
489 RowBox[{
490 RowBox[{"PropGluon", " ", "=",
491 RowBox[{"-", "I"}]}], ";"}], "\[IndentingNewLine]",
492 RowBox[{
493 RowBox[{"vtx", "=",
494 RowBox[{
495 RowBox[{"-", "I"}], " ", "gs"}]}], ";"}]}], "Input",
496 PageWidth->PaperWidth]
497}, Open ]],
498
499Cell[CellGroupData[{
500
501Cell["Born Matrix element ", "Subsection",
502 PageWidth->PaperWidth],
503
504Cell[CellGroupData[{
505
506Cell[BoxData[{
507 RowBox[{"factborn", "=", "gs2"}], "\[IndentingNewLine]",
508 RowBox[{
509 RowBox[{"Born", "=",
510 RowBox[{
511 RowBox[{"factborn",
512 RowBox[{"(", " ",
513 RowBox[{
514 RowBox[{
515 RowBox[{"MTD", "[",
516 RowBox[{"mu", ",", "nu"}], "]"}], " ",
517 RowBox[{"SPD", "[",
518 RowBox[{"p1", ",", "p2"}], "]"}]}], "-",
519 RowBox[{
520 RowBox[{"FVD", "[",
521 RowBox[{"p1", ",", "nu"}], "]"}], " ",
522 RowBox[{"FVD", "[",
523 RowBox[{"p2", ",", "mu"}], "]"}]}]}], ")"}], " ",
524 RowBox[{"FVD", "[",
525 RowBox[{"e1", ",", "mu"}], "]"}], " ",
526 RowBox[{"FVD", "[",
527 RowBox[{"e2", ",", "nu"}], "]"}]}], "//", "Contract"}]}],
528 ";"}], "\[IndentingNewLine]",
529 RowBox[{
530 RowBox[{"Born4", "=",
531 RowBox[{"Born", "/.", " ",
532 RowBox[{"D", "\[Rule]", "4"}]}]}], ";"}], "\[IndentingNewLine]",
533 RowBox[{"Born", "=", "Born"}]}], "Input",
534 PageWidth->PaperWidth],
535
536Cell[BoxData[
537 FormBox["gs2", TraditionalForm]], "Output",
538 CellChangeTimes->{3.5426318223635883`*^9, 3.692515519604402*^9,
539 3.6925218211499767`*^9, 3.692522404445462*^9, 3.692522452532443*^9}],
540
541Cell[BoxData[
542 FormBox[
543 RowBox[{
544 FractionBox["1", "2"], " ", "gs2", " ", "Q2", " ",
545 RowBox[{"(",
546 RowBox[{
547 FormBox[
548 FormBox["e1",
549 TraditionalForm],
550 TraditionalForm],
551 FormBox["\<\"\[CenterDot]\"\>",
552 TraditionalForm],
553 FormBox[
554 FormBox["e2",
555 TraditionalForm],
556 TraditionalForm]}], ")"}]}], TraditionalForm]], "Output",
557 CellChangeTimes->{3.5426318223635883`*^9, 3.692515519604402*^9,
558 3.6925218211499767`*^9, 3.692522404445462*^9, 3.692522452550085*^9}]
559}, Open ]],
560
561Cell[CellGroupData[{
562
563Cell[BoxData[{
564 RowBox[{"BornSq", "=",
565 RowBox[{
566 RowBox[{"Normal", "[",
567 RowBox[{"Series", "[",
568 RowBox[{
569 RowBox[{
570 RowBox[{"(", "\[IndentingNewLine]",
571 RowBox[{
572 RowBox[{
573 RowBox[{
574 RowBox[{"gs2", "^", "2"}], " ", "/",
575 RowBox[{
576 RowBox[{"(",
577 RowBox[{"D", "-", "2"}], ")"}], "^", "2"}]}], "*",
578 RowBox[{"(", " ",
579 RowBox[{
580 RowBox[{
581 RowBox[{"MTD", "[",
582 RowBox[{"mu", ",", "nu"}], "]"}], " ",
583 RowBox[{"SPD", "[",
584 RowBox[{"p1", ",", "p2"}], "]"}]}], "-",
585 RowBox[{
586 RowBox[{"FVD", "[",
587 RowBox[{"p1", ",", "nu"}], "]"}], " ",
588 RowBox[{"FVD", "[",
589 RowBox[{"p2", ",", "mu"}], "]"}]}]}], ")"}],
590 RowBox[{"(", " ",
591 RowBox[{
592 RowBox[{
593 RowBox[{"MTD", "[",
594 RowBox[{"mu", ",", "nu"}], "]"}], " ",
595 RowBox[{"SPD", "[",
596 RowBox[{"p1", ",", "p2"}], "]"}]}], "-",
597 RowBox[{
598 RowBox[{"FVD", "[",
599 RowBox[{"p1", ",", "nu"}], "]"}], " ",
600 RowBox[{"FVD", "[",
601 RowBox[{"p2", ",", "mu"}], "]"}]}]}], ")"}]}], " ", "//",
602 "Contract"}], ")"}], " ", "/.", " ",
603 RowBox[{"D", "\[Rule]",
604 RowBox[{"4", "-",
605 RowBox[{"2", "e"}]}]}]}], ",",
606 RowBox[{"{",
607 RowBox[{"e", ",", "0", ",", "2"}], "}"}]}], "]"}], "]"}], "//",
608 "Simplify"}]}], "\[IndentingNewLine]",
609 RowBox[{
610 RowBox[{"BornSq4", "=",
611 RowBox[{"BornSq", "/.", " ",
612 RowBox[{"e", "\[Rule]", "0"}]}]}], ";"}]}], "Input"],
613
614Cell[BoxData[
615 FormBox[
616 RowBox[{
617 FractionBox["1", "8"], " ",
618 RowBox[{"(",
619 RowBox[{
620 SuperscriptBox["e", "2"], "+", "e", "+", "1"}], ")"}], " ",
621 SuperscriptBox["gs2", "2"], " ",
622 SuperscriptBox["Q2", "2"]}], TraditionalForm]], "Output",
623 CellChangeTimes->{3.542631822489691*^9, 3.692515519701975*^9,
624 3.6925218211943827`*^9, 3.692522404519568*^9, 3.6925224525920267`*^9}]
625}, Open ]]
626}, Open ]],
627
628Cell[CellGroupData[{
629
630Cell["\<\
631My Scalar Integrals
632The commented expression seems not to work on Mathematica 10 + FC9\
633\>", "Subsection",
634 PageWidth->PaperWidth,
635 CellChangeTimes->{{3.692521838667712*^9, 3.692521858834566*^9}}],
636
637Cell[BoxData[
638 RowBox[{
639 RowBox[{"(*",
640 RowBox[{
641 RowBox[{
642 RowBox[{"subInt", "[", "expr_", "]"}], ":=",
643 RowBox[{"expr", "/.", " ",
644 RowBox[{"{", "\[IndentingNewLine]",
645 RowBox[{
646 RowBox[{
647 RowBox[{"B0", "[", "x__", "]"}], "\[Rule]", " ",
648 RowBox[{
649 RowBox[{"DUPI", "/",
650 RowBox[{"(",
651 RowBox[{"I", " ",
652 RowBox[{"Pi", "^", "2"}]}], ")"}]}], " ",
653 RowBox[{"MyB0", "[", "x", "]"}]}]}], ",", "\[IndentingNewLine]",
654 RowBox[{
655 RowBox[{"C0", "[", "x__", "]"}], "\[Rule]", " ",
656 RowBox[{
657 RowBox[{"DUPI", "/",
658 RowBox[{"(",
659 RowBox[{"I", " ",
660 RowBox[{"Pi", "^", "2"}]}], ")"}]}], " ",
661 RowBox[{"MyC0", "[", "x", "]"}]}]}], ",", "\[IndentingNewLine]",
662 RowBox[{
663 RowBox[{"D0", "[", "x__", "]"}], "\[Rule]", " ",
664 RowBox[{
665 RowBox[{"DUPI", "/",
666 RowBox[{"(",
667 RowBox[{"I", " ",
668 RowBox[{"Pi", "^", "2"}]}], ")"}]}], " ",
669 RowBox[{"MyD0", "[", "x", "]"}]}]}]}], "}"}]}]}], ";"}], "*)"}],
670 "\[IndentingNewLine]",
671 RowBox[{
672 RowBox[{
673 RowBox[{
674 RowBox[{"subInt", "[", "expr_", "]"}], " ", ":=", " ",
675 RowBox[{"Simplify", "[",
676 RowBox[{"expr", " ", "/.", " ",
677 RowBox[{"{",
678 RowBox[{
679 RowBox[{
680 RowBox[{
681 RowBox[{"PaVe", "[",
682 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], " ", "/;", " ",
683 RowBox[{
684 RowBox[{"Length", "[",
685 RowBox[{"Join", "[",
686 RowBox[{"y", ",", "z"}], "]"}], "]"}], " ", "\[Equal]", " ",
687 "6"}]}], "\[Rule]",
688 RowBox[{
689 RowBox[{"DUPI", "/",
690 RowBox[{"(",
691 RowBox[{"I", " ",
692 RowBox[{"Pi", "^", "2"}]}], ")"}]}], "MyC0"}]}], ",",
693 "\[IndentingNewLine]",
694 RowBox[{
695 RowBox[{
696 RowBox[{"PaVe", "[",
697 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], " ", "/;", " ",
698 RowBox[{
699 RowBox[{"Length", "[",
700 RowBox[{"Join", "[",
701 RowBox[{"y", ",", "z"}], "]"}], "]"}], " ", "\[Equal]", " ",
702 "3"}]}], "\[Rule]",
703 RowBox[{
704 RowBox[{"DUPI", "/",
705 RowBox[{"(",
706 RowBox[{"I", " ",
707 RowBox[{"Pi", "^", "2"}]}], ")"}]}], "MyB0"}]}]}], " ", "}"}]}],
708 "]"}]}], ";"}], "\[IndentingNewLine]",
709 RowBox[{
710 RowBox[{"MyC0", "=",
711 RowBox[{
712 RowBox[{"(",
713 RowBox[{"c\[CapitalGamma]", "*",
714 RowBox[{"(",
715 RowBox[{
716 RowBox[{"2", "/",
717 RowBox[{"e", "^", "2"}]}], "-",
718 RowBox[{"Pi", "^", "2"}], "-",
719 RowBox[{
720 RowBox[{"2", "/", "e"}], "*",
721 RowBox[{"Log", "[",
722 RowBox[{"Q2", "/", "mu2"}], "]"}]}], "+",
723 RowBox[{
724 RowBox[{"Log", "[",
725 RowBox[{"Q2", "/", "mu2"}], "]"}], "^", "2"}]}], ")"}]}], ")"}],
726 "/",
727 RowBox[{"(",
728 RowBox[{"2", "*", "Q2"}], ")"}]}]}], ";", " ",
729 RowBox[{"(*", " ",
730 RowBox[{"this", " ", "is", " ",
731 RowBox[{"C0", "[",
732 RowBox[{"0", ",", "0", ",", "Q2", ",", "0", ",", "0", ",", "0"}],
733 "]"}]}], "*)"}], "\[IndentingNewLine]",
734 RowBox[{"MyB0", "=",
735 RowBox[{"c\[CapitalGamma]", " ",
736 RowBox[{"(",
737 RowBox[{
738 RowBox[{"1", "/", "e"}], "+", "2", "-",
739 RowBox[{"Log", "[",
740 RowBox[{"Q2", "/", "mu2"}], "]"}]}], ")"}]}]}], ";", " ",
741 RowBox[{"(*", " ",
742 RowBox[{
743 RowBox[{"this", " ", "is", " ",
744 RowBox[{"B0", "[",
745 RowBox[{"Q2", ",", "0", ",", "0"}], "]"}]}], ",", " ",
746 RowBox[{
747 RowBox[{"B0", "[",
748 RowBox[{"0", ",", "0", ",", "0"}], "]"}], " ", "is", " ",
749 "automatically", " ", "discarded", " ", "by", " ", "FC", " ",
750 RowBox[{"(",
751 RowBox[{"it", " ", "is", " ", "0"}], ")"}]}]}], "*)"}],
752 "\n"}]}]}]], "Input",
753 PageWidth->PaperWidth,
754 CellChangeTimes->{{3.692521981776946*^9, 3.692522061165731*^9},
755 3.692522128293076*^9, 3.692522194390325*^9, {3.692522247972107*^9,
756 3.6925223829969473`*^9}, {3.692522439712294*^9, 3.692522440039565*^9}, {
757 3.69252247672123*^9, 3.692522488719124*^9}}],
758
759Cell[BoxData[""], "Input"],
760
761Cell[BoxData[""], "Input"]
762}, Open ]]
763}, Open ]],
764
765Cell[CellGroupData[{
766
767Cell["CDR", "Section"],
768
769Cell[CellGroupData[{
770
771Cell["Vertex Diagram ", "Subsection",
772 PageWidth->PaperWidth],
773
774Cell[CellGroupData[{
775
776Cell[BoxData[{
777 RowBox[{
778 RowBox[{"colorvtx", "=",
779 RowBox[{
780 RowBox[{
781 RowBox[{"SUNF", "[",
782 RowBox[{"b", ",", "x", ",", "y"}], "]"}],
783 RowBox[{"SUNF", "[",
784 RowBox[{"y", ",", "a", ",", "x"}], "]"}]}], " ", "//",
785 "SUNSimplify"}]}], "\n"}], "\[IndentingNewLine]",
786 RowBox[{
787 RowBox[{"num", "=",
788 RowBox[{
789 RowBox[{
790 RowBox[{"gs2", "^", "2"}], "*",
791 RowBox[{"(",
792 RowBox[{"-", "gs2"}], ")"}], "*", "I", "*", "\[IndentingNewLine]",
793 RowBox[{"(", " ",
794 RowBox[{
795 RowBox[{
796 RowBox[{"MTD", "[",
797 RowBox[{"al", ",", "be"}], "]"}], " ",
798 RowBox[{"SPD", "[",
799 RowBox[{
800 RowBox[{
801 RowBox[{"-", "l"}], "+", "p1"}], ",",
802 RowBox[{"p2", "+", "l"}]}], "]"}]}], "-", " ",
803 RowBox[{
804 RowBox[{"FVD", "[",
805 RowBox[{
806 RowBox[{
807 RowBox[{"-", "l"}], "+", "p1"}], ",", "be"}], "]"}], " ",
808 RowBox[{"FVD", "[",
809 RowBox[{
810 RowBox[{"p2", "+", "l"}], ",", "al"}], "]"}]}]}], ")"}], " ", "*",
811 " ",
812 RowBox[{"GGGD", "[",
813 RowBox[{
814 RowBox[{"-", "l"}], ",", "p1", ",",
815 RowBox[{"l", "-", "p1"}], ",", "ro", ",", "mu", ",", "al"}], "]"}],
816 "*", "\[IndentingNewLine]",
817 RowBox[{"GGGD", "[",
818 RowBox[{"p2", ",", "l", ",",
819 RowBox[{
820 RowBox[{"-", "l"}], "-", "p2"}], ",", "nu", ",", "ro", ",", "be"}],
821 "]"}], "*",
822 RowBox[{"(", " ",
823 RowBox[{
824 RowBox[{
825 RowBox[{"MTD", "[",
826 RowBox[{"mu", ",", "nu"}], "]"}], " ",
827 RowBox[{"SPD", "[",
828 RowBox[{"p1", ",", "p2"}], "]"}]}], "-",
829 RowBox[{
830 RowBox[{"FVD", "[",
831 RowBox[{"p1", ",", "nu"}], "]"}], " ",
832 RowBox[{"FVD", "[",
833 RowBox[{"p2", ",", "mu"}], "]"}]}]}], ")"}]}], " ", "//",
834 "Contract"}]}], ";"}], "\n",
835 RowBox[{
836 RowBox[{"dens", "=",
837 RowBox[{"FAD", "[",
838 RowBox[{"l", ",",
839 RowBox[{"p1", "-", "l"}], ",",
840 RowBox[{"l", "+", "p2"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
