BUSSTEPP: HiggsGG-LO-mtfinite.nb

File HiggsGG-LO-mtfinite.nb, 35.9 KB (added by Fabio Maltoni, 6 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 8.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 157, 7]
13NotebookDataLength[ 36654, 1171]
14NotebookOptionsPosition[ 34232, 1082]
15NotebookOutlinePosition[ 34664, 1099]
16CellTagsIndexPosition[ 34621, 1096]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell["Calculation for gg>H with full top mass dependence ", "Title",
24 CellChangeTimes->{{3.692444489003084*^9, 3.692444517685689*^9}}],
25
26Cell[CellGroupData[{
27
28Cell["Input FeynCalc", "Subsection"],
29
30Cell[CellGroupData[{
31
32Cell[BoxData[
33 RowBox[{"<<", "FeynCalc`"}]], "Input",
34 CellChangeTimes->{3.692451954377186*^9}],
35
36Cell[BoxData[
37 FormBox[
38 RowBox[{
39 StyleBox[
40 RowBox[{"Get", "::", "noopen"}], "MessageName"],
41 RowBox[{
42 ":", " "}], "\<\"Cannot open \
43\[NoBreak]\\!\\(\\*FormBox[\\\"\\\\\\\"FeynCalc`\\\\\\\"\\\", \
44TraditionalForm]\\)\[NoBreak]. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
45ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
46ButtonData:>\\\"paclet:ref/message/General/noopen\\\", ButtonNote -> \
47\\\"Get::noopen\\\"]\\)\"\>"}], TraditionalForm]], "Message", "MSG",
48 CellChangeTimes->{3.692511575152804*^9, 3.6925118342385178`*^9,
49 3.6925130738099127`*^9, 3.6925170817600527`*^9, 3.692518106515353*^9}],
50
51Cell[BoxData[
52 FormBox["$Failed", TraditionalForm]], "Output",
53 CellChangeTimes->{3.692511575155848*^9, 3.6925118342578897`*^9,
54 3.6925130738166857`*^9, 3.692517081778297*^9, 3.692518106567068*^9}]
55}, Open ]],
56
57Cell[CellGroupData[{
58
59Cell[BoxData[
60 RowBox[{"<<",
61 "\"\</Users/marcozaro/Physics/feyncalc-master/FeynCalc/fc.m\>\""}]], "Input"],
62
63Cell[CellGroupData[{
64
65Cell[BoxData[
66 FormBox[
67 InterpretationBox[
68 RowBox[{
69 StyleBox["\<\"FeynCalc \"\>", "Text",
70 StripOnInput->False,
71 FontWeight->Bold], "\[InvisibleSpace]",
72 StyleBox["\<\"9.1.0 (development version). For help, use the \"\>", "Text",
73 StripOnInput->False], "\[InvisibleSpace]",
74 StyleBox[
75 TagBox[
76 ButtonBox[
77 RowBox[{"documentation", " ", "center"}],
78 BaseStyle->"Link",
79 ButtonData:>"paclet:FeynCalc/",
80 ButtonNote->"paclet:FeynCalc/"],
81 DisplayForm], "Text",
82 StripOnInput->False], "\[InvisibleSpace]",
83 StyleBox["\<\", check out the \"\>", "Text",
84 StripOnInput->False], "\[InvisibleSpace]",
85 StyleBox[
86 TagBox[
87 ButtonBox["wiki",
88 BaseStyle->"Hyperlink",
89 ButtonData:>{
90 URL["https://github.com/FeynCalc/feyncalc/wiki"], None},
91 ButtonNote->"https://github.com/FeynCalc/feyncalc/wiki"],
92 DisplayForm], "Text",
93 StripOnInput->False], "\[InvisibleSpace]",
94 StyleBox["\<\" or write to the \"\>", "Text",
95 StripOnInput->False], "\[InvisibleSpace]",
96 StyleBox[
97 TagBox[
98 ButtonBox[
99 RowBox[{"mailing", " ",
100 RowBox[{"list", "."}]}],
101 BaseStyle->"Hyperlink",
102 ButtonData:>{
103 URL["http://www.feyncalc.org/forum/"], None},
104 ButtonNote->"http://www.feyncalc.org/forum/"],
105 DisplayForm], "Text",
106 StripOnInput->False]}],
107 SequenceForm[
108 Style["FeynCalc ", "Text", Bold],
109 Style["9.1.0 (development version). For help, use the ", "Text"],
110 Style[
111 DisplayForm[
112 ButtonBox[
113 "documentation center", BaseStyle -> "Link", ButtonData :>
114 "paclet:FeynCalc/", ButtonNote -> "paclet:FeynCalc/"]], "Text"],
115 Style[", check out the ", "Text"],
116 Style[
117 DisplayForm[
118 ButtonBox["wiki", ButtonData :> {
119 URL["https://github.com/FeynCalc/feyncalc/wiki"], None}, BaseStyle ->
120 "Hyperlink", ButtonNote ->
121 "https://github.com/FeynCalc/feyncalc/wiki"]], "Text"],
122 Style[" or write to the ", "Text"],
123 Style[
124 DisplayForm[
125 ButtonBox["mailing list.", ButtonData :> {
126 URL["http://www.feyncalc.org/forum/"], None}, BaseStyle ->
127 "Hyperlink", ButtonNote -> "http://www.feyncalc.org/forum/"]], "Text"]],
128 Editable->False], TraditionalForm]], "Print",
129 CellChangeTimes->{3.692511576512598*^9, 3.692511835506633*^9,
130 3.692513076189733*^9, 3.6925170831289682`*^9, 3.692518108090785*^9}],
131
132Cell[BoxData[
133 FormBox[
134 InterpretationBox[
135 RowBox[{
