MADANALYSIS 5 v1.6
Expert-Mode reference card

November 19, 2018
website: http://madanalysis. irmp.ucl. ac. be/
references: arXiv:1206.1599[hep-ph], arXiv:1405.3982[hep-ph], arXiv:1407.3278[hep-ph]

For sophisticated analysis going beyond the capabilities of the normal mode of running of
MADANALYSIS 5, the user has to rely on the so-called expert mode, where analyses are implemented
directly in the C++ framework of the platform. A blank template analysis can be generated by
typing, in a shell,

bin/mab --expert bin/mab5 -e bin/mab5 -E

MADANALYSIS 5 then asks information about the name of the working directory to create, as
well as information on the name of the analysis class that will have to be designed. Those two
pieces of information can be provided as arguments when calling MADANALYSIS 5 from the shell,

bin/mab5 -E <dirname> <analysis>

where <dirname> consists in the working directory name, and analysis the name of the analysis
class.

For a proper use of the program, the user has to setup some environment variables accordingly.
This can be done by entering the Build subfolder of the working directory and typing in a shell,

source setup.sh source setup.csh

depending on the shell nature. The Build folder also contains a makefile allowing for standard
make commands,

make clean make proper make

The first command allows one to remove all intermediate object and backup files whilst the
second command yields the removal of all files that have been created by the make action. Finally,
the last command allows to build the code.

The code can then be run from the Build directory by typing,

MadAnalysisb5Job [options] [inputfile]

The file [inputfile] consists in a text file with a list of paths pointing to the event samples
to analyze, with one filename per line. Several options are available, as summarized in the table
below.

Option Description

--check_event Sanity check of the input file.
--no_event_weight Ignores the event weights.

--ma5_version=XXXX Allows to specify which version of the MADANALYSIS 5
console to use.

http://madanalysis.irmp.ucl.ac.be/
https://arxiv.org/abs/1206.1599
https://arxiv.org/abs/1405.3982
https://arxiv.org/abs/1407.3278

The SAMPLEANALYZER data format includes several portable data types, that we show in the
table below together with the corresponding bit width.

Name Bit width Description

MAbool 1 Boolean.

MAint8 8 Byte integer.

MAint16 16 Short integer.

MAint32 32 Integer.

MAint64 64 Long integer.

MAuint8 8 Unsigned byte integer.

MAuint16 16 Unsigned short integer.

MAuint32 32 Unsigned integer.

MAuint64 64 Unsigned long integer.

MAfloat32 32 Single-precision floating-point number.
MAfloat64 or MAdouble64 64 Double-precision floating-point number.

Moreover, four-vectors can be implemented as instances of the MALorentzVector class that contains
the same methods as the ROOT TLorentzVector class [3].

The analysis class contains an Initialize, an Execute and a Finalize method that are respec-
tively executed before starting to read an event sample, on each event and after having read all
events. The Execute method requires two arguments, an instance of the SampleFormat class and
an event passed as an EventFormat instance (see the next subsection). Monte Carlo event samples
are generally accompanied with global information on the sample, such as the identifier of the
parton density set that has been used or the total cross section associated with the described pro-
cess. Those pieces of information are stored as attributes of the above-mentioned SampleFormat
object, and can be retrieved through the methods given in the table below (in particular through
attributes of the mc () and rec() objects) on run time.

Method name and type Description

MCSampleFormat* mc() Monte Carlo information (see below).
RecSampleFormat* rec() Reconstruction information (see below).
const std::string name() Sample name.

const MAuint64& nevents() const Number of events in the sample.
const std::vector<std::string>& header() const
Sample header.

The Monte Carlo information is available through the mc () object, a pointer to an instance of the
MCSampleFormat class whose attributes are given in the table below.

