

Tutorial category: Normal mode

First analysis with MadAnalysis 5

Version 1.0 Date

23/07/2016

Official MadAnalysis 5 website : <u>https://launchpad.net/madanalysis5/</u>

Goals of this tutorial

- Defining an elementary analysis in MadAnalysis 5 including plots and cut selection.
- Launching the analysis over the datasets and getting the results.
- To be able to use the Python console or a script for running an analysis.
- Changing the way to normalize or to stack the histograms.
- Selecting the figure of merit in a selection.

Requirements

 MadAnalysis 5 is installed on your system and has been launched successfully at least one time. The collection of example samples is installed too.

Part 1 A basic example

A basic example

Type this example at the prompt of MadAnalysis 5.

```
ma5> define mu = mu+ mu-
```

```
ma5> import samples/ttbar_*.lhe.gz
```

- ma5> plot PT(mu)
- ma5> reject PT(mu) < 40</pre>
- ma5> plot PT(mu)
- ma5> submit
- ma5> open

A basic example

First analysis with MadAnalysis 5

7/27

Note that this analysis could have been written in a text file ...

MyFirstExample.txt

```
define mu = mu+ mu-
import samples/ttbar_*.lhe.gz
plot PT(mu)
reject PT(mu) < 40
plot PT(mu)
submit
open
```

... and exectuted by the following command:

./bin/ma5 MyFirstExample.txt

Part 2 Building your analysis step-by-step

In this section, we describe the different steps building a classical analysis with MadAnalysis 5 normal mode:

- 1. Defining your proper particle labels
- 2. Importing your samples
- 3. Defining your analysis by adding:
 - 3.1 some plots
 - 3.2 some cuts
- 4. Launching the analysis
- 5. Opening the report

- Particles are defined by labels which point to one PDG-id.
- A « multiparticle » correspond to a label pointing to several PDG-ids.
- SM and MSSM labels are automatically loaded at the starting of MadAnalysis.
- The command display_particles & display_multiparticles allow you to display all the labels predefined.

```
ma5>display_particles
```

```
MA5: a b b1 b1~ b2 b2~ b~ c cl cl~ cr cr~ c~ d dl dl~ dr dr~ d~ e+ e- el+ el- er+ er- g go h+ h- h1 h2 h3 met mht mu+ mu- mul+ mul- mur+ mur- n1 n2 n3 n4 s sl sl~ sr sr~ sve sve~ svm svm~ svt svt~ s~ t t1 t1~ t2 t2~ ta+ ta- ta1+ ta1- ta2+ ta2- t~ u ul ul~ ur ur~ u~ ve ve~ vm vm~ vt vt~ w+ w- x1+ x1- x2+ x2- z
```

```
ma5>display_multiparticles
MA5: hadronic invisible j l+ l- p vl vl~
```

- There are 2 special labels :
 - hadronic: contains all hadronic particles
 - invisible: contains all invisible partiles

11/27

1. Defining (multi)particle labels

• To show to which PDG-id code a label refers:

```
ma5>display n1
The particle 'n1' is defined by the PDG-id 1000022.
```

• To create a new label for a PDG-id (useful for BSM particle):

```
ma5>define extrapart = 5000001
```

• To create a new label gathering several particles (useful in the analysis definition):

```
ma5>define extrapart = 5000001 -5000001
ma5>define mu = mu+ mu-
ma5>define b = b b~
```


2. Importing your samples

- For MadAnalysis, a dataset is a collection of samples which will be merged.
- All sample files are stored in a dataset.

• Possible to display all the datasets defined by the user with the command display_datasets.

```
ma5>display_datasets
 ******** List of defined datasets *******
 defaultset (signal)
 Wjets (signal)
 ttbar (signal)
```


2. Importing your samples

Properties of a dataset could be changed by the command set. Some relevant properties:

• Possibility to tag datasets as signal or background (useful for selection and computation of the figure of merit).

```
ma5> set ttbar.type = signal
ma5> set Wjets.type = background
```

 Possibility to force the cross section value (normally this valeur is extracted from the sample). Unit = pb.

```
ma5> set ttbar.xsection = 1.0
```

• Possibility to multiply the cross section by a weight. For instance, this weight could be k-factor.

ma5> set defaultset.weight = 1.2

- Observable can be related to the event or the properties of a particle
- Plethora of observables: N, E, ET, M, MT, P, PT, PX, PY, PZ, THETA, ETA, ...,

ma5> plot NPID
ma5> plot MET
ma5> plot PT(mu)

• Combining particles is possible (vector sum of 4-vector momenta)

ma5> plot M(mu+ mu-)

• Number of bins and x-axis bounds are set by default. This value can be specified by the user if necessary.