136 StyleBox["\<\"See also the supplied \"\>", "Text",
137 StripOnInput->False], "\[InvisibleSpace]",
138 StyleBox[
139 TagBox[
140 ButtonBox[
141 RowBox[{"examples", "."}],
142 BaseStyle->"Hyperlink",
143 ButtonFunction:>SystemOpen[
144 FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]],
145 Evaluator->Automatic,
146 Method->"Preemptive"],
147 DisplayForm], "Text",
148 StripOnInput->False], "\[InvisibleSpace]",
149 StyleBox["\<\" If you use FeynCalc in your research, please cite\"\>",
150 "Text",
151 StripOnInput->False]}],
152 SequenceForm[
153 Style["See also the supplied ", "Text"],
154 Style[
155 DisplayForm[
156 ButtonBox[
157 "examples.", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[
158 FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]], Evaluator ->
159 Automatic, Method -> "Preemptive"]], "Text"],
160 Style[" If you use FeynCalc in your research, please cite", "Text"]],
161 Editable->False], TraditionalForm]], "Print",
162 CellChangeTimes->{3.692511576512598*^9, 3.692511835506633*^9,
163 3.692513076189733*^9, 3.6925170831289682`*^9, 3.692518108099052*^9}],
164
165Cell[BoxData[
166 FormBox[
167 StyleBox["\<\" \[Bullet] V. Shtabovenko, R. Mertig and F. Orellana, TUM-EFT \
16871/15, arXiv:1601.01167\"\>", "Text",
169 StripOnInput->False], TraditionalForm]], "Print",
170 CellChangeTimes->{3.692511576512598*^9, 3.692511835506633*^9,
171 3.692513076189733*^9, 3.6925170831289682`*^9, 3.6925181081053534`*^9}],
172
173Cell[BoxData[
174 FormBox[
175 StyleBox["\<\" \[Bullet] R. Mertig, M. B\[ODoubleDot]hm, and A. Denner, \
176Comput. Phys. Commun., 64, 345-359, 1991.\"\>", "Text",
177 StripOnInput->False], TraditionalForm]], "Print",
178 CellChangeTimes->{3.692511576512598*^9, 3.692511835506633*^9,
179 3.692513076189733*^9, 3.6925170831289682`*^9, 3.6925181081130238`*^9}]
180}, Open ]]
181}, Open ]]
182}, Open ]],
183
184Cell[CellGroupData[{
185
186Cell["Preliminaries", "Subsection"],
187
188Cell[CellGroupData[{
189
190Cell["Kinematics 2->1 ", "Subsubsection"],
191
192Cell[BoxData[
193 RowBox[{"\[IndentingNewLine]",
194 RowBox[{
195 RowBox[{
196 RowBox[{
197 RowBox[{"ScalarProduct", "[",
198 RowBox[{"q1", ",", "q1"}], "]"}], "=", "0"}], ";"}],
199 "\[IndentingNewLine]",
200 RowBox[{
201 RowBox[{
202 RowBox[{"ScalarProduct", "[",
203 RowBox[{"q2", ",", "q2"}], "]"}], "=", "0"}], ";"}],
204 "\[IndentingNewLine]",
205 RowBox[{
206 RowBox[{
207 RowBox[{"ScalarProduct", "[",
208 RowBox[{"q1", ",", "q2"}], "]"}], "=",
209 RowBox[{
210 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
211 RowBox[{
212 RowBox[{
213 RowBox[{"ScalarProduct", "[",
214 RowBox[{"q", ",", "q1"}], "]"}], "=",
215 RowBox[{
216 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
217 RowBox[{
218 RowBox[{
219 RowBox[{"ScalarProduct", "[",
220 RowBox[{"q", ",", "q2"}], "]"}], "=",
221 RowBox[{
222 RowBox[{"mh", "^", "2"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]",
223 RowBox[{
224 RowBox[{
225 RowBox[{"ScalarProduct", "[",
226 RowBox[{"q", ",", "q"}], "]"}], "=",
227 RowBox[{"mh", "^", "2"}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",
228 CellChangeTimes->{{3.69245254913195*^9, 3.692452553746846*^9}}]
229}, Open ]]
230}, Open ]],
231
232Cell[CellGroupData[{
233
234Cell["Amplitude (2 diagrams)", "Subsection"],
235
236Cell[CellGroupData[{
237
238Cell[BoxData[
239 RowBox[{"\[IndentingNewLine]",
240 RowBox[{
241 RowBox[{"Amp", "=",
242 RowBox[{
243 RowBox[{
244 RowBox[{"(",
245 RowBox[{"-", "I"}], ")"}],
246 RowBox[{"(",
247 RowBox[{
248 RowBox[{
249 RowBox[{"(",
250 RowBox[{
251 RowBox[{
252 RowBox[{"-",
253 RowBox[{
254 RowBox[{"(",
255 RowBox[{
256 RowBox[{"-", "I"}], " ", "gs"}], ")"}], "^", "2"}]}], " ",
257 RowBox[{"(",
258 RowBox[{
259 RowBox[{"-", " ", "I"}], " ",
260 RowBox[{"mt", " ", "/", "v"}]}], ")"}], " ", "*", " ",
261 RowBox[{"I", "^", "3"}], "*",
262 RowBox[{"deltaAB", "/", "2"}], "*",
263 RowBox[{"Tr", "[",
264 RowBox[{
265 RowBox[{
266 RowBox[{"(",
267 RowBox[{
268 RowBox[{"GSD", "[",
269 RowBox[{"l", "+", "q1"}], "]"}], "+", "mt"}], ")"}], ".",
270 RowBox[{"GAD", "[", "mu", "]"}], ".",
271 RowBox[{"(",
272 RowBox[{
273 RowBox[{"GSD", "[", "l", "]"}], "+", "mt"}], ")"}], ".",
274 RowBox[{"GAD", "[", "nu", "]"}], ".",
275 RowBox[{"(",