Method name and type Description

const

const

const

const

const

const

const

const

const

const

const

std: :pair<MAint32,MAint32>& beamPDGID() const

PDG codes of the intial partons.
std: :pair<MAfloat64,MAfloat64>& beamE() const

Beam energy.
std: :pair<MAuint32,MAuint32>& beamPDFauthor() const

Group associated with the used parton density set.
std: :pair<MAuint32,MAuint32>& beamPDFID() const

Identifier of the used parton density set.
MAint32& weightMode() const

Information on the event weights.
MAfloat64& xsection() const

Cross section associated with the sample.
MAfloat64& xsection_error() const

Uncertainty on the sample cross section.
MAfloat64& sumweight_positive() const

Sum of the weights of all positively-weighted events.
MAfloat64& sumweight_negative() const

Sum of the weights of all negatively-weighted events.
std: :vector<ProcessFormat>& processes()

List of all described processes (see below).
WeightDefinition& weight_definition()

Definitions of the different weights for events featuring
multiple weights.

Those attributes rely on two classes, the ProcessFormat one allowing for the description of a
physical process and the WeightDefinition one connected to the potential assignment of multiple
weights to a given event [1]. Whilst the following methods have been implemented for the former

class,
Method name and type Description
const MAfloat64& xsection() const Associated cross section.
const MAfloat64& xsectionError() const Error on the cross section.
const MAfloat64& weightMax() const Maximum weight for an event.
const MAuint32& processId() const Process identification number.

the latter class only allows for listing the names of the set of weights associated with each event,

void Print() const

The rec () method of the MCSampleFormat class consists in an instance of the RecSampleFormat
class that does not come with any built-in method. This is left for future developments.

An event object possesses two attributes mc() and rec() that are this time instances of the
MCEventFormat and RecEventFormat classes respectively. These two classes are respectively con-
nected to Monte Carlo events (as simulated by a Monte Carlo event generator) and reconstructed
events as obtained after gathering all final-state objects into reconstructed physical objects to be
used for specific analyses. The MCEventFormat class comes with the methods summarized in the
following table.

const MCParticleFormat& MET() const
MCParticleFormat& MET() const

Missing transverse energy
const MCParticleFormat& MHT() const
MCParticleFormat& MHT() const

Missing transverse hadronic energy.
const MAfloat64& TET() const
MAfloat64& TET() const
const MAfloat64& THT() const
const MAfloat64& THT() const
const MAfloat64& Meff() const .
MAfloat64& Meff() const Effective mass (Zjets pr+ ET)'

const MAfloat64& alphaQED() const Used value for the electromagnetic
coupling.

Total (visible) transverse energy.

Total hadronic transverse energy.

const MAfloat64& alphaQCD() const Used value for the strong coupling.
const WeightCollection& multiweights() const

Container for all event weights.
const std::vector<MCParticleFormat>& particles() const

All particles of the event.

const MAuint32& processId() const Identifier of the physical process re-
lated to the event.

const MAfloat64& scale() const Factorization scale choice.
const MAfloat64& weight() const Event weight.

Weights (as returned by the multiweights () method) are stored as an instance of the WeightCollection
class, which comes with the methods given in the table below.

const MAfloat64& Get(MAuint32 id) const
Weight value corresponding to the weight identifier id.
const std::map<MAuint32,MAfloat64>& GetWeights() const

The full list of weights as identifier-value pairs.

As indicated above, the event particle content can be obtained via the method particles()
of the MCEventFormat class. This returns a vector of MCParticleFormat objects, each element
corresponding to an initial-state, a final-state or an intermediate-state particle. This class in-
herits all methods available from the ParticleBaseFormat class, that are collected in the table
below.