841 RowBox[{
842 RowBox[{"amp", "=",
843 RowBox[{"CA", " ", "dens", "*", " ",
844 RowBox[{"num", "/",
845 RowBox[{
846 RowBox[{"(",
847 RowBox[{"D", "-", "2"}], ")"}], "^", "2"}]}]}]}], ";"}], "\n",
848 RowBox[{"inte1", "=",
849 RowBox[{
850 RowBox[{
851 RowBox[{"(",
852 RowBox[{
853 RowBox[{
854 RowBox[{"(",
855 RowBox[{
856 RowBox[{
857 RowBox[{"OneLoop", "[",
858 RowBox[{"l", ",",
859 RowBox[{"amp", "/", "DUPI"}]}], "]"}], "//", "PaVeReduce"}], "//",
860 "Simplify"}], ")"}], "//", "Factor"}], "//", "Simplify"}], ")"}], "/.",
861 " ",
862 RowBox[{
863 RowBox[{"B0", "[",
864 RowBox[{"0", ",", "0", ",", "0"}], "]"}], "\[Rule]", "0"}]}], " ", "//",
865 "Simplify"}]}]}], "Input",
866 PageWidth->PaperWidth,
867 CellChangeTimes->{{3.692522149415956*^9, 3.6925221619920483`*^9}, {
868 3.692522495640565*^9, 3.6925224959986963`*^9}}],
869
870Cell[BoxData[
871 FormBox[
872 RowBox[{
873 SubscriptBox["C", "A"], " ",
874 SuperscriptBox["\[Delta]",
875 RowBox[{
876 FormBox[
877 FormBox["a",
878 TraditionalForm],
879 TraditionalForm],
880 FormBox[
881 FormBox["b",
882 TraditionalForm],
883 TraditionalForm]}]]}], TraditionalForm]], "Output",
884 CellChangeTimes->{3.692522404810404*^9, 3.69252245267111*^9,
885 3.692522499089229*^9}],
886
887Cell[BoxData[
888 FormBox[
889 RowBox[{"-",
890 FractionBox[
891 RowBox[{
892 SuperscriptBox["\[Pi]", "2"], " ",
893 SuperscriptBox["gs2", "3"], " ",
894 SuperscriptBox["Q2", "2"], " ",
895 SubscriptBox["C", "A"], " ",
896 RowBox[{"(",
897 RowBox[{
898 RowBox[{
899 RowBox[{"(",
900 RowBox[{
901 RowBox[{"-",
902 RowBox[{"20", " ",
903 SuperscriptBox["D", "2"]}]}], "+",
904 RowBox[{"73", " ", "D"}], "-", "52"}], ")"}], " ",
905 FormBox[
906 RowBox[{
907 SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(",
908 RowBox[{"Q2", ",", "0", ",", "0"}], ")"}],
909 TraditionalForm]}], "+",
910 RowBox[{"8", " ",
911 RowBox[{"(",
912 RowBox[{
913 SuperscriptBox["D", "2"], "-",
914 RowBox[{"3", " ", "D"}], "+", "2"}], ")"}], " ", "Q2", " ",
915 FormBox[
916 RowBox[{
917 SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(",
918 RowBox[{"0", ",", "0", ",", "Q2", ",", "0", ",", "0", ",", "0"}],
919 ")"}],
920 TraditionalForm]}]}], ")"}]}],
921 RowBox[{"16", " ",
922 SuperscriptBox[
923 RowBox[{"(",
924 RowBox[{"D", "-", "2"}], ")"}], "2"], " ",
925 RowBox[{"(",
926 RowBox[{"D", "-", "1"}], ")"}], " ", "DUPI"}]]}],
927 TraditionalForm]], "Output",
928 CellChangeTimes->{3.692522404810404*^9, 3.69252245267111*^9,
929 3.6925225004402237`*^9}]
930}, Open ]],
931
932Cell[BoxData[""], "Input"]
933}, Open ]],
934
935Cell[CellGroupData[{
936
937Cell["4-gluon Diagram ", "Subsection",
938 PageWidth->PaperWidth],
939
940Cell[CellGroupData[{
941
942Cell[BoxData[{
943 RowBox[{
944 RowBox[{"color", "=",
945 RowBox[{
946 RowBox[{
947 RowBox[{"SUNF", "[",
948 RowBox[{"b", ",", "c", ",", "y"}], "]"}],
949 RowBox[{"SUNF", "[",
950 RowBox[{"y", ",", "a", ",", "c"}], "]"}]}], " ", "//",
951 "SUNSimplify"}]}], ";"}], "\n",
952 RowBox[{
953 RowBox[{"num", "=",
954 RowBox[{
955 RowBox[{
956 RowBox[{"gs2", "^", "2"}], "*", "I", "*", " ", "gs2", "*",
957 RowBox[{"(", " ",
958 RowBox[{
959 RowBox[{
960 RowBox[{"MTD", "[",
961 RowBox[{"ro", ",", "si"}], "]"}], " ",
962 RowBox[{"SPD", "[",
963 RowBox[{"l", ",",
964 RowBox[{
965 RowBox[{"-", "l"}], "+", "p1", "+", "p2"}]}], "]"}]}], "-", " ",
966 RowBox[{
967 RowBox[{"FVD", "[",
968 RowBox[{"l", ",", "si"}], "]"}], " ",
969 RowBox[{"FVD", "[",
970 RowBox[{
971 RowBox[{
972 RowBox[{"-", "l"}], "+", "p1", "+", "p2"}], ",", "ro"}], "]"}]}]}],
973 ")"}], " ", "*", " ",
974 RowBox[{"GGGGD", "[",
975 RowBox[{"nu", ",", "mu", ",", "ro", ",", "si"}], "]"}], " ", "*",
976 RowBox[{"(", " ",
977 RowBox[{
978 RowBox[{
979 RowBox[{"MTD", "[",
980 RowBox[{"mu", ",", "nu"}], "]"}], " ",
981 RowBox[{"SPD", "[",
982 RowBox[{"p1", ",", "p2"}], "]"}]}], "-",
983 RowBox[{
984 RowBox[{"FVD", "[",
985 RowBox[{"p1", ",", "nu"}], "]"}], " ",
986 RowBox[{"FVD", "[",
987 RowBox[{"p2", ",", "mu"}], "]"}]}]}], ")"}]}], " ", "//",
988 "Contract"}]}], ";"}], "\n",
989 RowBox[{
990 RowBox[{"dens", "=",
991 RowBox[{"FAD", "[",
992 RowBox[{"l", ",",
993 RowBox[{"l", "-", "p1", "-", "p2"}]}], "]"}]}], ";"}], "\n",
994 RowBox[{
995 RowBox[{"amp", "=",
996 RowBox[{
997 RowBox[{"CA", "/", "2"}], " ", "dens", "*",
998 RowBox[{"num", "/",
999 RowBox[{
1000 RowBox[{"(",
1001 RowBox[{"D", "-", "2"}], ")"}], "^", "2"}]}]}]}],
1002 ";"}], "\[IndentingNewLine]",
1003 RowBox[{"inte2", "=",
1004 RowBox[{
1005 RowBox[{
1006 RowBox[{"(",
1007 RowBox[{
1008 RowBox[{
1009 RowBox[{"OneLoop", "[",
1010 RowBox[{"l", ",",
1011 RowBox[{"amp", "/", "DUPI"}]}], "]"}], "//", "PaVeReduce"}], "//",
1012 "Simplify"}], ")"}], "//", "Factor"}], "//", "Simplify"}]}]}], "Input",
1013 PageWidth->PaperWidth],
1014
1015Cell[BoxData[
1016 FormBox[
1017 RowBox[{"-",
1018 FractionBox[
1019 RowBox[{
1020 SuperscriptBox["\[Pi]", "2"], " ",
1021 RowBox[{"(",
1022 RowBox[{
1023 RowBox[{"2", " ", "D"}], "-", "3"}], ")"}], " ",
1024 RowBox[{"(",
1025 RowBox[{
1026 RowBox[{"2", " ",
1027 SuperscriptBox["D", "2"]}], "-",
1028 RowBox[{"5", " ", "D"}], "+", "4"}], ")"}], " ",
1029 SuperscriptBox["gs2", "3"], " ",
1030 SuperscriptBox["Q2", "2"], " ",
1031 SubscriptBox["C", "A"], " ",
1032 FormBox[
1033 RowBox[{
1034 SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(",
1035 RowBox[{"Q2", ",", "0", ",", "0"}], ")"}],
1036 TraditionalForm]}],
1037 RowBox[{"16", " ",
1038 SuperscriptBox[
1039 RowBox[{"(",
1040 RowBox[{"D", "-", "2"}], ")"}], "2"], " ",
1041 RowBox[{"(",
1042 RowBox[{"D", "-", "1"}], ")"}], " ", "DUPI"}]]}],
1043 TraditionalForm]], "Output",
1044 CellChangeTimes->{3.5426318360589*^9, 3.692515521760001*^9,
1045 3.692521920374544*^9, 3.692522407076551*^9, 3.692522514659532*^9}]
1046}, Open ]]
1047}, Open ]],
1048
1049Cell[CellGroupData[{
1050
1051Cell["Sum the virtuals", "Subsection"],
1052
1053Cell[CellGroupData[{
1054
1055Cell[BoxData[
1056 RowBox[{"\[IndentingNewLine]",
1057 RowBox[{
1058 RowBox[{"res1", "=", " ",
1059 RowBox[{
1060 RowBox[{
1061 RowBox[{
1062 RowBox[{
1063 RowBox[{
1064 RowBox[{"-", "1"}], "/", "2"}], "*", "\[IndentingNewLine]",
1065 RowBox[{"Normal", "[",
1066 RowBox[{"Series", "[",
1067 RowBox[{
1068 RowBox[{
1069 RowBox[{
1070 RowBox[{
1071 RowBox[{
1072 RowBox[{
1073 RowBox[{"(", "inte1", ")"}], "/", "BornSq"}], "/", "I"}], "/",
1074 RowBox[{
1075 RowBox[{"(",
1076 RowBox[{"mu2", "/", "Q2"}], ")"}], "^",
1077 RowBox[{"(", "e", ")"}]}]}], " ", "/.", " ",
1078 RowBox[{"D", "\[Rule]",
1079 RowBox[{"4", "-",
1080 RowBox[{"2", "e"}]}]}]}], "//", " ", "subInt"}], ",",
1081 RowBox[{"{",
1082 RowBox[{"e", ",", "0", ",", "0"}], "}"}]}], "]"}], "]"}]}], "//",
1083 "Simplify"}], "//", "PowerExpand"}], "//", "Expand"}]}],
1084 "\[IndentingNewLine]", "\[IndentingNewLine]",
1085 RowBox[{"res2", "=", " ",
1086 RowBox[{
1087 RowBox[{
1088 RowBox[{
1089 RowBox[{
1090 RowBox[{
1091 RowBox[{"-", "1"}], "/", "2"}], "*", "\[IndentingNewLine]",
1092 RowBox[{"Normal", "[",
1093 RowBox[{"Series", "[",
1094 RowBox[{
1095 RowBox[{
1096 RowBox[{
1097 RowBox[{
1098 RowBox[{
1099 RowBox[{
1100 RowBox[{"(", "inte2", ")"}], "/", "BornSq"}], "/", "I"}], "/",
1101 RowBox[{
1102 RowBox[{"(",
1103 RowBox[{"mu2", "/", "Q2"}], ")"}], "^",
1104 RowBox[{"(", "e", ")"}]}]}], " ", "/.", " ",
1105 RowBox[{"D", "\[Rule]",
1106 RowBox[{"4", "-",
1107 RowBox[{"2", "e"}]}]}]}], "//", " ", "subInt"}], ",",
1108 RowBox[{"{",
1109 RowBox[{"e", ",", "0", ",", "0"}], "}"}]}], "]"}], "]"}]}], "//",
1110 "Simplify"}], "//", "PowerExpand"}], "//", "Expand"}]}],
1111 "\n"}]}]], "Input",
1112 PageWidth->PaperWidth,
1113 CellChangeTimes->{{3.54263188574975*^9, 3.542631902626193*^9}}],
1114
1115Cell[BoxData[
1116 FormBox[
1117 RowBox[{
1118 RowBox[{"-",
1119 FractionBox[
1120 RowBox[{"c\[CapitalGamma]", " ", "gs2", " ",
1121 SubscriptBox["C", "A"]}],
1122 SuperscriptBox["e", "2"]]}], "+",
1123 FractionBox[
1124 RowBox[{"5", " ", "c\[CapitalGamma]", " ", "gs2", " ",
1125 SubscriptBox["C", "A"]}],
1126 RowBox[{"3", " ", "e"}]], "+",
1127 RowBox[{
1128 FractionBox["179", "72"], " ", "c\[CapitalGamma]", " ", "gs2", " ",
1129 SubscriptBox["C", "A"]}], "+",
1130 RowBox[{
1131 FractionBox["1", "2"], " ",
1132 SuperscriptBox["\[Pi]", "2"], " ", "c\[CapitalGamma]", " ", "gs2", " ",
1133 SubscriptBox["C", "A"]}]}], TraditionalForm]], "Output",
1134 CellChangeTimes->{
1135 3.542631840971065*^9, {3.542631900146366*^9, 3.542631903265226*^9},
1136 3.69251552178992*^9, 3.692521932580472*^9, {3.692522077916459*^9,
1137 3.692522101803856*^9}, 3.692522134521243*^9, 3.692522519476282*^9}],
1138
1139Cell[BoxData[
1140 FormBox[
1141 RowBox[{
1142 RowBox[{"-",
1143 FractionBox[
1144 RowBox[{"5", " ", "c\[CapitalGamma]", " ", "gs2", " ",
1145 SubscriptBox["C", "A"]}],
1146 RowBox[{"3", " ", "e"}]]}], "-",
1147 RowBox[{
1148 FractionBox["179", "72"], " ", "c\[CapitalGamma]", " ", "gs2", " ",
1149 SubscriptBox["C", "A"]}]}], TraditionalForm]], "Output",
1150 CellChangeTimes->{
1151 3.542631840971065*^9, {3.542631900146366*^9, 3.542631903265226*^9},
1152 3.69251552178992*^9, 3.692521932580472*^9, {3.692522077916459*^9,
1153 3.692522101803856*^9}, 3.692522134521243*^9, 3.692522519526516*^9}]
1154}, Open ]],
1155
1156Cell[CellGroupData[{
1157
1158Cell[BoxData[
1159 RowBox[{"\[IndentingNewLine]",
1160 RowBox[{"res", "=", " ",
1161 RowBox[{
1162 RowBox[{
1163 RowBox[{
1164 RowBox[{
1165 RowBox[{
1166 RowBox[{"-", "1"}], "/", "2"}], "*", "\[IndentingNewLine]",
1167 RowBox[{"Normal", "[",
1168 RowBox[{"Series", "[",
1169 RowBox[{
1170 RowBox[{
1171 RowBox[{
1172 RowBox[{
1173 RowBox[{
1174 RowBox[{
1175 RowBox[{"(",
1176 RowBox[{"inte1", "+", "inte2"}], ")"}], "/", "BornSq"}], "/",
1177 "I"}], "/",
1178 RowBox[{
1179 RowBox[{"(",
1180 RowBox[{"mu2", "/", "Q2"}], ")"}], "^",
1181 RowBox[{"(", "e", ")"}]}]}], " ", "/.", " ",
1182 RowBox[{"D", "\[Rule]",
1183 RowBox[{"4", "-",
1184 RowBox[{"2", "e"}]}]}]}], "//", " ", "subInt"}], ",",
1185 RowBox[{"{",
1186 RowBox[{"e", ",", "0", ",", "0"}], "}"}]}], "]"}], "]"}]}], "//",
1187 "Simplify"}], "//", "PowerExpand"}], "//", "Expand"}]}]}]], "Input",
1188 PageWidth->PaperWidth],