276 RowBox[{
277 RowBox[{"GSD", "[",
278 RowBox[{"l", "-", "q2"}], "]"}], "+", "mt"}], ")"}]}], "+",
279
280 RowBox[{
281 RowBox[{"(",
282 RowBox[{
283 RowBox[{"GSD", "[",
284 RowBox[{"l", "+", "q2"}], "]"}], "+", "mt"}], ")"}], ".",
285 RowBox[{"GAD", "[", "nu", "]"}], ".",
286 RowBox[{"(",
287 RowBox[{
288 RowBox[{"GSD", "[", "l", "]"}], "+", "mt"}], ")"}], ".",
289 RowBox[{"GAD", "[", "mu", "]"}], ".",
290 RowBox[{"(",
291 RowBox[{
292 RowBox[{"GSD", "[",
293 RowBox[{"l", "-", "q1"}], "]"}], "+", "mt"}], ")"}]}]}],
294 "]"}]}], " ", "//", "DiracSimplify"}], ")"}], "/.", " ",
295 RowBox[{
296 RowBox[{"Pair", "[",
297 RowBox[{
298 RowBox[{"Momentum", "[", "q2", "]"}], ",",
299 RowBox[{"LorentzIndex", "[", "nu", "]"}]}], "]"}], "\[Rule]",
300 "0"}]}], "/.", " ",
301 RowBox[{
302 RowBox[{"Pair", "[",
303 RowBox[{
304 RowBox[{"Momentum", "[", "q1", "]"}], ",",
305 RowBox[{"LorentzIndex", "[", "mu", "]"}]}], "]"}], "\[Rule]",
306 "0"}]}], ")"}]}], " ", "//", "Simplify"}]}],
307 "\[IndentingNewLine]"}]}]], "Input"],
308
309Cell[BoxData[
310 FormBox[
311 FractionBox[
312 RowBox[{"2", " ", "\[ImaginaryI]", " ", "deltaAB", " ",
313 SuperscriptBox["gs", "2"], " ",
314 SuperscriptBox["mt", "2"], " ",
315 RowBox[{"(",
316 RowBox[{
317 RowBox[{"-",
318 RowBox[{
319 FormBox[
320 SuperscriptBox["g",
321 RowBox[{
322 FormBox[
323 FormBox[
324 FormBox["mu",
325 TraditionalForm],
326 TraditionalForm],
327 TraditionalForm],
328 FormBox[
329 FormBox[
330 FormBox["nu",
331 TraditionalForm],
332 TraditionalForm],
333 TraditionalForm]}]],
334 TraditionalForm], " ",
335 RowBox[{"(",
336 RowBox[{
337 RowBox[{"2", " ",
338 SuperscriptBox[
339 FormBox[
340 FormBox["l",
341 TraditionalForm],
342 TraditionalForm], "2"]}], "+",
343 SuperscriptBox["mh", "2"], "-",
344 RowBox[{"2", " ",
345 SuperscriptBox["mt", "2"]}]}], ")"}]}]}], "+",
346 RowBox[{"8", " ",
347 FormBox[
348 SuperscriptBox[
349 FormBox[
350 FormBox["l",
351 TraditionalForm],
352 TraditionalForm],
353 FormBox[
354 FormBox[
355 FormBox["mu",
356 TraditionalForm],
357 TraditionalForm],
358 TraditionalForm]],
359 TraditionalForm], " ",
360 FormBox[
361 SuperscriptBox[
362 FormBox[
363 FormBox["l",
364 TraditionalForm],
365 TraditionalForm],
366 FormBox[
367 FormBox[
368 FormBox["nu",
369 TraditionalForm],
370 TraditionalForm],
371 TraditionalForm]],
372 TraditionalForm]}], "+",
373 RowBox[{"2", " ",
374 FormBox[
375 SuperscriptBox[
376 FormBox[
377 FormBox["q2",
378 TraditionalForm],
379 TraditionalForm],
380 FormBox[
381 FormBox[
382 FormBox["mu",
383 TraditionalForm],
384 TraditionalForm],
385 TraditionalForm]],
386 TraditionalForm], " ",
387 FormBox[
388 SuperscriptBox[
389 FormBox[
390 FormBox["q1",
391 TraditionalForm],
392 TraditionalForm],
393 FormBox[
394 FormBox[
395 FormBox["nu",
396 TraditionalForm],
397 TraditionalForm],
398 TraditionalForm]],
399 TraditionalForm]}], "-",
400 RowBox[{"2", " ",
401 FormBox[
402 SuperscriptBox[
403 FormBox[
404 FormBox["q1",
405 TraditionalForm],
406 TraditionalForm],
407 FormBox[
408 FormBox[
409 FormBox["mu",
410 TraditionalForm],
411 TraditionalForm],
412 TraditionalForm]],
413 TraditionalForm], " ",
414 FormBox[
415 SuperscriptBox[
416 FormBox[
417 FormBox["q2",
418 TraditionalForm],
419 TraditionalForm],
420 FormBox[
421 FormBox[
422 FormBox["nu",
423 TraditionalForm],
424 TraditionalForm],
425 TraditionalForm]],
426 TraditionalForm]}]}], ")"}]}], "v"], TraditionalForm]], "Output",
427 CellChangeTimes->{3.692452170263329*^9, 3.69245255666861*^9,
428 3.692452972716131*^9, 3.6924538156646147`*^9, 3.692510939269392*^9,
429 3.692511576946205*^9, 3.692511835928535*^9, 3.692513076828374*^9,
430 3.6925170835612497`*^9, 3.692518108761848*^9}]
431}, Open ]]
432}, Open ]],
433
434Cell[CellGroupData[{
435
436Cell["Let's ask FeynCalc to do the tensor reduction", "Subsection"],
437
438Cell[CellGroupData[{
439
440Cell[BoxData[
441 RowBox[{"\[IndentingNewLine]",
442 RowBox[{
443 RowBox[{
444 RowBox[{"res", "=",
445 RowBox[{
446 RowBox[{
447 RowBox[{
448 RowBox[{
449 RowBox[{"1", "/",
450 RowBox[{
451 RowBox[{"(",
452 RowBox[{"2", " ", "Pi"}], ")"}], "^", "4"}]}], "*",
453 RowBox[{"OneLoop", "[",
454 RowBox[{"l", ",",
455 RowBox[{
456 RowBox[{
457 RowBox[{"FAD", "[",