MALorentzVector& momentum()
const MALorentzVector& momentum() const

Four-momentum.

const MAfloat32 beta() const Velocity (in ¢ units).
const MAfloat32 e() const Energy.

const MAfloat32 et() const Transverse energy.
const MAfloat32 eta() const Pseudorapidity.

const MAfloat32 abseta() const Pseudorapidity in absolute value.
const MAfloat32 gamma() const Lorentz factor.

const MAfloat32 m() const Invariant mass.

const MAfloat32 mt() const Transverse mass.

const MAfloat32 phi() const Azimuthal angle.

const MAfloat32 p() const Magnitude of the momentum.
const MAfloat32 pt() const Transverse momentum.

const MAfloat32 px() const z-component of the momentum.
const MAfloat32 py() const y-component of the momentum.
const MAfloat32 pz() const z-component of the momentum.
const MAfloat32 r() const Position in the n — ¢ plane.
const MAfloat32 theta() const Polar angle.

const MAfloat32 y() const Rapidity.

The ParticleBaseFormat class also includes a set of methods that involve the particle itself as
well as another object. These are given in the following table.

const MAfloat32 angle(const ParticleBaseFormat& p) const

const MAfloat32 angle(const ParticleBaseFormat* p) const
Angular separation between the particle momentum and
the momentum of another particle p.

const MAfloat32 mt_met(const MALorentzVector& MET) const
Transverse mass of the system made of the particle and the
missing momentum.

const MAfloat32 dphi_O_pi(const ParticleBaseFormat* p) const

const MAfloat32 dphi_O_pi(const ParticleBaseFormat& p) const
Azimuthal separation between the particle momentum and
the momentum of another particle p, normalized in [0, 7].

const MAfloat32 dphi_O_2pi(const ParticleBaseFormat* p) const

const MAfloat32 dphi_0_2pi(const ParticleBaseFormat& p) const
Azimuthal separation between the particle momentum and
the momentum of another particle p, normalized in [0, 27].

const MAfloat32 dr(const ParticleBaseFormat& p) const

const MAfloat32 dr(const ParticleBaseFormat* p) const
Angular distance, in the 7 — ¢ plane, between the particle
momentum and the momentum of another particle p.

Moreover, the MCParticleFormat class includes the extra methods listed below.

const

const

const

const

const

const

const

const

MAfloat64& ctau() const Particle decay length.

MAbool& isPU() const Tests whether the particle belongs to the
pile-up event.

MAint32% pdgid() const PDG identifier of the particle.

MAfloat32& spin() const Cosine of the angle between the parti-
cle momentum and its spin vector, com-
puted in the laboratory frame.

MAint16& statuscode() const Code indicating the particle initial-,

intermediate- or final-state nature.
std: :vector<MCParticleFormat*>& daughters() const

Particles in which the current particle
decays into.

std: :vector<MCParticleFormat*>& mothers() const

Particles from which the current particle
originates from.

MALorentzVector& decay_vertex() const

Spacetime position of the particle decay.

A slightly different format is available for reconstructed events. An event is here provided as an

instance of the RecEventFormat class, which comes with the following methods.

const std::vector<RecPhotonFormat>& photons() const
Reconstructed photons.

const std::vector<RecLeptonFormat>& electrons() const
Reconstructed electrons.

const std::vector<RecLeptonFormat>& muons() const
Reconstructed muons.

const std::vector<RecTauFormat>& taus() const
Reconstructed hadronic taus.

const std::vector<RecJetFormat>& fatjets() const
Reconstructed fat jets.

const std::vector<RecJetFormat>& jets() const
Reconstructed jets.

const std::vector<RecJetFormat>& genjets() const
Parton-level jets.

const std::vector<RecTrackFormat>& tracks() const
Tracks left in a detector.

const std::vector<RecTowerFormat>& towers() const
Calorimetric deposits left in a detector.

const std::vector<RecTrackFormat>& EFlowTracks() const

Tracks left in a detector, reconstructed from the particle
flow information.

const std::vector<RecParticleFormat>& EFlowPhotons() const
Photons, reconstructed from the particle flow information.
const std::vector<RecParticleFormat>& EFlowNeutralHadrons() const

Neutral hadrons, reconstructed from the particle flow in-
formation.