1189
1190Cell[BoxData[
1191 FormBox[
1192 RowBox[{
1193 RowBox[{
1194 FractionBox["1", "2"], " ",
1195 SuperscriptBox["\[Pi]", "2"], " ", "c\[CapitalGamma]", " ", "gs2", " ",
1196 SubscriptBox["C", "A"]}], "-",
1197 FractionBox[
1198 RowBox[{"c\[CapitalGamma]", " ", "gs2", " ",
1199 SubscriptBox["C", "A"]}],
1200 SuperscriptBox["e", "2"]]}], TraditionalForm]], "Output",
1201 CellChangeTimes->{3.542631840971065*^9, 3.692515521882228*^9,
1202 3.692522543770403*^9}]
1203}, Open ]]
1204}, Open ]],
1205
1206Cell[CellGroupData[{
1207
1208Cell["Add is the contribution from Hgg operator", "Subsection",
1209 CellChangeTimes->{{3.692531754609666*^9, 3.692531767359894*^9}}],
1210
1211Cell[CellGroupData[{
1212
1213Cell[BoxData[{
1214 RowBox[{
1215 RowBox[{"add", "=",
1216 RowBox[{
1217 RowBox[{"1", "/", "2"}],
1218 RowBox[{"(",
1219 RowBox[{
1220 RowBox[{"Normal", "[",
1221 RowBox[{"Series", "[",
1222 RowBox[{
1223 RowBox[{"(",
1224 RowBox[{
1225 RowBox[{"(",
1226 RowBox[{"1", "+", " ",
1227 RowBox[{
1228 RowBox[{
1229 RowBox[{"19", "/", "4"}], "/", "\[Pi]"}], " ",
1230 RowBox[{"gs2", "/",
1231 RowBox[{"(",
1232 RowBox[{"4", "\[Pi]"}], ")"}]}]}]}], " ", ")"}], "/",
1233 RowBox[{"(",
1234 RowBox[{"1", "+",
1235 RowBox[{"2", " ",
1236 RowBox[{
1237 RowBox[{"gs2", "/",
1238 RowBox[{"(",
1239 RowBox[{"4", "\[Pi]"}], ")"}]}], "/", "\[Pi]"}]}]}], ")"}]}],
1240 ")"}], ",",
1241 RowBox[{"{",
1242 RowBox[{"gs2", ",", "0", ",", "1"}], "}"}]}], "]"}], "]"}], "-",
1243 "1"}], ")"}], "c\[CapitalGamma]", " ",
1244 RowBox[{"CA", "/", "3"}], " ", "16",
1245 RowBox[{"Pi", "^", "2"}]}]}], " ", ";"}], "\[IndentingNewLine]",
1246 RowBox[{
1247 RowBox[{"virt", "=",
1248 RowBox[{"add", "+", "res"}]}], ";"}], "\[IndentingNewLine]",
1249 RowBox[{
1250 RowBox[{"virt1", "=", "res1"}], ";"}], "\[IndentingNewLine]",
1251 RowBox[{
1252 RowBox[{
1253 RowBox[{"virt2", "=", "res2"}], ";"}],
1254 "\[IndentingNewLine]"}], "\[IndentingNewLine]", "add"}], "Input",
1255 PageWidth->PaperWidth,
1256 CellChangeTimes->{{3.5426319374668407`*^9, 3.542631949496957*^9},
1257 3.692522571042892*^9}],
1258
1259Cell[BoxData[
1260 FormBox[
1261 RowBox[{
1262 FractionBox["11", "6"], " ", "c\[CapitalGamma]", " ", "gs2", " ",
1263 SubscriptBox["C", "A"]}], TraditionalForm]], "Output",
1264 CellChangeTimes->{3.5426318443159647`*^9, 3.542631976167509*^9,
1265 3.5426321214075212`*^9, 3.692515521927043*^9, 3.692522580645241*^9}]
1266}, Open ]],
1267
1268Cell[CellGroupData[{
1269
1270Cell[BoxData[{
1271 RowBox[{
1272 RowBox[{"virt", "=",
1273 RowBox[{
1274 RowBox[{"(",
1275 RowBox[{
1276 RowBox[{"(",
1277 RowBox[{"virt", "*",
1278 RowBox[{
1279 RowBox[{"2", "/", "gs2"}], "/", "c\[CapitalGamma]"}]}], ")"}], "//",
1280 "Expand"}], ")"}], "*",
1281 FractionBox["as",
1282 RowBox[{"2", "\[Pi]"}]], "c\[CapitalGamma]"}]}], " ",
1283 RowBox[{"(*", " ",
1284 RowBox[{"eq", " ", "39"}], "*)"}]}], "\[IndentingNewLine]",
1285 RowBox[{
1286 RowBox[{"virt1", "=",
1287 RowBox[{
1288 RowBox[{"(",
1289 RowBox[{
1290 RowBox[{"(",
1291 RowBox[{"virt1", "*",
1292 RowBox[{
1293 RowBox[{"2", "/", "gs2"}], "/", "c\[CapitalGamma]"}]}], ")"}], "//",
1294 "Expand"}], ")"}], "*",
1295 FractionBox["as",
1296 RowBox[{"2", "\[Pi]"}]], "c\[CapitalGamma]"}]}],
1297 " "}], "\[IndentingNewLine]",
1298 RowBox[{"virt2", "=",
1299 RowBox[{
1300 RowBox[{"(",
1301 RowBox[{
1302 RowBox[{"(",
1303 RowBox[{"virt2", "*",
1304 RowBox[{
1305 RowBox[{"2", "/", "gs2"}], "/", "c\[CapitalGamma]"}]}], ")"}], "//",
1306 "Expand"}], ")"}], "*",
1307 FractionBox["as",
1308 RowBox[{"2", "\[Pi]"}]], "c\[CapitalGamma]", " "}]}]}], "Input",
1309 CellChangeTimes->{{3.542631852564522*^9, 3.542631853826531*^9}, {
1310 3.5426319547565536`*^9, 3.54263197179709*^9}, {3.5426320982454357`*^9,
1311 3.542632118569233*^9}, {3.692525395151532*^9, 3.692525397947733*^9}}],
1312
1313Cell[BoxData[
1314 FormBox[
1315 FractionBox[
1316 RowBox[{"as", " ", "c\[CapitalGamma]", " ",
1317 RowBox[{"(",
1318 RowBox[{
1319 RowBox[{"-",
1320 FractionBox[
1321 RowBox[{"2", " ",
1322 SubscriptBox["C", "A"]}],
1323 SuperscriptBox["e", "2"]]}], "+",
1324 RowBox[{
1325 SuperscriptBox["\[Pi]", "2"], " ",
1326 SubscriptBox["C", "A"]}], "+",
1327 FractionBox[
1328 RowBox[{"11", " ",
1329 SubscriptBox["C", "A"]}], "3"]}], ")"}]}],
1330 RowBox[{"2", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1331 CellChangeTimes->{{3.542631848559409*^9, 3.54263185425035*^9}, {
1332 3.542631972325842*^9, 3.542631978338317*^9}, {3.542632099603859*^9,
1333 3.542632122724947*^9}, 3.692515521976563*^9, 3.692524472065591*^9}],
1334
1335Cell[BoxData[
1336 FormBox[
1337 FractionBox[
1338 RowBox[{"as", " ", "c\[CapitalGamma]", " ",
1339 RowBox[{"(",
1340 RowBox[{
1341 RowBox[{"-",
1342 FractionBox[
1343 RowBox[{"2", " ",
1344 SubscriptBox["C", "A"]}],
1345 SuperscriptBox["e", "2"]]}], "+",
1346 FractionBox[
1347 RowBox[{"10", " ",
1348 SubscriptBox["C", "A"]}],
1349 RowBox[{"3", " ", "e"}]], "+",
1350 RowBox[{
1351 SuperscriptBox["\[Pi]", "2"], " ",
1352 SubscriptBox["C", "A"]}], "+",
1353 FractionBox[
1354 RowBox[{"179", " ",
1355 SubscriptBox["C", "A"]}], "36"]}], ")"}]}],
1356 RowBox[{"2", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1357 CellChangeTimes->{{3.542631848559409*^9, 3.54263185425035*^9}, {
1358 3.542631972325842*^9, 3.542631978338317*^9}, {3.542632099603859*^9,
1359 3.542632122724947*^9}, 3.692515521976563*^9, 3.69252447207027*^9}],
1360
1361Cell[BoxData[
1362 FormBox[
1363 FractionBox[
1364 RowBox[{"as", " ", "c\[CapitalGamma]", " ",
1365 RowBox[{"(",
1366 RowBox[{
1367 RowBox[{"-",
1368 FractionBox[
1369 RowBox[{"10", " ",
1370 SubscriptBox["C", "A"]}],
1371 RowBox[{"3", " ", "e"}]]}], "-",
1372 FractionBox[
1373 RowBox[{"179", " ",
1374 SubscriptBox["C", "A"]}], "36"]}], ")"}]}],
1375 RowBox[{"2", " ", "\[Pi]"}]], TraditionalForm]], "Output",
1376 CellChangeTimes->{{3.542631848559409*^9, 3.54263185425035*^9}, {
1377 3.542631972325842*^9, 3.542631978338317*^9}, {3.542632099603859*^9,
1378 3.542632122724947*^9}, 3.692515521976563*^9, 3.692524472073923*^9}]
1379}, Open ]],
1380
1381Cell[BoxData["\[IndentingNewLine]"], "Input"],
1382
1383Cell[CellGroupData[{
1384
1385Cell[BoxData[
1386 RowBox[{
1387 RowBox[{
1388 RowBox[{"32", "/", "256"}], "/", "3"}], "/",
1389 RowBox[{
1390 RowBox[{"(",
1391 RowBox[{"1", "-", "e"}], ")"}], "^", "2"}]}]], "Input"],
1392
1393Cell[BoxData[
1394 FormBox[
1395 FractionBox["1",
1396 RowBox[{"24", " ",
1397 SuperscriptBox[
1398 RowBox[{"(",
1399 RowBox[{"1", "-", "e"}], ")"}], "2"]}]], TraditionalForm]], "Output"]
1400}, Open ]]
1401}, Open ]]
1402}, Open ]],
1403
1404Cell[CellGroupData[{
1405
1406Cell["The real contributions", "Section",
1407 PageWidth->PaperWidth],
1408
1409Cell[CellGroupData[{
1410
1411Cell["Kinematics", "Subsection",
1412 PageWidth->PaperWidth],
1413
1414Cell["\<\
1415-----I take all momenta outgoing
1416
1417 p1 + p2 + p3 + p4 = 0
1418
1419 p1^2=0
1420 p2^2=0
1421 p3^3=0
1422 p4^2=mh^2
1423
1424-----invariants
1425
1426 s = (p1 + p2)^2 = (p3 + p4)^2=2 p1.p2=mh^2+2 p3.p4
1427 t = (p1 + p3)^2 = (p2+ p4)^2 =2 p1.p3=mh^2+2 p2.p4
1428 u = (p2 + p3)^2 = (p1 + p4)^2=2 p1.p4+mh^2=+2 p2.p3
1429
1430 s + t + u = mh^2
1431
1432 \[Sigma]+\[Tau]+\[Upsilon]=1
1433
1434 -----scalar products
1435
1436 p1.p2=s/2
1437 p1.p3=(t)/2
1438 p1.p4= (u-mh^2)/2
1439 p2.p3= (u)/2
1440 p2.p4=(t-mh^2)/2
1441 p3.p4=(s-mh^2)/2
1442
1443-----physical region for production p1+p2=-p3-p4
1444
1445 s>(mh)^2 ;
1446 t<0;
1447 u<0;
1448
1449\
1450\>", "Text",
1451 PageWidth->PaperWidth],
1452
1453Cell[BoxData[{
1454 RowBox[{
1455 RowBox[{
1456 RowBox[{"ScalarProduct", "[",
1457 RowBox[{"p1", ",", "p1"}], "]"}], "=", "0"}],
1458 ";"}], "\[IndentingNewLine]",
1459 RowBox[{
1460 RowBox[{
1461 RowBox[{"ScalarProduct", "[",
1462 RowBox[{"p2", ",", "p2"}], "]"}], "=", "0"}],
1463 ";"}], "\[IndentingNewLine]",
1464 RowBox[{
1465 RowBox[{
1466 RowBox[{"ScalarProduct", "[",
1467 RowBox[{"p3", ",", "p3"}], "]"}], "=", "0"}],
1468 ";"}], "\[IndentingNewLine]",
1469 RowBox[{
1470 RowBox[{
1471 RowBox[{
1472 RowBox[{"ScalarProduct", "[",
1473 RowBox[{"q", ",", "p3"}], "]"}], "=",
1474 RowBox[{"u", "/", "2"}]}], ";"}], " ",
1475 RowBox[{"(*",
1476 RowBox[{"q", "=",
1477 RowBox[{"p2", "+", "p3"}]}], "*)"}]}], "\[IndentingNewLine]",
1478 RowBox[{
1479 RowBox[{
1480 RowBox[{
1481 RowBox[{"ScalarProduct", "[",
1482 RowBox[{"q", ",", "p2"}], "]"}], "=",
1483 RowBox[{"u", "/", "2"}]}], ";"}], " ",
1484 RowBox[{"(*",
1485 RowBox[{"q", "=",
1486 RowBox[{"p2", "+", "p3"}]}], "*)"}]}], "\[IndentingNewLine]",
1487 RowBox[{
1488 RowBox[{
1489 RowBox[{
1490 RowBox[{"ScalarProduct", "[",
1491 RowBox[{"q", ",", "q"}], "]"}], "=", "u"}], ";"}], " ",
1492 RowBox[{"(*",
1493 RowBox[{"q", "=",
1494 RowBox[{"p2", "+", "p3"}]}], "*)"}]}], "\[IndentingNewLine]",
1495 RowBox[{
1496 RowBox[{
1497 RowBox[{"ScalarProduct", "[",
1498 RowBox[{"p4", ",", "p4"}], "]"}], "=", "mh2"}],
1499 ";"}], "\[IndentingNewLine]",
1500 RowBox[{
1501 RowBox[{
1502 RowBox[{"ScalarProduct", "[",
1503 RowBox[{"p1", ",", "p2"}], "]"}], "=",
1504 RowBox[{"s", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
1505 RowBox[{
1506 RowBox[{
1507 RowBox[{"ScalarProduct", "[",
1508 RowBox[{"p1", ",", "p3"}], "]"}], "=",
1509 RowBox[{"t", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
1510 RowBox[{
1511 RowBox[{
1512 RowBox[{"ScalarProduct", "[",
1513 RowBox[{"p1", ",", "p4"}], "]"}], "=",
1514 RowBox[{
1515 RowBox[{"(",
1516 RowBox[{"u", "-", "mh2"}], ")"}], "/", "2"}]}],
1517 ";"}], "\[IndentingNewLine]",
1518 RowBox[{
1519 RowBox[{
1520 RowBox[{"ScalarProduct", "[",
1521 RowBox[{"p2", ",", "p3"}], "]"}], "=",
1522 RowBox[{"u", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
1523 RowBox[{
1524 RowBox[{
1525 RowBox[{"ScalarProduct", "[",
1526 RowBox[{"p2", ",", "p4"}], "]"}], "=", " ",
1527 RowBox[{
1528 RowBox[{"(",
1529 RowBox[{"t", "-", "mh2"}], ")"}], "/", "2"}]}],
1530 ";"}], "\[IndentingNewLine]",
1531 RowBox[{
1532 RowBox[{
1533 RowBox[{"ScalarProduct", "[",
1534 RowBox[{"p3", ",", "p4"}], "]"}], "=",
1535 RowBox[{
1536 RowBox[{"(",
1537 RowBox[{"s", "-", "mh2"}], ")"}], "/", "2"}]}], " ",
1538 ";"}], "\[IndentingNewLine]",
1539 RowBox[{