458 RowBox[{
459 RowBox[{"{",
460 RowBox[{"l", ",", "mt"}], "}"}], ",",
461 RowBox[{"{",
462 RowBox[{
463 RowBox[{"l", "+", "q1"}], ",", "mt"}], "}"}], ",",
464 RowBox[{"{",
465 RowBox[{
466 RowBox[{"l", "-", "q2"}], ",", "mt"}], "}"}]}], "]"}], " ",
467 "Amp"}], "//", "Contract"}]}], "]"}]}], "//", "PaVeReduce"}], "//",
468 "Factor"}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]",
469 RowBox[{"res", "=",
470 RowBox[{
471 RowBox[{"(",
472 RowBox[{
473 RowBox[{"res", "/.", " ",
474 RowBox[{
475 RowBox[{"Pair", "[",
476 RowBox[{
477 RowBox[{"Momentum", "[", "q2", "]"}], ",",
478 RowBox[{"LorentzIndex", "[", "nu", "]"}]}], "]"}], "\[Rule]",
479 "0"}]}], "/.", " ",
480 RowBox[{
481 RowBox[{"Pair", "[",
482 RowBox[{
483 RowBox[{"Momentum", "[", "q1", "]"}], ",",
484 RowBox[{"LorentzIndex", "[", "mu", "]"}]}], "]"}], "\[Rule]",
485 "0"}]}], " ", ")"}], "//", "Simplify"}]}]}]}]], "Input"],
486
487Cell[BoxData[
488 FormBox[
489 RowBox[{
490 FractionBox["1",
491 RowBox[{"8", " ",
492 SuperscriptBox["\[Pi]", "2"], " ",
493 RowBox[{"(",
494 RowBox[{"D", "-", "2"}], ")"}], " ",
495 SuperscriptBox["mh", "2"], " ", "v"}]],
496 RowBox[{"deltaAB", " ",
497 SuperscriptBox["gs", "2"], " ",
498 SuperscriptBox["mt", "2"], " ",
499 RowBox[{"(",
500 RowBox[{
501 RowBox[{
502 SuperscriptBox["mh", "2"], " ",
503 FormBox[
504 SuperscriptBox[
505 OverscriptBox["g", "_"],
506 RowBox[{
507 FormBox[
508 FormBox[
509 FormBox["mu",
510 TraditionalForm],
511 TraditionalForm],
512 TraditionalForm],
513 FormBox[
514 FormBox[
515 FormBox["nu",
516 TraditionalForm],
517 TraditionalForm],
518 TraditionalForm]}]],
519 TraditionalForm]}], "-",
520 RowBox[{"2", " ",
521 FormBox[
522 SuperscriptBox[
523 FormBox[
524 OverscriptBox[
525 FormBox["q2",
526 TraditionalForm], "_"],
527 TraditionalForm],
528 FormBox[
529 FormBox[
530 FormBox["mu",
531 TraditionalForm],
532 TraditionalForm],
533 TraditionalForm]],
534 TraditionalForm], " ",
535 FormBox[
536 SuperscriptBox[
537 FormBox[
538 OverscriptBox[
539 FormBox["q1",
540 TraditionalForm], "_"],
541 TraditionalForm],
542 FormBox[
543 FormBox[
544 FormBox["nu",
545 TraditionalForm],
546 TraditionalForm],
547 TraditionalForm]],
548 TraditionalForm]}]}], ")"}], " ",
549 RowBox[{"(",
550 RowBox[{
551 RowBox[{"2", " ",
552 RowBox[{"(",
553 RowBox[{"D", "-", "4"}], ")"}], " ",
554 FormBox[
555 RowBox[{
556 SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(",
557 RowBox[{
558 SuperscriptBox["mh", "2"], ",",
559 SuperscriptBox["mt", "2"], ",",
560 SuperscriptBox["mt", "2"]}], ")"}],
561 TraditionalForm]}], "+",
562 RowBox[{
563 RowBox[{"(",
564 RowBox[{
565 RowBox[{
566 RowBox[{"(",
567 RowBox[{"D", "-", "2"}], ")"}], " ",
568 SuperscriptBox["mh", "2"]}], "-",
569 RowBox[{"8", " ",
570 SuperscriptBox["mt", "2"]}]}], ")"}], " ",
571 FormBox[
572 RowBox[{
573 SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(",
574 RowBox[{"0", ",", "0", ",",
575 SuperscriptBox["mh", "2"], ",",
576 SuperscriptBox["mt", "2"], ",",
577 SuperscriptBox["mt", "2"], ",",
578 SuperscriptBox["mt", "2"]}], ")"}],
579 TraditionalForm]}]}], ")"}]}]}], TraditionalForm]], "Output",
580 CellChangeTimes->{3.69245217851362*^9, 3.692452559992298*^9,
581 3.692452977284349*^9, 3.692453819606213*^9, 3.692510960462818*^9,
582 3.6925115775440702`*^9, 3.692511836507619*^9, 3.6925130777097187`*^9,
583 3.692517084203616*^9, 3.6925181096158943`*^9}]
584}, Open ]]
585}, Open ]],
586
587Cell[CellGroupData[{
588
589Cell["\<\
590The scalar integral C0 can be evaluated with the help of the Feynman \
591parameters (by hand), and the result is (\[Tau] = mh^2 / (4 mt^2):\
592\>", "Subsection",
593 CellChangeTimes->{{3.692515977056491*^9, 3.6925159820148697`*^9}, {
594 3.692516016057069*^9, 3.69251602591861*^9}, {3.6925179204440413`*^9,
595 3.692517920634293*^9}, {3.692520466725155*^9, 3.692520468165311*^9}, {
596 3.692521738384965*^9, 3.692521741980186*^9}}],
597
598Cell["\<\
599c0x=-I/(16 Pi^2)*1/mt^2*Integrate[1/(1-4 \[Tau] x y),{y,0,1-x}, Assumptions \
600\[Rule] {\[Tau]<1, \[Tau]>0, x>0, x<1}]//Simplify;
601c0 = Integrate[c0x, {x,0,1}, Assumptions \[Rule] {\[Tau]<1, \[Tau]>0}];
602c0FC=(2 Pi)^4/(I Pi^2) c0;\
603\>", "Input",
604 CellChangeTimes->{{3.692511045749646*^9, 3.692511049611127*^9}, {