const RecParticleFormat& MET() const
Missing transverse energy.
const RecParticleFormat& MHT() const
Missing hadronic energy.
const MAfloat64& TET() const

Visible transverse energy.

const MAfloat64& THT() const
Hadronic transverse energy.
const MAfloat64& Meff() const

Effective mass (Zjets pr + ET>

const std::vector<const MCParticleFormat*>& MCHadronicTaus() const
Parton-level taus that decayed hadronically.
const std::vector<const MCParticleFormat*>& MCElectronicTaus() const

Parton-level taus that decayed into an electron and missing
energy.

const std::vector<const MCParticleFormat*>& MCMuonicTaus() const

Parton-level taus that decayed into a muon and missing
energy.

const std::vector<const MCParticleFormat*>& MCBquarks() const
Parton-level b-quarks of the event.
const std::vector<const MCParticleFormat*>& MCCquarks() const

Parton-level c-quarks of the event.

The above methods introduce the data format implemented for all reconstructed objects. It relies

on various types (RecLeptonFormat, RecJetFormat, RecPhotonFormat, RecTauFormat, RecTrackFormat
and RecTowerFormat) that inherit from the RecParticleFormat class based on the BaseParticleFormat
class (see above). All these new classes include the following set of methods.

const MAfloat32& EEoverHE() const
Ratio of the electromagnetic to hadronic calorimetric en-
ergy associated with the object.

const MAfloat32& HEoverEE() const
Ratio of the hadronic to electromagnetic calorimetric en-
ergy associated with the object.

const MAint32 DecayMode() const
Identifier of the decay mode of a RecTauFormat object. The
available choices are 1 (7 — evv), 2 (1 — uvv), 3 (1 —
Kv), 4 (t = K*v), 5 (1 = p(—= 7)), 6 (1 — ai(—
ar’7W), 7 (1 = ai(— wrmv), 8 (1 — 7ww), 9 (1 —
arrr’r) and 0 (any other decay mode).

const MAbool& btag() const
Indicates whether a RecJetFormat object has been b-
tagged.

const MAbool& ctag() const

Indicates whether a RecJetFormat object has been c-
tagged.

const std::vector<MAint32>& constituents() const
Returns the constituents of a RecJetFormat object.
const int charge() const

The electric charge of the object. This method is
available for the RecLeptonFormat, RecTauFormat and
RecTrackFormat classes.

MAfloat32 d0() const

Impact parameter of a RecLeptonFormat object. An exten-
sion to the other classes of reconstructed objects is foreseen.

MAfloat32 dOerror() const

Uncertainty on the impact parameter of a
RecLeptonFormat object.

const MAuint16 ntracks() const

Number of charged tracks associated with a reconstructed
object. This method is available for the RecJetFormat and
RecTauFormat classes.

MAbool isElectron() const

Indicates if a RecLeptonFormat object is an electron.
MAbool isMuon() const

Indicates if a RecLeptonFormat object is a muon.
const MAbool& true_btag() const

Indicates whether a RecJetFormat object is a true b-jet.
const MAbool& true_ctag() const

Indicates whether a RecJetFormat object is a true c-jet.

In the context of reconstructed events, lepton and photon isolation can be ensured by relying
either on track information, on calorimetric information, on the combination of both or on a
reconstruction based on the energy flow. Corresponding isolation methods are available, within
the MADANALYSIS 5 data format, through the four classes,

PHYSICS->Isol->tracker PHYSICS->Isol->calorimeter
PHYSICS->Isol->combined PHYSICS->Isol->eflow

respectively connected to the four ways to enforce object isolation. All those classes come with
two methods summarized in the table below.