1540 RowBox[{
1541 RowBox[{"ScalarProduct", "[",
1542 RowBox[{"p3", ",", "e3"}], "]"}], "=", "0"}], " ",
1543 ";"}], "\[IndentingNewLine]",
1544 RowBox[{
1545 RowBox[{
1546 RowBox[{"ScalarProduct", "[",
1547 RowBox[{"p1", ",", "e1"}], "]"}], "=", "0"}], " ",
1548 ";"}], "\[IndentingNewLine]",
1549 RowBox[{
1550 RowBox[{
1551 RowBox[{"ScalarProduct", "[",
1552 RowBox[{"p2", ",", "e2"}], "]"}], "=", "0"}], " ",
1553 ";"}], "\[IndentingNewLine]",
1554 RowBox[{
1555 RowBox[{"s13", "=", "t"}], ";"}], "\[IndentingNewLine]",
1556 RowBox[{
1557 RowBox[{"s23", "=", "u"}], ";"}]}], "Input",
1558 PageWidth->PaperWidth]
1559}, Open ]],
1560
1561Cell[CellGroupData[{
1562
1563Cell["Verteces and Propagators", "Subsection",
1564 PageWidth->PaperWidth],
1565
1566Cell[TextData[{
1567 StyleBox["GGG is the kinematic part of the three-gluon vtx (momenta \
1568outgoing, clockwise ordering):\nVTX(ggg) = (-\[ImaginaryI] ",
1569 FontSize->14],
1570 Cell[BoxData[
1571 FormBox[
1572 SubscriptBox["g", "s"], TraditionalForm]],
1573 FontSize->14],
1574 StyleBox[" ) (\[ImaginaryI] ",
1575 FontSize->14],
1576 Cell[BoxData[
1577 FormBox[
1578 SuperscriptBox["f", "abc"], TraditionalForm]],
1579 FontSize->14],
1580 StyleBox[") GGG\nVTX(qqg) = ( -\[ImaginaryI] ",
1581 FontSize->14],
1582 Cell[BoxData[
1583 FormBox[
1584 SubscriptBox["g", "s"], TraditionalForm]],
1585 FontSize->14],
1586 ")",
1587 StyleBox[" ",
1588 FontSize->14],
1589 Cell[BoxData[
1590 FormBox[
1591 SubscriptBox[
1592 RowBox[{"(",
1593 SuperscriptBox["T", "a"], ")"}], "ij"], TraditionalForm]],
1594 FontSize->14],
1595 StyleBox[" ",
1596 FontSize->14],
1597 Cell[BoxData[
1598 FormBox[
1599 SuperscriptBox["\[Gamma]", "\[Mu]"], TraditionalForm]],
1600 FontSize->14],
1601 StyleBox["\nGluon Propagator= ",
1602 FontSize->14],
1603 Cell[BoxData[
1604 FormBox[
1605 FractionBox[
1606 StyleBox[
1607 RowBox[{
1608 RowBox[{"-", "\[ImaginaryI]"}], " ",
1609 SuperscriptBox["g", "\[Mu]\[Nu]"]}],
1610 FontSize->16],
1611 SuperscriptBox["p", "2"]], TraditionalForm]],
1612 FontSize->14],
1613 "\nQuark ",
1614 StyleBox["Propagator= ",
1615 FontSize->14],
1616 Cell[BoxData[
1617 FormBox[
1618 FractionBox[
1619 StyleBox[
1620 RowBox[{"\[ImaginaryI]", " "}],
1621 FontSize->16],
1622 OverscriptBox["p", "^"]], TraditionalForm]],
1623 FontSize->14]
1624}], "Text",
1625 PageWidth->PaperWidth],
1626
1627Cell[BoxData[{
1628 RowBox[{
1629 RowBox[{
1630 RowBox[{"GGGD", "[",
1631 RowBox[{
1632 "p1_", ",", "p2_", ",", "p3_", ",", "m1_", ",", "m2_", ",", "m3_"}],
1633 "]"}], ":=",
1634 RowBox[{
1635 RowBox[{
1636 RowBox[{"FourVector", "[",
1637 RowBox[{
1638 RowBox[{"p1", "-", "p2"}], ",", "m3", ",", " ",
1639 RowBox[{"Dimension", " ", "\[Rule]", "D"}]}], "]"}], " ",
1640 RowBox[{"MTD", "[",
1641 RowBox[{"m1", ",", "m2"}], "]"}]}], "+",
1642 RowBox[{
1643 RowBox[{"FourVector", "[",
1644 RowBox[{
1645 RowBox[{"p2", "-", "p3"}], ",", "m1", ",", " ",
1646 RowBox[{"Dimension", " ", "\[Rule]", " ", "D"}]}], "]"}], " ",
1647 RowBox[{"MTD", "[",
1648 RowBox[{"m2", ",", "m3"}], "]"}]}], "+",
1649 RowBox[{
1650 RowBox[{"FourVector", "[",
1651 RowBox[{
1652 RowBox[{"p3", "-", "p1"}], ",", "m2", ",", " ",
1653 RowBox[{"Dimension", " ", "\[Rule]", " ", "D"}]}], "]"}], " ",
1654 RowBox[{"MTD", "[",
1655 RowBox[{"m1", ",", "m3"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
1656 RowBox[{
1657 RowBox[{
1658 RowBox[{"H", "[",
1659 RowBox[{"p1_", ",", "p2_", ",", "m1_", ",", "m2_"}], "]"}], ":=",
1660 RowBox[{
1661 RowBox[{
1662 RowBox[{"MTD", "[",
1663 RowBox[{"m1", ",", "m2"}], "]"}], " ",
1664 RowBox[{"SPD", "[",
1665 RowBox[{"p1", ",", "p2"}], "]"}]}], " ", "-", " ",
1666 RowBox[{
1667 RowBox[{"FourVector", "[",
1668 RowBox[{"p1", ",", "m2", ",", " ",
1669 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "*",
1670 "\[IndentingNewLine]", " ",
1671 RowBox[{"FourVector", "[",
1672 RowBox[{"p2", ",", "m1", ",", " ",
1673 RowBox[{"Dimension", " ", "\[Rule]", "D"}]}], "]"}]}]}]}],
1674 ";"}], "\[IndentingNewLine]",
1675 RowBox[{
1676 RowBox[{"PropQuark", "=", "I"}], ";"}], "\[IndentingNewLine]",
1677 RowBox[{
1678 RowBox[{"PropGluon", " ", "=",
1679 RowBox[{"-", "I"}]}], ";"}], "\[IndentingNewLine]",
1680 RowBox[{
1681 RowBox[{"vtx", "=",
1682 RowBox[{
1683 RowBox[{"-", "I"}], " ", "gs"}]}], ";"}]}], "Input",
1684 PageWidth->PaperWidth]
1685}, Open ]],
1686
1687Cell[CellGroupData[{
1688
1689Cell["Sum over the four Feynman diagrams", "Subsection"],
1690
1691Cell["\<\
1692
1693uno= - gs (-f123) GGGD[p1,p2,-p1-p2,m1,m2,mu] (-I MTD[mu,nu]/s) (I A) \
1694H[p3,p1+p2,m3,nu]//Contract;
1695tre= - gs (-f123) GGGD[p3,p1,-p3-p1,m3,m1,mu] (-I MTD[mu,nu]/t) (I A) \
1696H[p2,p1+p3,m2,nu]//Contract;
1697qua= - gs (-f123) GGGD[p2,p3,-p3-p2,m2,m3,mu] (-I MTD[mu,nu]/u) (I A) \
1698H[p1,p2+p3,m1,nu]//Contract;
1699due= - A gs (-f123) GGGD[p1,p2,p3,m1,m2,m3];
1700res=uno+due+tre+qua//ExpandScalarProduct;\
1701\>", "Input"]
1702}, Open ]],
1703
1704Cell[CellGroupData[{
1705
1706Cell["\<\
1707Now I have to square the amplitude. The sum is performed over the physical \
1708polarizations of the gluons:\
1709\>", "Subsection"],
1710
1711Cell["\<\
1712res1=res;
1713res2=res /. m1->m1p /. m2->m2p /. m3-> m3p;
1714tot=res1*(-MTD[m1,m1p]+(FVD[p1,m1] FVD[p2,m1p]+FVD[p1,m1p] \
1715FVD[p2,m1])/SPD[p1,p2])//Contract;
1716tot=tot*(-MTD[m2,m2p]+(FVD[p2,m2] FVD[p3,m2p]+FVD[p2,m2p] \
1717FVD[p3,m2])/SPD[p3,p2])//Contract;
1718tot=tot*(-MTD[m3,m3p]+(FVD[p1,m3] FVD[p3,m3p]+FVD[p1,m3p] \
1719FVD[p3,m3])/SPD[p3,p1])//Contract;
1720tot=tot*res2//Contract//Expand;\
1721\>", "Input"],
1722
1723Cell[CellGroupData[{
1724
1725Cell["\<\
1726Amp2=((tot//Contract//Factor)/. A-> as/3/Pi/v /. gs^2-> 4 Pi as/. f123^2-> 24 \
1727//Simplify)//Factor\
1728\>", "Input"],
1729
1730Cell[BoxData[
1731 FormBox[
1732 RowBox[{
1733 FractionBox["1",
1734 RowBox[{"3", " ", "\[Pi]", " ", "s", " ", "t", " ", "u", " ",
1735 SuperscriptBox["v", "2"]}]],
1736 RowBox[{"32", " ",
1737 SuperscriptBox["as", "3"], " ",
1738 RowBox[{"(",
1739 RowBox[{
1740 RowBox[{"D", " ",
1741 SuperscriptBox["s", "4"]}], "+",
1742 RowBox[{"2", " ", "D", " ",
1743 SuperscriptBox["s", "3"], " ", "t"}], "+",
1744 RowBox[{"2", " ", "D", " ",
1745 SuperscriptBox["s", "3"], " ", "u"}], "+",
1746 RowBox[{"3", " ", "D", " ",
1747 SuperscriptBox["s", "2"], " ",
1748 SuperscriptBox["t", "2"]}], "+",
1749 RowBox[{"8", " ", "D", " ",
1750 SuperscriptBox["s", "2"], " ", "t", " ", "u"}], "+",
1751 RowBox[{"3", " ", "D", " ",
1752 SuperscriptBox["s", "2"], " ",
1753 SuperscriptBox["u", "2"]}], "+",
1754 RowBox[{"2", " ", "D", " ", "s", " ",
1755 SuperscriptBox["t", "3"]}], "+",
1756 RowBox[{"8", " ", "D", " ", "s", " ",
1757 SuperscriptBox["t", "2"], " ", "u"}], "+",
1758 RowBox[{"8", " ", "D", " ", "s", " ", "t", " ",
1759 SuperscriptBox["u", "2"]}], "+",
1760 RowBox[{"2", " ", "D", " ", "s", " ",
1761 SuperscriptBox["u", "3"]}], "+",
1762 RowBox[{"D", " ",
1763 SuperscriptBox["t", "4"]}], "+",
1764 RowBox[{"2", " ", "D", " ",
1765 SuperscriptBox["t", "3"], " ", "u"}], "+",
1766 RowBox[{"3", " ", "D", " ",
1767 SuperscriptBox["t", "2"], " ",
1768 SuperscriptBox["u", "2"]}], "+",
1769 RowBox[{"2", " ", "D", " ", "t", " ",
1770 SuperscriptBox["u", "3"]}], "+",
1771 RowBox[{"D", " ",
1772 SuperscriptBox["u", "4"]}], "-",
1773 RowBox[{"2", " ",
1774 SuperscriptBox["s", "4"]}], "-",
1775 RowBox[{"4", " ",
1776 SuperscriptBox["s", "3"], " ", "t"}], "-",
1777 RowBox[{"4", " ",
1778 SuperscriptBox["s", "3"], " ", "u"}], "-",
1779 RowBox[{"6", " ",
1780 SuperscriptBox["s", "2"], " ",
1781 SuperscriptBox["t", "2"]}], "-",
1782 RowBox[{"20", " ",
1783 SuperscriptBox["s", "2"], " ", "t", " ", "u"}], "-",
1784 RowBox[{"6", " ",
1785 SuperscriptBox["s", "2"], " ",
1786 SuperscriptBox["u", "2"]}], "-",
1787 RowBox[{"4", " ", "s", " ",
1788 SuperscriptBox["t", "3"]}], "-",
1789 RowBox[{"20", " ", "s", " ",
1790 SuperscriptBox["t", "2"], " ", "u"}], "-",
1791 RowBox[{"20", " ", "s", " ", "t", " ",
1792 SuperscriptBox["u", "2"]}], "-",
1793 RowBox[{"4", " ", "s", " ",
1794 SuperscriptBox["u", "3"]}], "-",
1795 RowBox[{"2", " ",
1796 SuperscriptBox["t", "4"]}], "-",
1797 RowBox[{"4", " ",
1798 SuperscriptBox["t", "3"], " ", "u"}], "-",
1799 RowBox[{"6", " ",
1800 SuperscriptBox["t", "2"], " ",
1801 SuperscriptBox["u", "2"]}], "-",
1802 RowBox[{"4", " ", "t", " ",
1803 SuperscriptBox["u", "3"]}], "-",
1804 RowBox[{"2", " ",
1805 SuperscriptBox["u", "4"]}]}], ")"}]}]}], TraditionalForm]], "Output",
1806 CellChangeTimes->{3.6925262025482817`*^9}]
1807}, Open ]],
1808
1809Cell["\<\
1810
1811Amp2=Amp2 /. D->4-2e//Simplify;\
1812\>", "Input"],
1813
1814Cell[CellGroupData[{
1815
1816Cell[BoxData["Amp2"], "Input",
1817 CellChangeTimes->{{3.692526234576797*^9, 3.6925262356483517`*^9}}],
1818
1819Cell[BoxData[
1820 FormBox[
1821 RowBox[{"-",
1822 FractionBox[
1823 RowBox[{"64", " ",
1824 SuperscriptBox["as", "3"], " ",
1825 RowBox[{"(",
1826 RowBox[{
1827 RowBox[{
1828 RowBox[{"(",
1829 RowBox[{"e", "-", "1"}], ")"}], " ",
1830 SuperscriptBox["s", "4"]}], "+",
1831 RowBox[{"2", " ",
1832 RowBox[{"(",
1833 RowBox[{"e", "-", "1"}], ")"}], " ",
1834 SuperscriptBox["s", "3"], " ",
1835 RowBox[{"(",
1836 RowBox[{"t", "+", "u"}], ")"}]}], "+",
1837 RowBox[{
1838 SuperscriptBox["s", "2"], " ",
1839 RowBox[{"(",
1840 RowBox[{
1841 RowBox[{"3", " ",
1842 RowBox[{"(",
1843 RowBox[{"e", "-", "1"}], ")"}], " ",
1844 SuperscriptBox["t", "2"]}], "+",
1845 RowBox[{"2", " ",
1846 RowBox[{"(",
1847 RowBox[{
1848 RowBox[{"4", " ", "e"}], "-", "3"}], ")"}], " ", "t", " ", "u"}],
1849 "+",
1850 RowBox[{"3", " ",
1851 RowBox[{"(",
1852 RowBox[{"e", "-", "1"}], ")"}], " ",
1853 SuperscriptBox["u", "2"]}]}], ")"}]}], "+",
1854 RowBox[{"2", " ", "s", " ",
1855 RowBox[{"(",
1856 RowBox[{"t", "+", "u"}], ")"}], " ",
1857 RowBox[{"(",
1858 RowBox[{
1859 RowBox[{
1860 RowBox[{"(",
1861 RowBox[{"e", "-", "1"}], ")"}], " ",
1862 SuperscriptBox["t", "2"]}], "+",
1863 RowBox[{
1864 RowBox[{"(",
1865 RowBox[{
1866 RowBox[{"3", " ", "e"}], "-", "2"}], ")"}], " ", "t", " ", "u"}],
1867 "+",
1868 RowBox[{
1869 RowBox[{"(",
1870 RowBox[{"e", "-", "1"}], ")"}], " ",
1871 SuperscriptBox["u", "2"]}]}], ")"}]}], "+",