605 3.692511557857853*^9, 3.692511560335854*^9}, {3.69251225244053*^9,
606 3.692512255516741*^9}, {3.69251503727313*^9, 3.692515038073168*^9}, {
607 3.692515120413361*^9, 3.692515195614604*^9}, {3.6925155941637917`*^9,
608 3.692515599171131*^9}, {3.692515651379901*^9, 3.69251568391683*^9}, {
609 3.692515780222146*^9, 3.69251583934918*^9}, {3.692515875890379*^9,
610 3.692515880441649*^9}, {3.692516835243518*^9, 3.692516838585149*^9}}]
611}, Open ]],
612
613Cell[CellGroupData[{
614
615Cell["\<\
616The scalar integral B0, we just need the 1/\[Epsilon] part, as it comes \
617multiplied by D-4)\
618\>", "Subsection",
619 CellChangeTimes->{{3.692515977056491*^9, 3.6925159820148697`*^9}, {
620 3.692516016057069*^9, 3.69251602591861*^9}, {3.6925168604493313`*^9,
621 3.692516890286077*^9}, {3.692520454657867*^9, 3.692520455316841*^9}}],
622
623Cell[BoxData[{
624 RowBox[{
625 RowBox[{"b01oeps", "=",
626 RowBox[{
627 RowBox[{"I", " ", "/",
628 RowBox[{
629 RowBox[{"(",
630 RowBox[{"4", " ", "Pi"}], ")"}], "^", "2"}]}], " ",
631 RowBox[{"2", "/",
632 RowBox[{"(",
633 RowBox[{"4", "-", "D"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
634 RowBox[{
635 RowBox[{"b0FC", "=",
636 RowBox[{
637 RowBox[{
638 RowBox[{
639 RowBox[{"(",
640 RowBox[{"2", " ", "Pi"}], ")"}], "^", "4"}], "/",
641 RowBox[{"(",
642 RowBox[{"I", " ",
643 RowBox[{"Pi", "^", "2"}]}], ")"}]}], " ", "b01oeps"}]}],
644 ";"}]}], "Input",
645 CellChangeTimes->{{3.692516899350171*^9, 3.692517026300687*^9}, {
646 3.692517146586252*^9, 3.692517151088367*^9}}]
647}, Open ]],
648
649Cell[CellGroupData[{
650
651Cell["\<\
652This is rather cumbersome, but it is just to replace FeynCalc\
653\[CloseCurlyQuote]s C0 and B0 functions with ours, as the commented (simpler) \
654expression seems not to work on Mathematica 10 + FC9\
655\>", "Subsection",
656 CellChangeTimes->{
657 3.692520284321138*^9, {3.692520319819466*^9, 3.692520379301304*^9}, {
658 3.6925204827584248`*^9, 3.692520484348297*^9}}],
659
660Cell[BoxData[
661 RowBox[{"(*",
662 RowBox[{
663 RowBox[{"subint", "[", "expr_", "]"}], " ", ":=", " ",
664 RowBox[{"Simplify", "[",
665 RowBox[{"expr", " ", "/.", " ",
666 RowBox[{"{",
667 RowBox[{
668 RowBox[{
669 RowBox[{"C0", "[", "x_", "]"}], "\[Rule]", "c0FC"}], ",", " ",
670 RowBox[{"\[AliasDelimiter]",
671 RowBox[{
672 RowBox[{
673 RowBox[{
674 RowBox[{
675 RowBox[{
676 RowBox[{"B0", "[", "x_", "]"}], "\[Rule]", "b0FC"}], " ", "}"}],
677 "]"}], ";"}], "*)"}]}]}]}]}]}]}]}]], "Input",
678 CellChangeTimes->{{3.692520387110497*^9, 3.6925204126273193`*^9}, {
679 3.6925204890200253`*^9, 3.6925205027299833`*^9}}],
680
681Cell[BoxData[
682 RowBox[{
683 RowBox[{
684 RowBox[{"subint", "[", "expr_", "]"}], " ", ":=", " ",
685 RowBox[{"Simplify", "[",
686 RowBox[{"expr", " ", "/.", " ",
687 RowBox[{"{",
688 RowBox[{
689 RowBox[{
690 RowBox[{
691 RowBox[{"PaVe", "[",
692 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], " ", "/;", " ",
693 RowBox[{
694 RowBox[{"Length", "[",
695 RowBox[{"Join", "[",
696 RowBox[{"y", ",", "z"}], "]"}], "]"}], " ", "\[Equal]", " ",
697 "6"}]}], "\[Rule]", "c0FC"}], ",", "\[IndentingNewLine]",
698 RowBox[{
699 RowBox[{
700 RowBox[{"PaVe", "[",
701 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], " ", "/;", " ",
702 RowBox[{
703 RowBox[{"Length", "[",
704 RowBox[{"Join", "[",
705 RowBox[{"y", ",", "z"}], "]"}], "]"}], " ", "\[Equal]", " ",
706 "3"}]}], "\[Rule]", "b0FC"}]}], " ", "}"}]}], "]"}]}],
707 ";"}]], "Input",
708 CellChangeTimes->{{3.692511088650519*^9, 3.6925111026315603`*^9}, {
709 3.69251122689157*^9, 3.692511251466298*^9}, {3.692511287165449*^9,
710 3.692511390180458*^9}, {3.692511420580585*^9, 3.692511428562236*^9}, {
711 3.692511486942605*^9, 3.692511501291944*^9}, {3.692511541963472*^9,
712 3.692511544297491*^9}, {3.6925115908150187`*^9, 3.692511592571269*^9}, {
713 3.69251164296789*^9, 3.692511663704157*^9}, {3.6925117165619698`*^9,
714 3.692511817361938*^9}, 3.692511849421681*^9, {3.692512176273435*^9,
715 3.692512189790781*^9}, {3.692513611230301*^9, 3.69251361647466*^9}, {
716 3.692513648480934*^9, 3.6925136568424397`*^9}, {3.692513694800782*^9,
717 3.692513702188364*^9}, {3.6925170421818333`*^9, 3.69251705299717*^9}, {