• List of observables related to the events:

- multiplicity (N, NPID, NPID),
- Total energy (TET) or total hadronic energy (THT),
- Missing transverse energy (MET) or missing transverse hadronic energy (MHT)
- SUSY transverse observables (ALPHAT, MT2)
- Coupling/scales (ALPHA_QCD, ALPHA_QED, SQRTS, SCALE)

• List of observables related to one particle:

- energy (E and ET),
- mass (M,MT, MT MET),
- momentum magnitude and components (P, PT, PX, PY, PZ),
- angles (THETA, ETA, ABSETA and PHI),
- relativist factors (Y, BETA and GAMMA).

• List of observables related to tow particles:

• Manhattan distance in eta-phi plane (DELTAR),

Several options or syntaxes allow to extend the potential of MadAnalysis. 3 examples:

By default, a combination is interpreted as the vector sum of momenta.
 This interpretation can be changed by adding a prefix to the observable label.

For instance : vPT, sPT, dsPT, dvPT, rPT

• Selecting a particle according to its rank in energy (or to other observables)

ma5> plot PT(mu+[1])

• Selecting a particle according to its history (requirements on mother, grand-mother ...)

ma5> plot PT(mu+ < w+ < t \sim)

• Options can be added to plots into square brackets []

3.2. Selection cuts

- Selection cuts can be performed by two commands: select and reject. These two commands are equivalent.
- Cuts : selecting / rejecting events

```
ma5> reject MHT < 50
ma5> select N(mu) >= 2
```

• Cuts : selecting / rejecting a particle or a combination

```
ma5> select (mu) PT > 50
ma5> select 80 < M (mu+ mu-) < 100
```

• The list of observables and syntax are identical to histograms ones.

First analysis with MadAnalysis 5

4. Launching the analysis over the samples

This can be done by the command submit

- Creating a working directory (with a default name if no name is specified)
- Compiling the C++ job
- Launching the analysis over the different samples contained in the datasets

```
ma5> submit
[...]
* SampleAnalyzer 2.0 for MadAnalysis 5 - Welcome.
* Option choices: selecting analysis = 'MadAnalysis5job'.
* Extracting the following sample files:
* 1/4 ~/samples/ttbar_sl_1.lhe.gz
=> file size : 107.09 Mo
=> sample produced by MadGraph.
=> progress [========> ]
```

If you modify, after the submission, the analysis or the layout of the plots, the results can be updated in an optimized way by the command resubmit.

5. Opening the analysis report

The command open displays the HTML report of the last job created. Reports in PDF and DVI format are also available.

21/27

Part 3 Some useful main options

Options related to histogramming

• The histograms are by default normalized to the integrated luminosity. Integrated luminosity is by default 10 fb⁻¹. This value can be set by the user:

ma5> set main.lumi = 100

• The histograms can be normalized to one by the following command:

ma5> set main.stacking method = normalize2one

• If you have several datasets, you can choose if you would like to stack the spectra (by default) or to superimpose them.

```
ma5> set main.stacking_method = stack
```

```
ma5> set main.stacking_method = superimpose
```


First analysis with MadAnalysis 5

Figure of merit for the selection

- If you apply on datasets (with signal and background tags),
 MadAnalysis 5 will compute a cut-flow chart including a figure of merit.
- He must choose one formula among a predefined collection (by default option 4 is used).
 - 1: S/B
 - 2: S/sqrt(B)
 - 3: S/(S+B)
 - 4: S/sqrt(S+B)
 - 5: S/sqrt(S+B+(xB)**2)
- Corresponding instruction in MadAnalyis 5.

ma5>set main.fom.formula = <formula number>

Special case: the x parameter in formula number 5

```
ma5>set main.fom.formula = 5
ma5>set main.fom.x = 0.2
```

with S and B mean respectively Signal and Background

About this document

- The present document is a part of the tutorial collection of the package MadAnalysis 5 (MA5 in abbreviated form). It has to be conceived to explain in a practical and graphical way the functionalities and the various options available in the last public release of MA5.
- The up-to-date version of this document, also the complete collection of tutorials, can be found on the MadAnalysis 5 website :

https://madanalysis.irmp.ucl.ac.be/wiki/tutorials

 Your feedback interests ourselves (bug reports, questions, comments, suggestions). You can contact the MadAnalysis 5 team by the email address : <u>ma5team@iphc.cnrs.fr</u>

Change log

Versi	on	Date	Update
1.0		23/07/2016	First release

27/27