1872 RowBox[{
1873 RowBox[{"(",
1874 RowBox[{"e", "-", "1"}], ")"}], " ",
1875 SuperscriptBox[
1876 RowBox[{"(",
1877 RowBox[{
1878 SuperscriptBox["t", "2"], "+",
1879 RowBox[{"t", " ", "u"}], "+",
1880 SuperscriptBox["u", "2"]}], ")"}], "2"]}]}], ")"}]}],
1881 RowBox[{"3", " ", "\[Pi]", " ", "s", " ", "t", " ", "u", " ",
1882 SuperscriptBox["v", "2"]}]]}], TraditionalForm]], "Output",
1883 CellChangeTimes->{3.692526236388625*^9}]
1884}, Open ]]
1885}, Open ]],
1886
1887Cell[CellGroupData[{
1888
1889Cell["Real Amplitude Squared in D dimensions", "Subsection",
1890 PageWidth->PaperWidth],
1891
1892Cell[BoxData[
1893 RowBox[{"\[IndentingNewLine]",
1894 RowBox[{
1895 RowBox[{
1896 RowBox[{"Emme", "=",
1897 RowBox[{
1898 RowBox[{"1", "/", "s"}],
1899 RowBox[{
1900 RowBox[{
1901 RowBox[{
1902 RowBox[{"(",
1903 RowBox[{
1904 RowBox[{
1905 RowBox[{"(",
1906 RowBox[{
1907 RowBox[{"mh2", "^", "4"}], "+",
1908 RowBox[{"s", "^", "4"}], "+",
1909 RowBox[{"t", "^", "4"}], "+",
1910 RowBox[{"u", "^", "4"}]}], ")"}], " ",
1911 RowBox[{"(",
1912 RowBox[{"1", "-",
1913 RowBox[{"2", " ", "e"}]}], ")"}]}], "+", " ",
1914 RowBox[{
1915 RowBox[{"e", "/", "2"}], " ",
1916 RowBox[{
1917 RowBox[{"(",
1918 RowBox[{
1919 RowBox[{"mh2", "^", "2"}], "+",
1920 RowBox[{"s", "^", "2"}], "+",
1921 RowBox[{"t", "^", "2"}], "+",
1922 RowBox[{"u", "^", "2"}]}], ")"}], "^", "2"}]}]}], ")"}], "/",
1923 "s"}], "/", "t"}], "/", "u"}]}]}], ";"}], "\[IndentingNewLine]",
1924 RowBox[{
1925 RowBox[{"RealD", "=",
1926 RowBox[{"Emme", "/",
1927 RowBox[{
1928 RowBox[{"(",
1929 RowBox[{"1", "-", "e"}], ")"}], "^", "2"}]}]}], ";"}],
1930 "\[IndentingNewLine]",
1931 RowBox[{
1932 RowBox[{"Real4", "=",
1933 RowBox[{"RealD", "/.", " ",
1934 RowBox[{"e", "\[Rule]", "0"}]}]}], ";"}]}]}]], "Input",
1935 PageWidth->PaperWidth],
1936
1937Cell[CellGroupData[{
1938
1939Cell[BoxData[
1940 RowBox[{
1941 RowBox[{
1942 RowBox[{
1943 RowBox[{"Amp2", "/", "s"}], " ", "-", " ",
1944 RowBox[{"Emme", " ", "*", "64", " ",
1945 RowBox[{
1946 RowBox[{
1947 RowBox[{
1948 RowBox[{"as", "^", "3"}], " ", "/", " ", "3"}], "/", "Pi"}], " ", "/",
1949 RowBox[{"v", "^", "2"}]}]}]}], " ", "/.",
1950 RowBox[{"{",
1951 RowBox[{"mh2", "\[Rule]",
1952 RowBox[{"s", "+", "t", "+", "u"}]}], "}"}]}], "//",
1953 "Simplify"}]], "Input",
1954 CellChangeTimes->{{3.6925266643363037`*^9, 3.692526665304311*^9}, {
1955 3.692526755257955*^9, 3.692526892252841*^9}, {3.692526952170274*^9,
1956 3.69252696194454*^9}, {3.69252704067334*^9, 3.692527040832261*^9}}],
1957
1958Cell[BoxData[
1959 FormBox[
1960 FractionBox[
1961 RowBox[{"64", " ",
1962 SuperscriptBox["as", "3"], " ",
1963 RowBox[{"(",
1964 RowBox[{
1965 RowBox[{
1966 RowBox[{"(",
1967 RowBox[{"e", "-", "1"}], ")"}], " ",
1968 SuperscriptBox["s", "4"]}], "+",
1969 RowBox[{"2", " ",
1970 RowBox[{"(",
1971 RowBox[{"e", "-", "1"}], ")"}], " ",
1972 SuperscriptBox["s", "3"], " ",
1973 RowBox[{"(",
1974 RowBox[{"t", "+", "u"}], ")"}]}], "+",
1975 RowBox[{
1976 SuperscriptBox["s", "2"], " ",
1977 RowBox[{"(",
1978 RowBox[{
1979 RowBox[{"3", " ",
1980 RowBox[{"(",
1981 RowBox[{"e", "-", "1"}], ")"}], " ",
1982 SuperscriptBox["t", "2"]}], "+",
1983 RowBox[{"2", " ",
1984 RowBox[{"(",
1985 RowBox[{
1986 RowBox[{"4", " ", "e"}], "-", "3"}], ")"}], " ", "t", " ", "u"}],
1987 "+",
1988 RowBox[{"3", " ",
1989 RowBox[{"(",
1990 RowBox[{"e", "-", "1"}], ")"}], " ",
1991 SuperscriptBox["u", "2"]}]}], ")"}]}], "+",
1992 RowBox[{"2", " ", "s", " ",
1993 RowBox[{"(",
1994 RowBox[{"t", "+", "u"}], ")"}], " ",
1995 RowBox[{"(",
1996 RowBox[{
1997 RowBox[{
1998 RowBox[{"(",
1999 RowBox[{"e", "-", "1"}], ")"}], " ",
2000 SuperscriptBox["t", "2"]}], "+",
2001 RowBox[{
2002 RowBox[{"(",
2003 RowBox[{
2004 RowBox[{"3", " ", "e"}], "-", "2"}], ")"}], " ", "t", " ", "u"}],
2005 "+",
2006 RowBox[{
2007 RowBox[{"(",
2008 RowBox[{"e", "-", "1"}], ")"}], " ",
2009 SuperscriptBox["u", "2"]}]}], ")"}]}], "+",
2010 RowBox[{
2011 RowBox[{"(",
2012 RowBox[{"e", "-", "1"}], ")"}], " ",
2013 SuperscriptBox[
2014 RowBox[{"(",
2015 RowBox[{
2016 SuperscriptBox["t", "2"], "+",
2017 RowBox[{"t", " ", "u"}], "+",
2018 SuperscriptBox["u", "2"]}], ")"}], "2"]}]}], ")"}]}],
2019 RowBox[{"3", " ", "\[Pi]", " ",
2020 SuperscriptBox["s", "2"], " ", "t", " ", "u", " ",
2021 SuperscriptBox["v", "2"]}]], TraditionalForm]], "Output",
2022 CellChangeTimes->{{3.692526794285302*^9, 3.6925268046529827`*^9}, {
2023 3.692526834935911*^9, 3.692526852357235*^9}, {3.692526953105447*^9,
2024 3.6925269622524967`*^9}, 3.692527041841333*^9}]
2025}, Open ]]
2026}, Open ]],
2027
2028Cell[CellGroupData[{
2029
2030Cell["Phase space in D dimensions", "Subsection",
2031 PageWidth->PaperWidth],
2032
2033Cell[BoxData[
2034 RowBox[{"\[IndentingNewLine]",
2035 RowBox[{
2036 RowBox[{
2037 RowBox[{"PS", "=",
2038 RowBox[{
2039 FractionBox["1",
2040 RowBox[{"8", "\[Pi]"}]],
2041 SuperscriptBox[
2042 RowBox[{"(",
2043 FractionBox[
2044 RowBox[{"4", " ", "\[Pi]", " "}], "mh2"], ")"}], "e"],
2045 FractionBox["1",
2046 RowBox[{"Gamma", "[",
2047 RowBox[{"1", "-", "e"}], "]"}]], " ",
2048 SuperscriptBox[
2049 RowBox[{"(",
2050 FractionBox["mh2", "s"], ")"}], "e"], " ",
2051 SuperscriptBox[
2052 RowBox[{"(",
2053 RowBox[{"1", "-",
2054 FractionBox["mh2", "s"]}], ")"}],
2055 RowBox[{"1", "-",
2056 RowBox[{"2", "e"}]}]], " ",
2057 SuperscriptBox["v",
2058 RowBox[{"-", "e"}]], " ",
2059 SuperscriptBox[
2060 RowBox[{"(", "omv", ")"}],
2061 RowBox[{"-", "e"}]]}]}], ";"}], "\[IndentingNewLine]",
2062 RowBox[{
2063 RowBox[{"substu", "=",
2064 RowBox[{"{",
2065 RowBox[{
2066 RowBox[{"t", "\[Rule]", " ",
2067 RowBox[{
2068 RowBox[{"-", "s"}], " ",
2069 RowBox[{"(",
2070 RowBox[{"1", "-",
2071 FractionBox["mh2", "s"]}], ")"}],
2072 RowBox[{"(", "omv", ")"}]}]}], ",", " ",
2073 RowBox[{"u", "\[Rule]", " ",
2074 RowBox[{
2075 RowBox[{"-", "s"}], " ",
2076 RowBox[{"(",
2077 RowBox[{"1", "-",
2078 FractionBox["mh2", "s"]}], ")"}], "v"}]}], " ", ",",
2079 RowBox[{"s", "\[Rule]", " ",
2080 RowBox[{"mh2", "/", "z"}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
2081 RowBox[{
2082 RowBox[{"cGamma", "=",
2083 RowBox[{
2084 RowBox[{
2085 RowBox[{"(",
2086 RowBox[{"1", "/", "16"}], ")"}], "/",
2087 RowBox[{"Pi", "^", "2"}]}], " ",
2088 RowBox[{"mh2", "^",
2089 RowBox[{"(",
2090 RowBox[{"-", "e"}], ")"}]}],
2091 RowBox[{
2092 RowBox[{"(",
2093 RowBox[{"4", " ", "Pi"}], ")"}], "^", "e"}], " ",
2094 RowBox[{"Gamma", "[",
2095 RowBox[{"1", "+", "e"}], "]"}], " ",
2096 RowBox[{
2097 RowBox[{
2098 RowBox[{"Gamma", "[",
2099 RowBox[{"1", "-", "e"}], "]"}], "^", "2"}], "/",
2100 RowBox[{"Gamma", "[",
2101 RowBox[{"1", "-",
2102 RowBox[{"2", " ", "e"}]}], "]"}]}]}]}], ";"}], "\n",
2103 RowBox[{
2104 RowBox[{"pgg", "=",
2105 RowBox[{"2",
2106 RowBox[{"(",
2107 RowBox[{
2108 RowBox[{"z", " ",
2109 RowBox[{"PlusDistribution", "[",
2110 RowBox[{"1", "/",
2111 RowBox[{"(",
2112 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], "+",
2113 RowBox[{
2114 RowBox[{"(",
2115 RowBox[{"1", "-", "z"}], ")"}], "/", "z"}], "+",
2116 RowBox[{"z",
2117 RowBox[{"(",
2118 RowBox[{"1", "-", "z"}], ")"}]}], "+",
2119 RowBox[{
2120 RowBox[{"11", "/", "12"}], " ",
2121 RowBox[{"DeltaFunction", "[",
2122 RowBox[{"1", "-", "z"}], "]"}]}]}], ")"}]}]}], ";"}],
2123 "\[IndentingNewLine]",
2124 RowBox[{
2125 RowBox[{"s0", "=", "z"}], ";"}]}]}]], "Input",
2126 PageWidth->PaperWidth]
2127}, Open ]],
2128
2129Cell[CellGroupData[{
2130
2131Cell["CDR", "Subsection",
2132 PageWidth->PaperWidth],
2133
2134Cell[CellGroupData[{
2135
2136Cell[BoxData[{
2137 RowBox[{
2138 RowBox[{"intando", "=",
2139 RowBox[{
2140 RowBox[{"FullSimplify", "[",
2141 RowBox[{
2142 RowBox[{"FullSimplify", "[",
2143 FractionBox[
2144 RowBox[{"RealD", " ", "PS", " ", "c\[CapitalGamma]"}], "cGamma"],
2145 "]"}], "//.", "\[InvisibleSpace]", "substu"}], "]"}], "/.",
2146 "\[InvisibleSpace]",
2147 RowBox[{"omv", "\[Rule]",
2148 RowBox[{"1", "-", "v"}]}]}]}], ";"}], "\n",
2149 RowBox[{"intando", "=",
2150 FractionBox["intando",
2151 SuperscriptBox[
2152 RowBox[{"(",
2153 RowBox[{"1", "-", "z"}], ")"}],
2154 RowBox[{
2155 RowBox[{
2156 RowBox[{"-", "2"}], " ", "e"}], "-", "1"}]]]}]}], "Input"],
2157
2158Cell[BoxData[
2159 FormBox[
2160 RowBox[{"-",
2161 RowBox[{
2162 RowBox[{"(",
2163 RowBox[{"c\[CapitalGamma]", " ",
2164 SuperscriptBox[
2165 RowBox[{"(",
2166 FractionBox["1", "mh2"], ")"}], "e"], " ",
2167 SuperscriptBox["mh2", "e"], " ", "\[Pi]", " ",
2168 SuperscriptBox[
2169 RowBox[{"(",
2170 RowBox[{"1", "-", "v"}], ")"}],
2171 RowBox[{
2172 RowBox[{"-", "e"}], "-", "1"}]], " ",
2173 SuperscriptBox["v",
2174 RowBox[{
2175 RowBox[{"-", "e"}], "-", "1"}]], " ",
2176 SuperscriptBox["z", "e"], " ",
2177 RowBox[{"(",
2178 RowBox[{
2179 RowBox[{"e", " ",
2180 RowBox[{"(",
2181 RowBox[{
2182 RowBox[{"3", " ",
2183 SuperscriptBox[
2184 RowBox[{"(",
2185 RowBox[{"1", "-", "v"}], ")"}], "4"], " ",
2186 SuperscriptBox[
2187 RowBox[{"(",
2188 RowBox[{"z", "-", "1"}], ")"}], "4"]}], "+",
2189 RowBox[{"3", " ",
2190 SuperscriptBox["v", "4"], " ",
2191 SuperscriptBox[
2192 RowBox[{"(",
2193 RowBox[{"z", "-", "1"}], ")"}], "4"]}], "-",
2194 RowBox[{"2", " ",
2195 SuperscriptBox["v", "2"], " ",
2196 RowBox[{"(",
2197 RowBox[{
2198 SuperscriptBox["z", "2"], "+", "1"}], ")"}], " ",
2199 SuperscriptBox[
2200 RowBox[{"(",
2201 RowBox[{"z", "-", "1"}], ")"}], "2"]}], "-",
2202 RowBox[{"2", " ",
2203 SuperscriptBox[
2204 RowBox[{"(",
2205 RowBox[{"1", "-", "v"}], ")"}], "2"], " ",
2206 RowBox[{"(",
2207 RowBox[{
2208 RowBox[{
2209 SuperscriptBox["v", "2"], " ",
2210 SuperscriptBox[
2211 RowBox[{"(",
2212 RowBox[{"z", "-", "1"}], ")"}], "2"]}], "+",
2213 SuperscriptBox["z", "2"], "+", "1"}], ")"}], " ",
2214 SuperscriptBox[
2215 RowBox[{"(",
2216 RowBox[{"z", "-", "1"}], ")"}], "2"]}], "+",
2217 RowBox[{"3", " ",
2218 SuperscriptBox["z", "4"]}], "-",
2219 RowBox[{"2", " ",
2220 SuperscriptBox["z", "2"]}], "+", "3"}], ")"}]}], "-",
2221 RowBox[{"2", " ",
2222 RowBox[{"(",
2223 RowBox[{
2224 RowBox[{
2225 SuperscriptBox[
2226 RowBox[{"(",
2227 RowBox[{"1", "-", "v"}], ")"}], "4"], " ",
2228 SuperscriptBox[
2229 RowBox[{"(",
2230 RowBox[{"z", "-", "1"}], ")"}], "4"]}], "+",