718 3.6925172275141287`*^9, 3.6925172318887367`*^9}}],
719
720Cell[BoxData[""], "Input",
721 CellChangeTimes->{{3.692513736504738*^9, 3.69251374487772*^9}}]
722}, Open ]],
723
724Cell[CellGroupData[{
725
726Cell["\<\
727Let's take the mt->Infinity limit and see that the amplitude does not depend \
728on m_top:\
729\>", "Subsection",
730 CellChangeTimes->{3.692520284321138*^9}],
731
732Cell[CellGroupData[{
733
734Cell[BoxData[
735 RowBox[{"myamp", "=",
736 RowBox[{
737 RowBox[{"Normal", "[",
738 RowBox[{"Series", "[",
739 RowBox[{
740 RowBox[{
741 RowBox[{
742 RowBox[{
743 RowBox[{
744 RowBox[{
745 RowBox[{"(", " ",
746 RowBox[{"res", " ", "//", "Simplify"}], ")"}], "/.", " ",
747 RowBox[{
748 RowBox[{"gs", "^", "2"}], " ", "\[Rule]", " ",
749 RowBox[{"as", " ", "4", " ", "Pi"}]}]}], "/.", " ",
750 RowBox[{"mh2", "\[Rule]",
751 RowBox[{"mh", "^", "2"}]}]}], "/.", " ",
752 RowBox[{"\[Tau]", "\[Rule]", " ",
753 RowBox[{
754 RowBox[{
755 RowBox[{"mh", "^", "2"}], "/", "4"}], "/",
756 RowBox[{"mt", "^", "2"}]}]}]}], "//", "PowerExpand"}], "//",
757 "FullSimplify"}], ",",
758 RowBox[{"{",
759 RowBox[{"mt", ",", "Infinity", ",", "4"}], "}"}]}], "]"}], "]"}], "//",
760 "Simplify"}]}]], "Input",
761 CellChangeTimes->{3.692511068164669*^9}],
762
763Cell[BoxData[
764 FormBox[
765 RowBox[{
766 FractionBox["1",
767 RowBox[{"2", " ", "\[Pi]", " ",
768 RowBox[{"(",
769 RowBox[{"D", "-", "2"}], ")"}], " ",
770 SuperscriptBox["mh", "2"], " ", "v"}]],
771 RowBox[{"as", " ", "deltaAB", " ",
772 SuperscriptBox["mt", "2"], " ",
773 RowBox[{"(",
774 RowBox[{
775 RowBox[{
776 SuperscriptBox["mh", "2"], " ",
777 FormBox[
778 SuperscriptBox[
779 OverscriptBox["g", "_"],
780 RowBox[{
781 FormBox[
782 FormBox[
783 FormBox["mu",
784 TraditionalForm],
785 TraditionalForm],
786 TraditionalForm],
787 FormBox[
788 FormBox[
789 FormBox["nu",
790 TraditionalForm],
791 TraditionalForm],
792 TraditionalForm]}]],
793 TraditionalForm]}], "-",
794 RowBox[{"2", " ",
795 FormBox[
796 SuperscriptBox[
797 FormBox[
798 OverscriptBox[
799 FormBox["q2",
800 TraditionalForm], "_"],
801 TraditionalForm],
802 FormBox[
803 FormBox[
804 FormBox["mu",
805 TraditionalForm],
806 TraditionalForm],
807 TraditionalForm]],
808 TraditionalForm], " ",
809 FormBox[
810 SuperscriptBox[
811 FormBox[
812 OverscriptBox[
813 FormBox["q1",
814 TraditionalForm], "_"],
815 TraditionalForm],
816 FormBox[
817 FormBox[
818 FormBox["nu",
819 TraditionalForm],
820 TraditionalForm],
821 TraditionalForm]],
822 TraditionalForm]}]}], ")"}], " ",
823 RowBox[{"(",
824 RowBox[{
825 RowBox[{"2", " ",
826 RowBox[{"(",
827 RowBox[{"D", "-", "4"}], ")"}], " ",
828 FormBox[
829 RowBox[{
830 SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(",
831 RowBox[{
832 SuperscriptBox["mh", "2"], ",",
833 SuperscriptBox["mt", "2"], ",",
834 SuperscriptBox["mt", "2"]}], ")"}],
835 TraditionalForm]}], "+",
836 RowBox[{
837 RowBox[{"(",
838 RowBox[{
839 RowBox[{
840 RowBox[{"(",
841 RowBox[{"D", "-", "2"}], ")"}], " ",
842 SuperscriptBox["mh", "2"]}], "-",
843 RowBox[{"8", " ",
844 SuperscriptBox["mt", "2"]}]}], ")"}], " ",
845 FormBox[
846 RowBox[{
847 SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(",
848 RowBox[{"0", ",", "0", ",",
849 SuperscriptBox["mh", "2"], ",",
850 SuperscriptBox["mt", "2"], ",",
851 SuperscriptBox["mt", "2"], ",",
852 SuperscriptBox["mt", "2"]}], ")"}],
853 TraditionalForm]}]}], ")"}]}]}], TraditionalForm]], "Output",
854 CellChangeTimes->{{3.692511052510167*^9, 3.692511074721478*^9},
855 3.692511518596458*^9, {3.6925115780945807`*^9, 3.692511597069365*^9}, {
856 3.6925116517937403`*^9, 3.692511666762609*^9}, 3.692511727680943*^9,
857 3.692511836997037*^9, 3.6925121970051394`*^9, 3.692513126501425*^9,
858 3.6925137048363113`*^9, 3.692517062946196*^9, 3.6925171054400797`*^9,
859 3.692517156544361*^9, 3.692517246551955*^9, 3.692518130912465*^9}]
860}, Open ]],
861
862Cell[CellGroupData[{
863
864Cell[BoxData[
865 RowBox[{"finalamp", " ", "=", " ",
866 RowBox[{
867 RowBox[{
868 RowBox[{"subint", "[", "myamp", "]"}], "/.", " ",
869 RowBox[{"{",
870 RowBox[{
871 RowBox[{"D", "\[Rule]", "4"}], ",", " ",
872 RowBox[{
873 RowBox[{"mt", "^", "2"}], "\[Rule]",
874 RowBox[{
875 RowBox[{"mh", "^", "2"}], "/",