MAfloat64 relIsolation(const <x>& prt,const RecEventFormat* evt,
const double& DR, double PTmin=0.5) const

Sum of the transverse momenta of all objects lying in a
cone of radius DR centered on the considered object prt,
and whose transverse momentum is larger than PTmin.
The sum is evaluated relatively to the transverse momen-
tum of the considered object prt that can be either a
RecLeptonFormat or a RecPhotonFormat object (i.e. the
value of the <x> type).

MAfloat64 sumIsolation(const <x>& prt,const RecEventFormat* evt,

const double& DR, double PTmin=0.5) const

Sum of the transverse momenta of all objects lying in a
cone of radius DR centered on the considered object prt,
and whose transverse momentum is larger than PTmin.
The object prt can be either a RecLeptonFormat or a
RecPhotonFormat object (i.e. the value of the <x> type).

When isolation is imposed on the basis of the energy flow (PHYSICS->Isol->eflow), those methods
take an extra argument,

MAfloat64 relIsolation(const <x>& prt, const RecEventFormat* evt,
const double& DR, double PTmin=0.5, ComponentType type) const

MAfloat64 sumIsolation(const <x>& prt, const RecEventFormat* evt,
const double& DR, double PTmin=0.5, ComponentType type) const

where type can take one of the four values,

TRACK_COMPONENT PHOTON_COMPONENT
NEUTRAL_COMPONENT ALL_COMPONENTS

In the first case, the activity around the considered object prt is evaluated only from the
charged track information, whilst in the second case, only the photon information is considered.
In the third case, the neutral hadron activity is accounted for whilst the last option consists in the
sum of the three previous cases.

In addition, a series of JetCleaning functions are provided in the aim of cleaning jet collections
from objects present in a lepton collection or a photon collection.

std: :vector<const RecJetFormat*> PHYSICS->Isol->JetCleaning(
const std::vector<const RecJetFormat*>& uncleaned,
const std::vector<const RecLeptonFormat*>& leptons,
double DeltaRmax = 0.1, double PTmin = 0.5) const

std: :vector<const RecJetFormat*> PHYSICS->Isol->JetCleaning(
const std::vector<RecJetFormat>& uncleaned,
const std::vector<const RecLeptonFormat*>& leptons,
double DeltaRmax = 0.1, double PTmin = 0.5) const

Removal from the uncleaned jet collection of all leptons
included in the leptons collection lying at an angular dis-
tance of at most DeltaRmax of the jet, and whose transverse
momentum is of at least PTmin.

std::vector<const RecJetFormat*> PHYSICS->Isol->JetCleaning(
const std::vector<const RecJetFormat*>& uncleaned,
const std::vector<const RecPhotonFormat*>& photons,
double DeltaRmax = 0.1, double PTmin = 0.5) const

std: :vector<const RecJetFormat*> PHYSICS->Isol->JetCleaning(
const std::vector<RecJetFormat>& uncleaned,
const std::vector<const RecPhotonFormat*>& photons,
double DeltaRmax = 0.1, double PTmin = 0.5) const

Removal from the uncleaned jet collection of all photons
included in the photons collection lying at an angular dis-
tance of at most DeltaRmax of the jet, and whose transverse
momentum is of at least PTmin.

The SAMPLEANALYZER data format contains various methods to compute observables connected
to the entire event, which includes in particular a small set of common transverse variables and
a set of methods related to object identification. They are available through a series of PHYSICS
services, that first contain the two general methods below.

MAint32 PHYSICS->GetTauDecayMode (const MCParticleFormat* part)

Returns the identifier of the decay mode of a tau particle.
The available values are 1 (evv), 2 (uvv), 3 (Kv), 4 (K*v),
5 (p(— 7)), 6 (a1(— 7r97%)W), 7 (a1 (= 7rr)v), 8 (7v),
9 (rrrr’v) and 0 (any other decay mode).

double PHYSICS->SqrtS(const MCEventFormat* event) const

Returns the partonic center-of-mass energy.

Identification functions are collected as methods attached to the PHYSICS->Id object. The list of
available methods is given in the table below.