2231 RowBox[{
2232 SuperscriptBox["v", "4"], " ",
2233 SuperscriptBox[
2234 RowBox[{"(",
2235 RowBox[{"z", "-", "1"}], ")"}], "4"]}], "+",
2236 SuperscriptBox["z", "4"], "+", "1"}], ")"}]}]}], ")"}], " ",
2237 RowBox[{"\[CapitalGamma]", "(",
2238 RowBox[{"1", "-",
2239 RowBox[{"2", " ", "e"}]}], ")"}]}], ")"}], "/",
2240 RowBox[{"(",
2241 RowBox[{
2242 SuperscriptBox[
2243 RowBox[{"(",
2244 RowBox[{"e", "-", "1"}], ")"}], "2"], " ",
2245 SuperscriptBox[
2246 RowBox[{"\[CapitalGamma]", "(",
2247 RowBox[{"1", "-", "e"}], ")"}], "3"], " ",
2248 RowBox[{"\[CapitalGamma]", "(",
2249 RowBox[{"e", "+", "1"}], ")"}]}], ")"}]}]}],
2250 TraditionalForm]], "Output"]
2251}, Open ]],
2252
2253Cell[BoxData[{
2254 RowBox[{
2255 RowBox[{"\[Sigma]r", "=",
2256 RowBox[{
2257 RowBox[{"Integrate", "[",
2258 RowBox[{"intando", ",",
2259 RowBox[{"{",
2260 RowBox[{"v", ",", "0", ",", "1"}], "}"}], ",", " ",
2261 RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}], "//",
2262 "PowerExpand"}]}], ";"}], "\n",
2263 RowBox[{
2264 RowBox[{"\[Sigma]r", "=",
2265 RowBox[{
2266 RowBox[{
2267 RowBox[{"Normal", "[",
2268 RowBox[{"Series", "[",
2269 RowBox[{"\[Sigma]r", ",",
2270 RowBox[{"{",
2271 RowBox[{"e", ",", "0", ",", "1"}], "}"}]}], "]"}], "]"}], "//",
2272 "Factor"}], "//", "FullSimplify"}]}], ";"}], "\n",
2273 RowBox[{
2274 RowBox[{"\[Sigma]r", " ", "=",
2275 RowBox[{"\[Sigma]r", " ", "*",
2276 RowBox[{"(",
2277 RowBox[{
2278 RowBox[{
2279 FractionBox[
2280 RowBox[{"-", "1"}],
2281 RowBox[{"2", "e"}]],
2282 RowBox[{"DeltaFunction", "[",
2283 RowBox[{"1", "-", "z"}], "]"}]}], "+",
2284 RowBox[{"PlusDistribution", "[",
2285 RowBox[{"1", "/",
2286 RowBox[{"(",
2287 RowBox[{"1", "-", "z"}], ")"}]}], "]"}], "-",
2288 RowBox[{"2", " ", "e", " ",
2289 RowBox[{"PlusDistribution", "[",
2290 RowBox[{
2291 RowBox[{"Log", "[",
2292 RowBox[{"1", "-", "z"}], "]"}], "/",
2293 RowBox[{"(",
2294 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}]}], ")"}]}]}], ";"}], "\n",
2295 RowBox[{
2296 RowBox[{"\[Sigma]r", "=",
2297 RowBox[{
2298 RowBox[{"Normal", "[",
2299 RowBox[{"Series", "[",
2300 RowBox[{
2301 RowBox[{"\[Sigma]r", "/",
2302 RowBox[{"(",
2303 RowBox[{"1", "+", "e", "+",
2304 RowBox[{"e", "^", "2"}]}], ")"}]}], ",",
2305 RowBox[{"{",
2306 RowBox[{"e", ",", "0", ",", "0"}], "}"}]}], "]"}], "]"}], "//",
2307 "Expand"}]}], ";"}]}], "Input",
2308 PageWidth->PaperWidth]
2309}, Open ]]
2310}, Open ]],
2311
2312Cell[CellGroupData[{
2313
2314Cell["Results", "Section"],
2315
2316Cell[CellGroupData[{
2317
2318Cell["Virtual+Real+Counterterms in CDR", "Subsection"],
2319
2320Cell[BoxData[{
2321 RowBox[{
2322 RowBox[{"\[Sigma]rn", "=",
2323 RowBox[{
2324 RowBox[{
2325 RowBox[{
2326 RowBox[{
2327 RowBox[{"\[Sigma]r", "/", "c\[CapitalGamma]"}], "/", "\[Pi]"}], "/",
2328 "2"}], " ", "CA"}], "-",
2329 RowBox[{
2330 RowBox[{"1", "/", "e"}], " ", "2", " ", "Pgg", " ", "z", " ", "CA"}],
2331 "+",
2332 RowBox[{
2333 RowBox[{"1", "/", "e"}], " ", "2", " ", "pgg", " ", "z", " ", "CA"}]}]}],
2334 ";"}], "\n",
2335 RowBox[{
2336 RowBox[{"\[Sigma]rn", "=",
2337 RowBox[{"(",
2338 RowBox[{
2339 RowBox[{"(",
2340 RowBox[{
2341 RowBox[{"(",
2342 RowBox[{
2343 RowBox[{
2344 RowBox[{"Coefficient", "[",
2345 RowBox[{"\[Sigma]rn", ",",
2346 RowBox[{"DeltaFunction", "[",
2347 RowBox[{"1", "-", "z"}], "]"}]}], "]"}], "/.",
2348 RowBox[{"z", "\[Rule]", "1"}]}], "//", "FullSimplify"}], ")"}], "*",
2349 RowBox[{"DeltaFunction", "[",
2350 RowBox[{"1", "-", "z"}], "]"}]}], ")"}], "+",
2351 RowBox[{"(",
2352 RowBox[{
2353 RowBox[{"(",
2354 RowBox[{"(",
2355 RowBox[{
2356 RowBox[{"Coefficient", "[",
2357 RowBox[{"\[Sigma]rn", ",",
2358 RowBox[{"PlusDistribution", "[",
2359 RowBox[{"1", "/",
2360 RowBox[{"(",
2361 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], "]"}], "//",
2362 "FullSimplify"}], ")"}], ")"}],
2363 RowBox[{"PlusDistribution", "[",
2364 RowBox[{"1", "/",
2365 RowBox[{"(",
2366 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], ")"}], "+",
2367 RowBox[{"(",
2368 RowBox[{
2369 RowBox[{"(",
2370 RowBox[{"(",
2371 RowBox[{
2372 RowBox[{"Coefficient", "[",
2373 RowBox[{"\[Sigma]rn", ",",
2374 RowBox[{"PlusDistribution", "[",
2375 RowBox[{
2376 RowBox[{"Log", "[",
2377 RowBox[{"1", "-", "z"}], "]"}], "/",
2378 RowBox[{"(",
2379 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], "]"}], "//",
2380 "FullSimplify"}], ")"}], ")"}],
2381 RowBox[{"PlusDistribution", "[",
2382 RowBox[{
2383 RowBox[{"Log", "[",
2384 RowBox[{"1", "-", "z"}], "]"}], "/",
2385 RowBox[{"(",
2386 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], ")"}], "+",
2387 RowBox[{"(",
2388 RowBox[{
2389 RowBox[{
2390 RowBox[{"\[Sigma]rn", "/.",
2391 RowBox[{
2392 RowBox[{"DeltaFunction", "[", "x_", "]"}], "\[Rule]", "0"}]}], "/.",
2393 RowBox[{
2394 RowBox[{"PlusDistribution", "[",
2395 RowBox[{
2396 RowBox[{"Log", "[",
2397 RowBox[{"1", "-", "z"}], "]"}], "/",
2398 RowBox[{"(",
2399 RowBox[{"1", "-", "z"}], ")"}]}], "]"}], "\[Rule]", "0"}]}], "/.",
2400 RowBox[{
2401 RowBox[{"PlusDistribution", "[",
2402 RowBox[{"1", "/",
2403 RowBox[{"(",
2404 RowBox[{"1", "-", "z"}], ")"}]}], "]"}], "\[Rule]", "0"}]}],
2405 ")"}]}], ")"}]}], ";"}], "\n",
2406 RowBox[{
2407 RowBox[{"\[Sigma]rn", "=",
2408 RowBox[{
2409 RowBox[{
2410 RowBox[{"(",
2411 RowBox[{
2412 RowBox[{"(",
2413 RowBox[{"(",
2414 RowBox[{
2415 RowBox[{
2416 RowBox[{"Coefficient", "[",
2417 RowBox[{"\[Sigma]rn", ",",
2418 RowBox[{
2419 RowBox[{"1", "/", "e"}], " ",
2420 RowBox[{"PlusDistribution", "[",
2421 RowBox[{"1", "/",
2422 RowBox[{"(",
2423 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}]}], "]"}], "/",
2424 RowBox[{"(",
2425 RowBox[{"1", "-", "z"}], ")"}]}], "//", "FullSimplify"}], ")"}],
2426 ")"}],
2427 RowBox[{"1", "/", "e"}]}], ")"}], "+",
2428 RowBox[{"(",
2429 RowBox[{"\[Sigma]rn", "-",
2430 RowBox[{
2431 RowBox[{"Coefficient", "[",
2432 RowBox[{"\[Sigma]rn", ",",
2433 RowBox[{
2434 RowBox[{"1", "/", "e"}], " ",
2435 RowBox[{"PlusDistribution", "[",
2436 RowBox[{"1", "/",
2437 RowBox[{"(",
2438 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}]}], "]"}],
2439 RowBox[{"1", "/", "e"}], " ",
2440 RowBox[{"PlusDistribution", "[",
2441 RowBox[{"1", "/",
2442 RowBox[{"(",
2443 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}]}], ")"}]}], "//",
2444 "Expand"}]}], ";"}]}], "Input",
2445 PageWidth->PaperWidth],
2446
2447Cell[CellGroupData[{
2448
2449Cell[BoxData[
2450 RowBox[{"divD", "=",
2451 RowBox[{
2452 RowBox[{"Coefficient", "[",
2453 RowBox[{"\[Sigma]rn", ",",
2454 RowBox[{"DeltaFunction", "[",
2455 RowBox[{"1", "-", "z"}], "]"}]}], "]"}], "*",
2456 RowBox[{
2457 RowBox[{"as", "/", "2"}], "/", "\[Pi]"}], " ",
2458 "c\[CapitalGamma]"}]}]], "Input"],
2459
2460Cell[BoxData[
2461 FormBox[
2462 FractionBox[
2463 RowBox[{"as", " ", "c\[CapitalGamma]", " ",
2464 RowBox[{"(",
2465 RowBox[{
2466 FractionBox[
2467 RowBox[{"11", " ",
2468 SubscriptBox["C", "A"]}],
2469 RowBox[{"3", " ", "e"}]], "+",
2470 FractionBox[
2471 RowBox[{"2", " ",
2472 SubscriptBox["C", "A"]}],
2473 SuperscriptBox["e", "2"]], "-",
2474 FractionBox[
2475 RowBox[{
2476 SuperscriptBox["\[Pi]", "2"], " ",
2477 SubscriptBox["C", "A"]}], "3"]}], ")"}]}],
2478 RowBox[{"2", " ", "\[Pi]"}]], TraditionalForm]], "Output"]
2479}, Open ]],
2480
2481Cell[CellGroupData[{
2482
2483Cell[BoxData[
2484 RowBox[{"UVC", "=", " ",
2485 RowBox[{
2486 RowBox[{"1", "/", "e"}], " ", "4", "*",
2487 FractionBox[
2488 RowBox[{"-", "11"}], "6"], "CA", " ",
2489 FractionBox["as",
2490 RowBox[{"4", "\[Pi]"}]], "c\[CapitalGamma]", " "}]}]], "Input"],
2491
2492Cell[BoxData[
2493 FormBox[
2494 RowBox[{"-",
2495 FractionBox[
2496 RowBox[{"11", " ", "as", " ",
2497 SubscriptBox["C", "A"], " ", "c\[CapitalGamma]"}],
2498 RowBox[{"6", " ", "e", " ", "\[Pi]"}]]}], TraditionalForm]], "Output"]
2499}, Open ]],
2500
2501Cell[CellGroupData[{
2502
2503Cell[BoxData[
2504 RowBox[{
2505 RowBox[{"(",
2506 RowBox[{
2507 RowBox[{
2508 RowBox[{
2509 RowBox[{
2510 RowBox[{"(",
2511 RowBox[{"divD", "+", "UVC"}], ")"}], "/", "as"}], "/",
2512 "c\[CapitalGamma]"}], " ", "2", " ", "\[Pi]"}], "//", "Expand"}], ")"}],
2513 " ", "as", " ",
2514 RowBox[{
2515 RowBox[{"c\[CapitalGamma]", "/", "2"}], "/", "\[Pi]"}]}]], "Input"],
2516
2517Cell[BoxData[
2518 FormBox[
2519 FractionBox[
2520 RowBox[{"as", " ", "c\[CapitalGamma]", " ",
2521 RowBox[{"(",
2522 RowBox[{
2523 FractionBox[
2524 RowBox[{"2", " ",
2525 SubscriptBox["C", "A"]}],
2526 SuperscriptBox["e", "2"]], "-",
2527 FractionBox[
2528 RowBox[{
2529 SuperscriptBox["\[Pi]", "2"], " ",
2530 SubscriptBox["C", "A"]}], "3"], "+",
2531 FractionBox[
2532 SubscriptBox["C", "A"], "3"]}], ")"}]}],
2533 RowBox[{"2", " ", "\[Pi]"}]], TraditionalForm]], "Output"]
2534}, Open ]],
2535
2536Cell[BoxData[
2537 RowBox[{
2538 RowBox[{"sally", "=",
2539 RowBox[{
2540 RowBox[{"as", "/", "\[Pi]"}], " ",
2541 RowBox[{"(",
2542 RowBox[{
2543 RowBox[{
2544 RowBox[{
2545 RowBox[{"-", "11"}], "/", "2"}], " ",
2546 RowBox[{
2547 RowBox[{"(",
2548 RowBox[{"1", "-", "z"}], ")"}], "^", "3"}]}], "+",
2549 RowBox[{"6", " ",
2550 RowBox[{"(",
2551 RowBox[{"1", "+",
2552 RowBox[{"z", "^", "4"}], "+",
2553 RowBox[{
2554 RowBox[{"(",
2555 RowBox[{"1", "-", "z"}], ")"}], "^", "4"}]}], ")"}], " ",
2556 RowBox[{"PlusDistribution", "[",
2557 RowBox[{
2558 RowBox[{"Log", "[",
2559 RowBox[{"1", "-", "z"}], "]"}], "/",
2560 RowBox[{"(",
2561 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], "-",
2562 RowBox[{"6", " ",
2563 RowBox[{"(",
2564 RowBox[{
2565 RowBox[{
2566 RowBox[{"z", "^", "2"}], " ",
2567 RowBox[{"PlusDistribution", "[",
2568 RowBox[{"1", "/",
2569 RowBox[{"(",
2570 RowBox[{"1", "-", "z"}], ")"}]}], "]"}]}], "+",
2571 RowBox[{"(",
2572 RowBox[{"1", "-", "z"}], ")"}], "+",
2573 RowBox[{
2574 RowBox[{"z", "^", "2"}],
2575 RowBox[{"(",
2576 RowBox[{"1", "-", "z"}], ")"}]}]}], ")"}],
2577 RowBox[{"Log", "[", "z", "]"}]}]}], ")"}]}]}], ";"}]], "Input"],
2578
2579Cell[BoxData[
2580 RowBox[{
2581 RowBox[{
2582 RowBox[{"(",
2583 RowBox[{
2584 RowBox[{
2585 RowBox[{
2586 RowBox[{
2587 RowBox[{
2588 RowBox[{"(",
2589 RowBox[{
2590 RowBox[{"\[Sigma]rn", "*",
2591 RowBox[{
2592 RowBox[{"as", "/", "2"}], "/", "\[Pi]"}]}], "/.",