876 RowBox[{"(",
877 RowBox[{"4", "\[Tau]"}], ")"}]}]}]}], "}"}]}], " ", "//",
878 "Simplify"}]}]], "Input",
879 CellChangeTimes->{{3.692511396567629*^9, 3.69251140477779*^9}, {
880 3.69251718353259*^9, 3.692517257077794*^9}, {3.692517912037135*^9,
881 3.692517914900489*^9}, {3.6925179647563257`*^9, 3.692517976859829*^9}}],
882
883Cell[BoxData[
884 FormBox[
885 RowBox[{"-",
886 FractionBox[
887 RowBox[{"as", " ", "deltaAB", " ",
888 RowBox[{"(",
889 RowBox[{
890 RowBox[{
891 RowBox[{"(",
892 RowBox[{"\[Tau]", "-", "1"}], ")"}], " ",
893 TemplateBox[{"2",FractionBox[
894 RowBox[{"2", " ", "\[Tau]"}],
895 RowBox[{"\[Tau]", "+",
896 RowBox[{"\[ImaginaryI]", " ",
897 SqrtBox[
898 RowBox[{
899 RowBox[{"-",
900 RowBox[{"(",
901 RowBox[{"\[Tau]", "-", "1"}], ")"}]}], " ",
902 "\[Tau]"}]]}]}]]},
903 "PolyLog"]}], "+",
904 RowBox[{
905 RowBox[{"(",
906 RowBox[{"\[Tau]", "-", "1"}], ")"}], " ",
907 TemplateBox[{"2",FractionBox[
908 RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Tau]"}],
909 RowBox[{
910 RowBox[{"\[ImaginaryI]", " ", "\[Tau]"}], "+",
911 SqrtBox[
912 RowBox[{
913 RowBox[{"-",
914 RowBox[{"(",
915 RowBox[{"\[Tau]", "-", "1"}], ")"}]}], " ",
916 "\[Tau]"}]]}]]},
917 "PolyLog"]}], "+",
918 RowBox[{"2", " ", "\[Tau]"}]}], ")"}], " ",
919 RowBox[{"(",
920 RowBox[{
921 RowBox[{
922 SuperscriptBox["mh", "2"], " ",
923 FormBox[
924 SuperscriptBox[
925 OverscriptBox["g", "_"],
926 RowBox[{
927 FormBox[
928 FormBox[
929 FormBox["mu",
930 TraditionalForm],
931 TraditionalForm],
932 TraditionalForm],
933 FormBox[
934 FormBox[
935 FormBox["nu",
936 TraditionalForm],
937 TraditionalForm],
938 TraditionalForm]}]],
939 TraditionalForm]}], "-",
940 RowBox[{"2", " ",
941 FormBox[
942 SuperscriptBox[
943 FormBox[
944 OverscriptBox[
945 FormBox["q2",
946 TraditionalForm], "_"],
947 TraditionalForm],
948 FormBox[
949 FormBox[
950 FormBox["mu",
951 TraditionalForm],
952 TraditionalForm],
953 TraditionalForm]],
954 TraditionalForm], " ",
955 FormBox[
956 SuperscriptBox[
957 FormBox[
958 OverscriptBox[
959 FormBox["q1",
960 TraditionalForm], "_"],
961 TraditionalForm],
962 FormBox[
963 FormBox[
964 FormBox["nu",
965 TraditionalForm],
966 TraditionalForm],
967 TraditionalForm]],
968 TraditionalForm]}]}], ")"}]}],
969 RowBox[{"8", " ", "\[Pi]", " ",
970 SuperscriptBox["\[Tau]", "2"], " ", "v"}]]}], TraditionalForm]], "Output",\
971
972 CellChangeTimes->{{3.692511405202662*^9, 3.69251143518386*^9}, {
973 3.6925115074304533`*^9, 3.69251151865038*^9}, {3.692511578190337*^9,
974 3.692511597121833*^9}, {3.6925116546982393`*^9, 3.6925116668026123`*^9}, {
975 3.6925117277323923`*^9, 3.692511780284226*^9}, {3.6925118370505447`*^9,
976 3.69251185243128*^9}, 3.6925119259368773`*^9, 3.692512199011361*^9,
977 3.6925131301000423`*^9, 3.6925136429395638`*^9, 3.6925137086067123`*^9,
978 3.692517105499065*^9, 3.692517156624544*^9, 3.692517191590906*^9, {
979 3.692517246612756*^9, 3.692517257431817*^9}, 3.692517978839405*^9,
980 3.69251813100445*^9}]
981}, Open ]],
982
983Cell[CellGroupData[{
984
985Cell[BoxData[
986 RowBox[{"finalampEFT", "=",
987 RowBox[{"Limit", "[",
988 RowBox[{"finalamp", ",", " ",
989 RowBox[{"\[Tau]", "->", " ", "0"}]}], "]"}]}]], "Input",
990 CellChangeTimes->{{3.6925172739166203`*^9, 3.692517329921995*^9}}],
991
992Cell[BoxData[
993 FormBox[
994 RowBox[{"-",
995 FractionBox[
996 RowBox[{"as", " ", "deltaAB", " ",
997 RowBox[{"(",
998 RowBox[{
999 RowBox[{
1000 SuperscriptBox["mh", "2"], " ",
1001 FormBox[
1002 SuperscriptBox[
1003 OverscriptBox["g", "_"],
1004 RowBox[{
1005 FormBox[
1006 FormBox[
1007 FormBox["mu",
1008 TraditionalForm],
1009 TraditionalForm],
1010 TraditionalForm],
1011 FormBox[
1012 FormBox[
1013 FormBox["nu",
1014 TraditionalForm],
1015 TraditionalForm],
1016 TraditionalForm]}]],
1017 TraditionalForm]}], "-",
1018 RowBox[{"2", " ",
1019 FormBox[
1020 SuperscriptBox[
1021 FormBox[
1022 OverscriptBox[
1023 FormBox["q2",
1024 TraditionalForm], "_"],
1025 TraditionalForm],
1026 FormBox[
1027 FormBox[
1028 FormBox["mu",
1029 TraditionalForm],
1030 TraditionalForm],
1031 TraditionalForm]],
1032 TraditionalForm], " ",
1033 FormBox[
1034 SuperscriptBox[
1035 FormBox[
1036 OverscriptBox[
1037 FormBox["q1",
1038 TraditionalForm], "_"],