10

MAbool IsInitialState(const MCParticleFormat& part) const
MAbool IsInitialState(const MCParticleFormat* part) const
Tests the initial-state nature of an object.
MAbool IsInterState(const MCParticleFormat* part) const
MAbool IsInterState(const MCParticleFormat& part) const
Tests the intermediate-state nature of an object.
MAbool IsFinalState(const MCParticleFormat& part) const
MAbool IsFinalState(const MCParticleFormat* part) const
Tests the final-state nature of an object.
bool IsHadronic(const RecParticleFormat* part) const
bool IsHadronic(const MCParticleFormat* part) const
bool IsHadronic(MAint32 pdgid) const
Tests the hadronic nature of an object.
bool IsInvisible(const RecParticleFormat* part) const
bool IsInvisible(const MCParticleFormat* part) const
Tests the invisible nature of an object.
MAbool IsBHadron(MAint32 pdg)
MAbool IsBHadron(const MCParticleFormat& part)
MAbool IsBHadron(const MCParticleFormat* part)
Tests whether the object is a B-hadron.
MAbool IsCHadron(MAint32 pdg)
MAbool IsCHadron(const MCParticleFormat& part)
MAbool IsCHadron(const MCParticleFormat* part)
Tests whether the object is a C-hadron.

Finally, a set of transverse variables can be evaluated by relying on the PHYSICS->Transverse ob-
ject. The following methods are available within the SAMPLEANALYZER data format.

double AlphaT(const MCEventFormatx)
double AlphaT(const RecEventFormatx*)
The ar variable [6].
double EventMEFF(const MCEventFormat* event) const
double EventMEFF (const RecEventFormat* event) const

The effective mass of the event.

11

double EventMET(const MCEventFormat* event) const
double EventMET(const RecEventFormat* event) const

The event missing transverse energy.
double EventMHT(const MCEventFormat* event) const
double EventMHT(const RecEventFormat* event) const

The event missing transverse hadronic energy.
double EventTET(const MCEventFormat* event) const
double EventTET(const RecEventFormat* event) const

The event total transverse energy.
double EventTHT (const MCEventFormat* event) const
double EventTHT (const RecEventFormat* event) const

The event total transverse hadronic energy.
double MT2(const MALorentzVector* pl, const MALorentzVector* p2,

const MALorentzVector& met, const double &mass)

The event myo variable computed from a system of two
visible objects p1 and p2, the event missing momentum
met and a test mass mass [4,5].

double MT2W(std::vector<const RecJetFormat*> jets,

const RecLeptonFormat* lep, const ParticleBaseFormat& met)
double MT2W(std::vector<const MCParticleFormat*> jets

const MCParticleFormat* lep,const ParticleBaseFormat& met)

The event mlY, variable computed from a system of jets
jets, a lepton lep and the missing momentum met [2].

The implementation of an analysis in MADANALYSIS 5 requires to deal with signal regions,
selection cuts and histograms. Each analysis comes with an instance of the analysis manager class
RegionSelectionManager, named Manager (), which allows the user to use the methods presented
in the table below.

void AddCut(const std::string&name, const std::string &RSname)
template<int NRS> void AddCut(const std::stringname,
std::string const(& RSnames) [NRS])

void AddCut(const std::string &name)
Declares a cut named name and associates it with one region
(the second argument is a string), with a set of regions (the
second argument is an array of strings) or with all regions
(the second argument is omitted).