2593 RowBox[{
2594 RowBox[{"DeltaFunction", "[", "x_", "]"}], "\[Rule]", "0"}]}],
2595 ")"}], "-", "sally"}], "/.",
2596 RowBox[{"CA", "\[Rule]", "3"}]}], "/.",
2597 RowBox[{"Pgg", "\[Rule]", "0"}]}], "//", "Expand"}], "//",
2598 "Simplify"}], ")"}], "/.",
2599 RowBox[{
2600 RowBox[{"PlusDistribution", "[",
2601 RowBox[{"1", "/",
2602 RowBox[{"(",
2603 RowBox[{"1", "-", "z"}], ")"}]}], "]"}], "\[Rule]",
2604 RowBox[{"1", "/",
2605 RowBox[{"(",
2606 RowBox[{"1", "-", "z"}], ")"}]}]}]}], "//", "Factor"}]], "Input"]
2607}, Open ]]
2608}, Open ]],
2609
2610Cell[CellGroupData[{
2611
2612Cell["Gluon initiated process", "Section",
2613 PageWidth->PaperWidth],
2614
2615Cell[CellGroupData[{
2616
2617Cell["Kinematics for the Born", "Subsection",
2618 PageWidth->PaperWidth],
2619
2620Cell["\<\
2621-----I take all momenta outgoing
2622
2623 p1 + p2 + p3 = 0
2624
2625 p1^2=0
2626 p2^2=0
2627 p3^3=Q^2
2628
2629
2630 \
2631\>", "Text",
2632 PageWidth->PaperWidth],
2633
2634Cell[BoxData[{
2635 RowBox[{
2636 RowBox[{
2637 RowBox[{"ScalarProduct", "[",
2638 RowBox[{"p1", ",", "p1"}], "]"}], "=", "0"}],
2639 ";"}], "\[IndentingNewLine]",
2640 RowBox[{
2641 RowBox[{
2642 RowBox[{"ScalarProduct", "[",
2643 RowBox[{"p2", ",", "p2"}], "]"}], "=", "0"}],
2644 ";"}], "\[IndentingNewLine]",
2645 RowBox[{
2646 RowBox[{
2647 RowBox[{"ScalarProduct", "[",
2648 RowBox[{"p3", ",", "p3"}], "]"}], "=", "Q2"}],
2649 ";"}], "\[IndentingNewLine]",
2650 RowBox[{
2651 RowBox[{
2652 RowBox[{"ScalarProduct", "[",
2653 RowBox[{"p1", ",", "p3"}], "]"}], "=",
2654 RowBox[{
2655 RowBox[{"-", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2656 RowBox[{
2657 RowBox[{
2658 RowBox[{"ScalarProduct", "[",
2659 RowBox[{"p1", ",", "p2"}], "]"}], "=",
2660 RowBox[{"Q2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2661 RowBox[{
2662 RowBox[{
2663 RowBox[{"ScalarProduct", "[",
2664 RowBox[{"p2", ",", "p3"}], "]"}], "=",
2665 RowBox[{
2666 RowBox[{"-", " ", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2667 RowBox[{
2668 RowBox[{
2669 RowBox[{"ScalarProduct", "[",
2670 RowBox[{"p1", ",", "e1"}], "]"}], "=", "0"}],
2671 ";"}], "\[IndentingNewLine]",
2672 RowBox[{
2673 RowBox[{
2674 RowBox[{"ScalarProduct", "[",
2675 RowBox[{"p2", ",", "e2"}], "]"}], "=", "0"}],
2676 ";"}], "\[IndentingNewLine]",
2677 RowBox[{
2678 RowBox[{
2679 RowBox[{"ScalarProduct", "[",
2680 RowBox[{"p1", ",", "e2"}], "]"}], "=", "0"}],
2681 ";"}], "\[IndentingNewLine]",
2682 RowBox[{
2683 RowBox[{
2684 RowBox[{
2685 RowBox[{"ScalarProduct", "[",
2686 RowBox[{"p2", ",", "e1"}], "]"}], "=", "0"}], ";"}],
2687 "\[IndentingNewLine]"}], "\[IndentingNewLine]",
2688 RowBox[{
2689 RowBox[{
2690 RowBox[{"ScalarProduct", "[",
2691 RowBox[{"p1", ",", "p1", ",",
2692 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2693 ";"}], "\[IndentingNewLine]",
2694 RowBox[{
2695 RowBox[{
2696 RowBox[{"ScalarProduct", "[",
2697 RowBox[{"p2", ",", "p2", ",",
2698 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2699 ";"}], "\[IndentingNewLine]",
2700 RowBox[{
2701 RowBox[{
2702 RowBox[{"ScalarProduct", "[",
2703 RowBox[{"p3", ",", "p3", ",",
2704 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "Q2"}],
2705 ";"}], "\[IndentingNewLine]",
2706 RowBox[{
2707 RowBox[{
2708 RowBox[{"ScalarProduct", "[",
2709 RowBox[{"p1", ",", "p3", ",",
2710 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
2711 RowBox[{
2712 RowBox[{"-", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2713 RowBox[{
2714 RowBox[{
2715 RowBox[{"ScalarProduct", "[",
2716 RowBox[{"p1", ",", "p2", ",",
2717 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
2718 RowBox[{"Q2", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2719 RowBox[{
2720 RowBox[{
2721 RowBox[{"ScalarProduct", "[",
2722 RowBox[{"p2", ",", "p3", ",",
2723 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=",
2724 RowBox[{
2725 RowBox[{"-", " ", "Q2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
2726 RowBox[{
2727 RowBox[{
2728 RowBox[{"ScalarProduct", "[",
2729 RowBox[{"p1", ",", "e1", ",",
2730 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2731 ";"}], "\[IndentingNewLine]",
2732 RowBox[{
2733 RowBox[{
2734 RowBox[{"ScalarProduct", "[",
2735 RowBox[{"p2", ",", "e2", ",",
2736 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2737 ";"}], "\[IndentingNewLine]",
2738 RowBox[{
2739 RowBox[{
2740 RowBox[{"ScalarProduct", "[",
2741 RowBox[{"p1", ",", "e2", ",",
2742 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2743 ";"}], "\[IndentingNewLine]",
2744 RowBox[{
2745 RowBox[{
2746 RowBox[{"ScalarProduct", "[",
2747 RowBox[{"p2", ",", "e1", ",",
2748 RowBox[{"Dimension", "\[Rule]", "D"}]}], "]"}], "=", "0"}],
2749 ";"}], "\[IndentingNewLine]"}], "Input",
2750 PageWidth->PaperWidth]
2751}, Open ]],
2752
2753Cell[CellGroupData[{
2754
2755Cell["Real Amplitude", "Subsection",
2756 PageWidth->PaperWidth],
2757
2758Cell[BoxData[{
2759 RowBox[{
2760 RowBox[{"Emme", "=",
2761 RowBox[{"CF", " ",
2762 RowBox[{"1", "/", "s"}],
2763 RowBox[{
2764 RowBox[{"(",
2765 RowBox[{
2766 RowBox[{"(",
2767 RowBox[{
2768 RowBox[{"s", "^", "2"}], "+",
2769 RowBox[{"u", "^", "2"}]}], ")"}], " ", "-",
2770 RowBox[{"e", " ",
2771 RowBox[{
2772 RowBox[{"(",
2773 RowBox[{"s", "+", "u"}], ")"}], "^", "2"}]}]}], ")"}], "/",
2774 "t"}]}]}], ";"}], "\[IndentingNewLine]",
2775 RowBox[{
2776 RowBox[{"RealD", "=",
2777 RowBox[{"Emme", "/",
2778 RowBox[{"(",
2779 RowBox[{"1", "-", "e"}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
2780 RowBox[{
2781 RowBox[{"Real4", "=",
2782 RowBox[{"RealD", "/.", " ",
2783 RowBox[{"e", "\[Rule]", "0"}]}]}], ";"}]}], "Input"]
2784}, Open ]],
2785
2786Cell[CellGroupData[{
2787
2788Cell["Integration over the phase space in D dimensions", "Subsection",
2789 PageWidth->PaperWidth],
2790
2791Cell[BoxData[{
2792 RowBox[{
2793 RowBox[{"PS", "=",
2794 RowBox[{
2795 FractionBox["1",
2796 RowBox[{"8", "\[Pi]"}]],
2797 SuperscriptBox[
2798 RowBox[{"(",
2799 FractionBox[
2800 RowBox[{"4", " ", "\[Pi]", " "}], "mh2"], ")"}], "e"],
2801 FractionBox["1",
2802 RowBox[{"Gamma", "[",
2803 RowBox[{"1", "-", "e"}], "]"}]], " ",
2804 SuperscriptBox[
2805 RowBox[{"(",
2806 FractionBox["mh2", "s"], ")"}], "e"], " ",
2807 SuperscriptBox[
2808 RowBox[{"(",
2809 RowBox[{"1", "-",
2810 FractionBox["mh2", "s"]}], ")"}],
2811 RowBox[{"1", "-",
2812 RowBox[{"2", "e"}]}]], " ",
2813 SuperscriptBox["v",
2814 RowBox[{"-", "e"}]], " ",
2815 SuperscriptBox[
2816 RowBox[{"(",
2817 RowBox[{"1", "-", "v"}], ")"}],
2818 RowBox[{"-", "e"}]]}]}], ";"}], "\[IndentingNewLine]",
2819 RowBox[{
2820 RowBox[{"substu", "=",
2821 RowBox[{"{",
2822 RowBox[{
2823 RowBox[{"t", "\[Rule]", " ",
2824 RowBox[{
2825 RowBox[{"-", "s"}], " ",
2826 RowBox[{"(",
2827 RowBox[{"1", "-",
2828 FractionBox["mh2", "s"]}], ")"}],
2829 RowBox[{"(",
2830 RowBox[{"1", "-", "v"}], ")"}]}]}], ",", " ",
2831 RowBox[{"u", "\[Rule]", " ",
2832 RowBox[{
2833 RowBox[{"-", "s"}], " ",
2834 RowBox[{"(",
2835 RowBox[{"1", "-",
2836 FractionBox["mh2", "s"]}], ")"}], "v"}]}], " ", ",",
2837 RowBox[{"s", "\[Rule]", " ",
2838 RowBox[{"mh2", "/", "z"}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
2839 RowBox[{
2840 RowBox[{"cGamma", "=",
2841 RowBox[{
2842 RowBox[{
2843 RowBox[{"(",
2844 RowBox[{"1", "/", "16"}], ")"}], "/",
2845 RowBox[{"Pi", "^", "2"}]}], " ",
2846 RowBox[{"mh2", "^",
2847 RowBox[{"(",
2848 RowBox[{"-", "e"}], ")"}]}],
2849 RowBox[{
2850 RowBox[{"(",
2851 RowBox[{"4", " ", "Pi"}], ")"}], "^", "e"}], " ",
2852 RowBox[{"Gamma", "[",
2853 RowBox[{"1", "+", "e"}], "]"}], " ",
2854 RowBox[{
2855 RowBox[{
2856 RowBox[{"Gamma", "[",
2857 RowBox[{"1", "-", "e"}], "]"}], "^", "2"}], "/",
2858 RowBox[{"Gamma", "[",
2859 RowBox[{"1", "-",
2860 RowBox[{"2", " ", "e"}]}], "]"}]}]}]}], ";"}], "\n",
2861 RowBox[{
2862 RowBox[{"pgq", "=",
2863 RowBox[{
2864 RowBox[{"CF",
2865 RowBox[{
2866 RowBox[{"(",
2867 RowBox[{
2868 SuperscriptBox[
2869 RowBox[{"(",
2870 RowBox[{"1", "-", "z"}], ")"}], "2"], "+", "1"}], ")"}], "/",
2871 "z"}]}], " ", "//", "Factor"}]}],
2872 ";"}], "\[IndentingNewLine]"}], "Input",
2873 PageWidth->PaperWidth],
2874
2875Cell[CellGroupData[{
2876
2877Cell["dim-reg", "Subsubsection",
2878 PageWidth->PaperWidth],
2879
2880Cell[CellGroupData[{
2881
2882Cell[BoxData[{
2883 RowBox[{
2884 RowBox[{"\[Sigma]r", "=",
2885 RowBox[{
2886 RowBox[{"Integrate", "[",
2887 RowBox[{
2888 RowBox[{
2889 RowBox[{
2890 RowBox[{"(",
2891 RowBox[{
2892 RowBox[{"RealD", " ", "PS", " ",
2893 RowBox[{"c\[CapitalGamma]", "/", "cGamma"}]}], " ", "//",
2894 "Simplify"}], ")"}], "//.", " ", "substu"}], "//", "Expand"}], ",",
2895 RowBox[{"{",
2896 RowBox[{"v", ",", "0", ",", "1"}], "}"}], ",", " ",
2897 RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}], "//",
2898 "Simplify"}]}], ";"}], "\n",
2899 RowBox[{
2900 RowBox[{"\[Sigma]r", "=",
2901 RowBox[{
2902 RowBox[{
2903 RowBox[{"Normal", "[",
2904 RowBox[{"Series", "[",
2905 RowBox[{
2906 RowBox[{"\[Sigma]r", "/",
2907 RowBox[{"(",
2908 RowBox[{"1", "+", " ", "e"}], ")"}]}], ",",
2909 RowBox[{"{",
2910 RowBox[{"e", ",", "0", ",", "0"}], "}"}]}], "]"}], "]"}], "/.", " ",
2911 RowBox[{
2912 RowBox[{"gs", "^", "2"}], " ", "\[Rule]", " ",
2913 RowBox[{"as", " ", "4", " ", "\[Pi]"}]}]}], " ", "//",
2914 "FullSimplify"}]}], ";"}], "\n",
2915 RowBox[{
2916 RowBox[{"\[Sigma]r", "=",
2917 RowBox[{
2918 RowBox[{
2919 RowBox[{
2920 RowBox[{
2921 RowBox[{"-", "\[Sigma]r"}], "/", "c\[CapitalGamma]"}], "/", "\[Pi]"}],
2922 "/", "2"}], "-",
2923 RowBox[{
2924 RowBox[{"1", "/", "e"}], " ", "z", " ", "Pgq"}], " ", "+",
2925 RowBox[{
2926 RowBox[{"1", "/", "e"}], " ", "z", " ", "pgq"}]}]}], ";"}], "\n",
2927 RowBox[{"\[Sigma]r", "=",
2928 RowBox[{
2929 RowBox[{"\[Sigma]r", "//", "PowerExpand"}], "//", "Expand"}]}]}], "Input",
2930 PageWidth->PaperWidth],
2931
2932Cell[BoxData[
2933 FormBox[
2934 RowBox[{
2935 RowBox[{"-",
2936 RowBox[{
2937 FractionBox["1", "2"], " ",
2938 SuperscriptBox["z", "2"], " ",
2939 SubscriptBox["C", "F"]}]}], "+",
2940 RowBox[{"2", " ",
2941 SuperscriptBox["z", "2"], " ",
2942 SubscriptBox["C", "F"], " ",
2943 RowBox[{"log", "(",
2944 RowBox[{"1", "-", "z"}], ")"}]}], "-",