1039 TraditionalForm],
1040 FormBox[
1041 FormBox[
1042 FormBox["nu",
1043 TraditionalForm],
1044 TraditionalForm],
1045 TraditionalForm]],
1046 TraditionalForm]}]}], ")"}]}],
1047 RowBox[{"6", " ", "\[Pi]", " ", "v"}]]}], TraditionalForm]], "Output",
1048 CellChangeTimes->{{3.6925173203674393`*^9, 3.69251733165294*^9},
1049 3.692517993143227*^9, 3.6925181320293016`*^9}]
1050}, Open ]],
1051
1052Cell[BoxData[""], "Input"],
1053
1054Cell[CellGroupData[{
1055
1056Cell[BoxData[
1057 RowBox[{"Integrate", "[",
1058 RowBox[{
1059 RowBox[{
1060 RowBox[{"(",
1061 RowBox[{"1", "-",
1062 RowBox[{"4", " ", "x", " ", "y"}]}], ")"}], "/",
1063 RowBox[{"(",
1064 RowBox[{"1", "-",
1065 RowBox[{"\[Tau]", " ", "x", " ", "y"}]}], ")"}]}], ",",
1066 RowBox[{"{",
1067 RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
1068 RowBox[{"{",
1069 RowBox[{"y", ",", "0", ",",
1070 RowBox[{"1", "-", "x"}]}], "}"}], ",", " ",
1071 RowBox[{"Assumptions", " ", "\[Rule]", " ",
1072 RowBox[{"{",
1073 RowBox[{"\[Tau]", "==", "0"}], "}"}]}]}], "]"}]], "Input",
1074 CellChangeTimes->{{3.542627525077577*^9, 3.542627611656934*^9}}],
1075
1076Cell[BoxData[
1077 FractionBox["1", "3"]], "Output",
1078 CellChangeTimes->{{3.542627586138248*^9, 3.542627615440257*^9}}]
1079}, Open ]]
1080}, Open ]]
1081}, Open ]]
1082},
1083WindowSize->{710, 706},
1084WindowMargins->{{148, Automatic}, {Automatic, 0}},
1085PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
1086FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (June 27, \
10872014)",
1088StyleDefinitions->"Default.nb"
1089]
1090(* End of Notebook Content *)
1091
1092(* Internal cache information *)
1093(*CellTagsOutline
1094CellTagsIndex->{}
1095*)
1096(*CellTagsIndex
1097CellTagsIndex->{}
1098*)
1099(*NotebookFileOutline
1100Notebook[{
1101Cell[CellGroupData[{
1102Cell[579, 22, 134, 1, 148, "Title"],
1103Cell[CellGroupData[{
1104Cell[738, 27, 36, 0, 44, "Subsection"],
1105Cell[CellGroupData[{
1106Cell[799, 31, 95, 2, 28, "Input"],
1107Cell[897, 35, 616, 13, 24, "Message"],
1108Cell[1516, 50, 199, 3, 30, "Output"]
1109}, Open ]],
1110Cell[CellGroupData[{
1111Cell[1752, 58, 109, 2, 28, "Input"],
1112Cell[CellGroupData[{
1113Cell[1886, 64, 2461, 65, 44, "Print"],
1114Cell[4350, 131, 1202, 31, 25, "Print"],
1115Cell[5555, 164, 331, 6, 26, "Print"],
1116Cell[5889, 172, 345, 6, 26, "Print"]
1117}, Open ]]
1118}, Open ]]
1119}, Open ]],
1120Cell[CellGroupData[{
1121Cell[6295, 185, 35, 0, 44, "Subsection"],
1122Cell[CellGroupData[{
1123Cell[6355, 189, 41, 0, 35, "Subsubsection"],
1124Cell[6399, 191, 1192, 36, 148, "Input"]
1125}, Open ]]
1126}, Open ]],
1127Cell[CellGroupData[{
1128Cell[7640, 233, 44, 0, 44, "Subsection"],
1129Cell[CellGroupData[{
1130Cell[7709, 237, 2570, 69, 182, "Input"],
1131Cell[10282, 308, 3319, 121, 52, "Output"]
1132}, Open ]]
1133}, Open ]],
1134Cell[CellGroupData[{
1135Cell[13650, 435, 67, 0, 44, "Subsection"],
1136Cell[CellGroupData[{
1137Cell[13742, 439, 1534, 45, 131, "Input"],
1138Cell[15279, 486, 2896, 96, 76, "Output"]
1139}, Open ]]
1140}, Open ]],
1141Cell[CellGroupData[{
1142Cell[18224, 588, 429, 7, 69, "Subsection"],
1143Cell[18656, 597, 748, 12, 59, "Input"]
1144}, Open ]],
1145Cell[CellGroupData[{
1146Cell[19441, 614, 335, 6, 69, "Subsection"],
1147Cell[19779, 622, 697, 23, 46, "Input"]
1148}, Open ]],
1149Cell[CellGroupData[{
1150Cell[20513, 650, 368, 7, 94, "Subsection"],
1151Cell[20884, 659, 677, 19, 28, "Input"],
1152Cell[21564, 680, 1720, 37, 63, "Input"],
1153Cell[23287, 719, 91, 1, 28, "Input"]
1154}, Open ]],
1155Cell[CellGroupData[{
1156Cell[23415, 725, 160, 4, 69, "Subsection"],
1157Cell[CellGroupData[{
1158Cell[23600, 733, 952, 27, 97, "Input"],
1159Cell[24555, 762, 3019, 96, 76, "Output"]
1160}, Open ]],
1161Cell[CellGroupData[{
1162Cell[27611, 863, 653, 17, 28, "Input"],
1163Cell[28267, 882, 3231, 97, 71, "Output"]
1164}, Open ]],
1165Cell[CellGroupData[{
1166Cell[31535, 984, 231, 5, 28, "Input"],
1167Cell[31769, 991, 1608, 57, 53, "Output"]
1168}, Open ]],
1169Cell[33392, 1051, 26, 0, 28, "Input"],
1170Cell[CellGroupData[{
1171Cell[33443, 1055, 632, 18, 46, "Input"],
1172Cell[34078, 1075, 114, 2, 48, "Output"]
1173}, Open ]]
1174}, Open ]]
1175}, Open ]]
1176}
1177]
1178*)
1179