12

void AddHisto(const std::string&name,unsigned int nb,
double xmin, double xmax)

void AddHistoLogX(const std::string&name,unsigned int nb,
double xmin, double xmax)

Declares a histogram named name of nb bins ranging from
xmin to xmax. The histogram is associated with all regions
and the x-axis can rely on a logarithmic scale (the second
method).

void AddHisto(const std::string&name,unsigned int nb,
double xmin, double xmax, const std::string &RSname)

void AddHistoLogX(const std::string&name,unsigned int nb,
double xmin, double xmax, const std::string &RSname)

Same as above but the histogram is associated with a single
region RSname.

template <int NRS> void AddHisto(const std::string&name,
unsigned int nb, double xmin, double xmax,
std::string const(& RSnames) [NRS])

template <int NRS> void AddHistoLogX(const std::string&name,
unsigned int nb, double xmin, double xmax,
std: :string const(& RSnames) [NRS])

Same as above but the histogram is associated with an array
of regions.

void AddRegionSelection(const std::string& name)
Declares a new region named name.
bool ApplyCut(bool cond, std::string const &name)

Applies the cut name, an event passing this cut if the con-
dition cond is realized. The method returns true if at least
one region is passing all cuts applied so far, or false oth-
erwise.

void FillHisto(std::string const&name, double val)
Fills the histogram named name, the bin choice being driven
by the value value.

void InitializeForNewEvent(double EventWeight)
To be called at the beginning of the analysis of an event in

order to tag all regions as surviving the cuts and initialize
the event weight to the value EventWeight.

bool IsSurviving(const std::string &RSname)

Verifies whether the region RSname survives all cut applied
so far.

void SetCurrentEventWeight(double weight)

Modifies the weight of the current event to the value
weight.

13

SAMPLEANALYZER handles four levels of streamers, that can be cast within any analysis code by
typing one of the following lines,

INFO << "..." << endmsg;
WARNING << "..." << endmsg;
ERROR << ", .." << endmsg;
DEBUG << "..." << endmsg;

This allows the user to print informative, warning, error and debugging messages. Additionally,
warning and error messages return information on the line number responsible for printing the
message. The effect of a given message service can be modified by means of the methods presented
in the table below.

void DisableColor() Switches off the colored display of messages (that is on
by default).

void EnableColor() Switches on the colored display of messages.

void SetMute() Switches entirely off a given message service (that is
on by default).

void SetStream(std::ostream* stream)
Redirects the output of a given service to a file.
void SetUnMute () Switches on a specific message service.

It is usually important to order particle as a function of one of their properties, like their trans-
verse momentum or their energy. For this reason, SAMPLEANALYZER contains a series of routines
allowing to sort a set of objects, which can be called by implementing

SORTER->sort(objects, criterion)

where objects is the vector of objects that needs to be sorted and criterion is the order-
ing variable. The latter can be ETAordering (pseudorapidity), ETordering (transverse energy),
Eordering (energy), Pordering (the magnitude of the three-momentum), PTordering (the trans-
verse momentum), PXordering (the z-component of the momentum), PYordering (the y-component
of the momentum) and PZordering (the z-component of the momentum). As a result, the vector
of objects is sorted by decreasing values of the ordering variable.

References

[1] J. R. Andersen et al. Les Houches 2013: Physics at TeV Colliders: Standard Model Working
Group Report. 2014.

[2] Yang Bai, Hsin-Chia Cheng, Jason Gallicchio, and Jiayin Gu. Stop the Top Background of the
Stop Search. JHEP, 07:110, 2012.

[3] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. Nucl.
Instrum. Meth., A389:81-86, 1997.

[4] Hsin-Chia Cheng and Zhenyu Han. Minimal Kinematic Constraints and m(T2). JHEP, 12:063,
2008.

[6] C. G. Lester and D. J. Summers. Measuring masses of semiinvisibly decaying particles pair
produced at hadron colliders. Phys. Lett., B463:99-103, 1999.

[6] Lisa Randall and David Tucker-Smith. Dijet Searches for Supersymmetry at the LHC. Phys.
Rev. Lett., 101:221803, 2008.

15

	Creating an analysis template in the expert mode
	Portable datatypes
	Data format for an event sample
	Data format for an event
	Lepton and photon isolation
	Observables
	Signal regions, histograms and cuts
	Message services
	Sorting particles and objects