2945 RowBox[{
2946 SuperscriptBox["z", "2"], " ",
2947 SubscriptBox["C", "F"], " ",
2948 RowBox[{"log", "(", "z", ")"}]}], "+",
2949 RowBox[{"3", " ", "z", " ",
2950 SubscriptBox["C", "F"]}], "-",
2951 RowBox[{"4", " ", "z", " ",
2952 SubscriptBox["C", "F"], " ",
2953 RowBox[{"log", "(",
2954 RowBox[{"1", "-", "z"}], ")"}]}], "+",
2955 RowBox[{"2", " ", "z", " ",
2956 SubscriptBox["C", "F"], " ",
2957 RowBox[{"log", "(", "z", ")"}]}], "+",
2958 RowBox[{"4", " ",
2959 SubscriptBox["C", "F"], " ",
2960 RowBox[{"log", "(",
2961 RowBox[{"1", "-", "z"}], ")"}]}], "-",
2962 RowBox[{"2", " ",
2963 SubscriptBox["C", "F"], " ",
2964 RowBox[{"log", "(", "z", ")"}]}], "-",
2965 FractionBox[
2966 RowBox[{"3", " ",
2967 SubscriptBox["C", "F"]}], "2"], "-",
2968 FractionBox[
2969 RowBox[{"Pgq", " ", "z"}], "e"]}], TraditionalForm]], "Output",
2970 CellChangeTimes->{3.6925287222347727`*^9}]
2971}, Open ]],
2972
2973Cell[CellGroupData[{
2974
2975Cell[BoxData[{
2976 RowBox[{"sally", "=",
2977 RowBox[{"2", "*",
2978 RowBox[{"(",
2979 RowBox[{
2980 RowBox[{
2981 RowBox[{"-", " ",
2982 RowBox[{"(",
2983 RowBox[{"1", "-", "z"}], ")"}]}], " ",
2984 RowBox[{
2985 RowBox[{"(",
2986 RowBox[{"7", "-",
2987 RowBox[{"3", "z"}]}], ")"}], "/", "3"}]}], " ", "+",
2988 RowBox[{
2989 RowBox[{"1", "/", "2"}], " ", "z", " ", "pgq", " ",
2990 RowBox[{"(",
2991 RowBox[{"1", "+",
2992 RowBox[{"2",
2993 RowBox[{"Log", "[",
2994 RowBox[{"1", "-", "z"}], "]"}]}], "-",
2995 RowBox[{"Log", "[", "z", "]"}]}], ")"}]}]}],
2996 ")"}]}]}], "\[IndentingNewLine]",
2997 RowBox[{
2998 RowBox[{"(",
2999 RowBox[{
3000 RowBox[{
3001 RowBox[{"(",
3002 RowBox[{"\[Sigma]r", "-", " ", "sally"}], ")"}], "/.", " ",
3003 RowBox[{"CF", "->",
3004 RowBox[{"4", "/", "3"}]}]}], "/.", " ",
3005 RowBox[{"Pgq", "\[Rule]", "0"}]}], ")"}], "//", "Simplify"}]}], "Input"],
3006
3007Cell[BoxData[
3008 FormBox[
3009 RowBox[{"2", " ",
3010 RowBox[{"(",
3011 RowBox[{
3012 RowBox[{
3013 FractionBox["1", "2"], " ",
3014 RowBox[{"(",
3015 RowBox[{
3016 SuperscriptBox["z", "2"], "-",
3017 RowBox[{"2", " ", "z"}], "+", "2"}], ")"}], " ",
3018 SubscriptBox["C", "F"], " ",
3019 RowBox[{"(",
3020 RowBox[{
3021 RowBox[{"2", " ",
3022 RowBox[{"log", "(",
3023 RowBox[{"1", "-", "z"}], ")"}]}], "-",
3024 RowBox[{"log", "(", "z", ")"}], "+", "1"}], ")"}]}], "+",
3025 RowBox[{
3026 FractionBox["1", "3"], " ",
3027 RowBox[{"(",
3028 RowBox[{"7", "-",
3029 RowBox[{"3", " ", "z"}]}], ")"}], " ",
3030 RowBox[{"(",
3031 RowBox[{"z", "-", "1"}], ")"}]}]}], ")"}]}],
3032 TraditionalForm]], "Output",
3033 CellChangeTimes->{3.692528722627721*^9}],
3034
3035Cell[BoxData[
3036 FormBox["0", TraditionalForm]], "Output",
3037 CellChangeTimes->{3.6925287226323357`*^9}]
3038}, Open ]],
3039
3040Cell[BoxData[""], "Input"]
3041}, Open ]]
3042}, Open ]]
3043}, Open ]]
3044}, Open ]]
3045},
3046WindowSize->{1049, 665},
3047WindowMargins->{{98, Automatic}, {Automatic, 0}},
3048PrintingCopies->1,
3049PrintingPageRange->{Automatic, Automatic},
3050PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
3051FrontEndVersion->"10.4 for Mac OS X x86 (32-bit, 64-bit Kernel) (February 25, \
30522016)",
3053StyleDefinitions->"Default.nb"
3054]
3055(* End of Notebook Content *)
3056
3057(* Internal cache information *)
3058(*CellTagsOutline
3059CellTagsIndex->{}
3060*)
3061(*CellTagsIndex
3062CellTagsIndex->{}
3063*)
3064(*NotebookFileOutline
3065Notebook[{
3066Cell[CellGroupData[{
3067Cell[579, 22, 142, 2, 148, "Title"],
3068Cell[CellGroupData[{
3069Cell[746, 28, 60, 1, 44, "Subsection"],
3070Cell[CellGroupData[{
3071Cell[831, 33, 89, 2, 28, "Input"],
3072Cell[923, 37, 603, 13, 24, "Message"],
3073Cell[1529, 52, 151, 3, 30, "Output"]
3074}, Open ]],
3075Cell[CellGroupData[{
3076Cell[1717, 60, 109, 2, 28, "Input"],
3077Cell[CellGroupData[{
3078Cell[1851, 66, 2390, 64, 25, "Print"],
3079Cell[4244, 132, 1130, 30, 25, "Print"],
3080Cell[5377, 164, 258, 5, 26, "Print"],
3081Cell[5638, 171, 272, 5, 26, "Print"]
3082}, Open ]]
3083}, Open ]],
3084Cell[5937, 180, 103, 3, 28, "Input"]
3085}, Open ]],
3086Cell[CellGroupData[{
3087Cell[6077, 188, 74, 1, 64, "Section"],
3088Cell[CellGroupData[{
3089Cell[6176, 193, 56, 1, 44, "Subsection"],
3090Cell[6235, 196, 171, 12, 201, "Text"],
3091Cell[6409, 210, 3591, 116, 386, "Input"]
3092}, Open ]],
3093Cell[CellGroupData[{
3094Cell[10037, 331, 70, 1, 44, "Subsection"],
3095Cell[10110, 334, 1432, 59, 170, "Text"],
3096Cell[11545, 395, 3106, 100, 301, "Input"]
3097}, Open ]],
3098Cell[CellGroupData[{
3099Cell[14688, 500, 66, 1, 44, "Subsection"],
3100Cell[CellGroupData[{
3101Cell[14779, 505, 939, 28, 148, "Input"],
3102Cell[15721, 535, 195, 3, 28, "Output"],
3103Cell[15919, 540, 525, 17, 47, "Output"]
3104}, Open ]],
3105Cell[CellGroupData[{
3106Cell[16481, 562, 1716, 49, 80, "Input"],
3107Cell[18200, 613, 397, 10, 47, "Output"]
3108}, Open ]]
3109}, Open ]],
3110Cell[CellGroupData[{
3111Cell[18646, 629, 206, 5, 94, "Subsection"],
3112Cell[18855, 636, 4351, 120, 352, "Input"],
3113Cell[23209, 758, 26, 0, 28, "Input"],
3114Cell[23238, 760, 26, 0, 28, "Input"]
3115}, Open ]]
3116}, Open ]],
3117Cell[CellGroupData[{
3118Cell[23313, 766, 22, 0, 64, "Section"],
3119Cell[CellGroupData[{
3120Cell[23360, 770, 61, 1, 44, "Subsection"],
3121Cell[CellGroupData[{
3122Cell[23446, 775, 2964, 92, 267, "Input"],
3123Cell[26413, 869, 398, 15, 33, "Output"],
3124Cell[26814, 886, 1373, 42, 56, "Output"]
3125}, Open ]],
3126Cell[28202, 931, 26, 0, 28, "Input"]
3127}, Open ]],
3128Cell[CellGroupData[{
3129Cell[28265, 936, 62, 1, 44, "Subsection"],
3130Cell[CellGroupData[{
3131Cell[28352, 941, 2218, 71, 233, "Input"],
3132Cell[30573, 1014, 984, 30, 56, "Output"]
3133}, Open ]]
3134}, Open ]],
3135Cell[CellGroupData[{
3136Cell[31606, 1050, 38, 0, 44, "Subsection"],
3137Cell[CellGroupData[{
3138Cell[31669, 1054, 2077, 58, 233, "Input"],
3139Cell[33749, 1114, 872, 22, 50, "Output"],
3140Cell[34624, 1138, 579, 14, 48, "Output"]
3141}, Open ]],
3142Cell[CellGroupData[{
3143Cell[35240, 1157, 1039, 30, 131, "Input"],
3144Cell[36282, 1189, 441, 12, 50, "Output"]
3145}, Open ]]
3146}, Open ]],
3147Cell[CellGroupData[{
3148Cell[36772, 1207, 129, 1, 44, "Subsection"],
3149Cell[CellGroupData[{
3150Cell[36926, 1212, 1506, 44, 199, "Input"],
3151Cell[38435, 1258, 299, 6, 47, "Output"]
3152}, Open ]],
3153Cell[CellGroupData[{
3154Cell[38771, 1269, 1345, 41, 118, "Input"],
3155Cell[40119, 1312, 730, 20, 59, "Output"],
3156Cell[40852, 1334, 851, 24, 59, "Output"],
3157Cell[41706, 1360, 635, 17, 59, "Output"]
3158}, Open ]],
3159Cell[42356, 1380, 45, 0, 46, "Input"],
3160Cell[CellGroupData[{
3161Cell[42426, 1384, 171, 6, 28, "Input"],
3162Cell[42600, 1392, 181, 6, 52, "Output"]
3163}, Open ]]
3164}, Open ]]
3165}, Open ]],
3166Cell[CellGroupData[{
3167Cell[42842, 1405, 65, 1, 64, "Section"],
3168Cell[CellGroupData[{
3169Cell[42932, 1410, 56, 1, 44, "Subsection"],
3170Cell[42991, 1413, 701, 37, 676, "Text"],
3171Cell[43695, 1452, 3054, 105, 318, "Input"]
3172}, Open ]],
3173Cell[CellGroupData[{
3174Cell[46786, 1562, 70, 1, 44, "Subsection"],
3175Cell[46859, 1565, 1432, 59, 170, "Text"],
3176Cell[48294, 1626, 1942, 57, 233, "Input"]
3177}, Open ]],
3178Cell[CellGroupData[{
3179Cell[50273, 1688, 57, 0, 44, "Subsection"],
3180Cell[50333, 1690, 419, 10, 104, "Input"]
3181}, Open ]],
3182Cell[CellGroupData[{
3183Cell[50789, 1705, 137, 3, 44, "Subsection"],
3184Cell[50929, 1710, 396, 10, 104, "Input"],
3185Cell[CellGroupData[{
3186Cell[51350, 1724, 124, 3, 29, "Input"],
3187Cell[51477, 1729, 2906, 76, 98, "Output"]
3188}, Open ]],
3189Cell[54398, 1808, 57, 3, 44, "Input"],
3190Cell[CellGroupData[{
3191Cell[54480, 1815, 98, 1, 28, "Input"],
3192Cell[54581, 1818, 2131, 64, 56, "Output"]
3193}, Open ]]
3194}, Open ]],
3195Cell[CellGroupData[{
3196Cell[56761, 1888, 84, 1, 44, "Subsection"],
3197Cell[56848, 1891, 1388, 43, 131, "Input"],
3198Cell[CellGroupData[{
3199Cell[58261, 1938, 652, 17, 28, "Input"],
3200Cell[58916, 1957, 2228, 66, 56, "Output"]
3201}, Open ]]
3202}, Open ]],
3203Cell[CellGroupData[{
3204Cell[61193, 2029, 73, 1, 44, "Subsection"],
3205Cell[61269, 2032, 2906, 93, 260, "Input"]
3206}, Open ]],
3207Cell[CellGroupData[{
3208Cell[64212, 2130, 49, 1, 44, "Subsection"],
3209Cell[CellGroupData[{
3210Cell[64286, 2135, 636, 20, 92, "Input"],
3211Cell[64925, 2157, 3179, 92, 109, "Output"]
3212}, Open ]],
3213Cell[68119, 2252, 1760, 55, 240, "Input"]
3214}, Open ]]
3215}, Open ]],
3216Cell[CellGroupData[{
3217Cell[69928, 2313, 26, 0, 64, "Section"],
3218Cell[CellGroupData[{
3219Cell[69979, 2317, 55, 0, 44, "Subsection"],
3220Cell[70037, 2319, 4178, 125, 369, "Input"],
3221Cell[CellGroupData[{
3222Cell[74240, 2448, 301, 9, 28, "Input"],
3223Cell[74544, 2459, 551, 18, 64, "Output"]
3224}, Open ]],
3225Cell[CellGroupData[{
3226Cell[75132, 2482, 244, 7, 49, "Input"],
3227Cell[75379, 2491, 222, 6, 48, "Output"]
3228}, Open ]],
3229Cell[CellGroupData[{
3230Cell[75638, 2502, 359, 12, 28, "Input"],
3231Cell[76000, 2516, 493, 16, 64, "Output"]
3232}, Open ]],
3233Cell[76508, 2535, 1311, 41, 63, "Input"],
3234Cell[77822, 2578, 845, 27, 46, "Input"]
3235}, Open ]]
3236}, Open ]],
3237Cell[CellGroupData[{
3238Cell[78716, 2611, 66, 1, 64, "Section"],
3239Cell[CellGroupData[{
3240Cell[78807, 2616, 69, 1, 44, "Subsection"],
3241Cell[78879, 2619, 171, 12, 201, "Text"],
3242Cell[79053, 2633, 3591, 116, 386, "Input"]
3243}, Open ]],
3244Cell[CellGroupData[{
3245Cell[82681, 2754, 60, 1, 44, "Subsection"],
3246Cell[82744, 2757, 738, 25, 63, "Input"]
3247}, Open ]],
3248Cell[CellGroupData[{
3249Cell[83519, 2787, 94, 1, 44, "Subsection"],
3250Cell[83616, 2790, 2373, 82, 212, "Input"],
3251Cell[CellGroupData[{
3252Cell[86014, 2876, 56, 1, 35, "Subsubsection"],
3253Cell[CellGroupData[{
3254Cell[86095, 2881, 1586, 48, 165, "Input"],
3255Cell[87684, 2931, 1212, 38, 48, "Output"]
3256}, Open ]],
3257Cell[CellGroupData[{
3258Cell[88933, 2974, 925, 30, 46, "Input"],
3259Cell[89861, 3006, 792, 26, 48, "Output"],
3260Cell[90656, 3034, 100, 2, 28, "Output"]
3261}, Open ]],
3262Cell[90771, 3039, 26, 0, 28, "Input"]
3263}, Open ]]
3264}, Open ]]
3265}, Open ]]
3266}, Open ]]
3267}
3268]
3269*)
3270