MADANALYSIS 5 - status and plans

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with E. Conte & G. Serret.

MADGRAPH spring meeting @ Pittsburgh May 10-12, 2012

Introduction	Overview	Examples	Future plans	Summary
000	000000	000000	0000	O

Outline

Overview of MADANALYSIS 5.

Examples for normal and expert users.

4 Development plans.

MADANALYSIS 5- Status and plans

Introduction	Overview	Examples	Future plans	Summary
●00	000000	000000	0000	O
C	1. Sec.			

Comprehensive particle physics phenomenology.

- Implementation of a new physics model in FEYNRULES. [Christensen, Duhr (CPC '09); Christensen, Degrande, Duhr, BenjF (in prep)]
- Automated derivation of the UFO files. [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (CPC '12)]
- Event generation with MADGRAPH 5. [Alwall, Herquet, Mattelaer, Stelzer (JHEP '11)]
 or with any matrix element generator.

Parton-level phenomenology.

Parton showering and hadronization with PYTHIA or HERWIG.
 [Sjostrand, Mrenna, Skands (JHEP '06; CPC '08); Corcella *et al.* (JHEP '01); Bahr *et al.* (EPJC '08)]
 or with any parton showering tool.

Hadron-level phenomenology.

Sast detector simulation with DELPHES or PGS.

[Ovyn, Rouby, Lemaitre ('09); Conway ('06)]

▶ or with any fast detector simulation algorithm.

Reconstructed-level phenomenology.

MADANALYSIS 5- Status and plans

Benjamin Fuks - MADGRAPH spring meeting @ Pittsburgh - 10.05.2012 - 3

Need for a new framework for collider phenomenology.

- Several levels of sophistication for the phenomenological analyses.
 - * Parton-level.
 - * Hadron-level.
 - * Reconstructed-level.
- Analysis skeleton.
 - * Reading of signal and background event files.
 - * Selection cuts on both signal and background events.
 - * Creation of histograms and cut-flow charts.
 - * Extraction of information on the signal swamped by the backgrounds.
- Drawbacks.
 - * The procedure above is in general based on home-made tools.
 - ► Lack of traceability
 - ► Validation of the tools?
 - ► Reproducibility of the results?
 - These tools can in general only be used at a specific sophistication level.
 ► Lack of flexibility.
 - These tools can in general only be used with specific event file format.
 ►Lack of flexibility.

Introducing MADANALYSIS 5.

Alleviation of these issues.

• A new unique framework for phenomenological analyses.

- * Any sophistication level (parton, hadron, reconstructed).
- * Any event file format (STDHEP, HEPMC, LHE, ...).
- * User-friendly \Rightarrow professional analyses in a simple way.
- * Flexible \Rightarrow no limit on the analysis complexity.
- * Easy to maintain.
- * Easy to validate.

This framework is called MADANALYSIS 5.

[Conte, BenjF, Serret (June '12)]

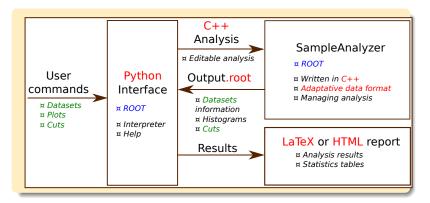
Overview 000000		

Outline.

3 Examples for normal and expert users.

4 Development plans.

5 Conclusions.

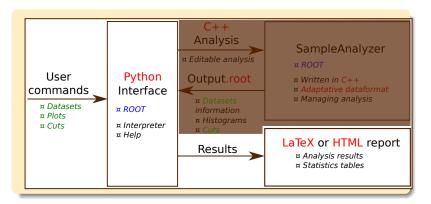

Overview ●00000		

From MADANALYSIS 4 to MADANALYSIS 5.

- Object-oriented programming language.
 - * MADANALYSIS 4: FORTRAN.
 - * MADANALYSIS 5: C++ core; Python interface; uses Root.
- Flexibility.
 - * MADANALYSIS 4: No.
 - * MADANALYSIS 5: Yes.
- User-friendly.
 - * MADANALYSIS 4: A complicated plot card.
 - * MADANALYSIS 5: Intuitive Python commands.
- Limitations.
 - * MADANALYSIS 4: What is implemented.
 - * MADANALYSIS 5: The user's imagination.
- MADANALYSIS **5** is going beyond the MAD-suite of programs.
 - * Can be used as a standalone package.

	Overview o●oooo		

The MADANALYSIS 5 scheme (1).

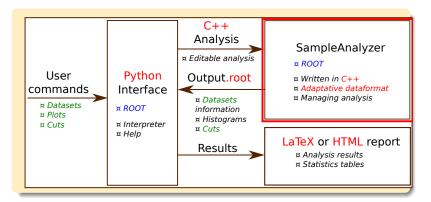


Main features.

- * Basic concepts: datasets, plots, cuts.
- * PYTHON interface: from commands to a C++/ROOT analysis.
- * Human readable output: HTML, LATEX.

	Overview oo●ooo		

The MADANALYSIS 5 scheme (2).



• Normal users.

- * The core is a black box.
- * The knowledge of ROOT not necessary.
- * Communication through PYTHON commands.

Overview 000●00		

The MADANALYSIS 5 scheme (3).

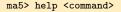
• Expert users.

- * Implementation of the analysis within the SAMPLEANALYZER framework.
- * C++ and ROOT skills required \Rightarrow developer-friendly.
- * The PYTHON interface creates a blank analysis as a starting point.

Overview oooo●o		

Basic concepts.

• Command line interface.


- * In-line help.
- * Auto-completion.

• Particles and multiparticles.

- * Particle are defined by labels.
- * A label points to one or several PDG-id(s).
- * MSSM + SM labels: automatic.
- * Can be loaded from UFO files.
- * Labels can be created and deleted.
 ▶ define and remove.

Datasets.

- * A dataset is a label.
- * Collects similar event samples.
- * Treated in the same way by MADANALYSIS 5.
- * Formats: LHE, LHCO, STDHEP, HEPMC.


```
define tau = tau+ tau-
define mytau+ = -15
remove mytau+
```

import	tt1.hep	as	ttbar
import	tt2.hep	as	ttbar
import	Wj1.hep	as	Wjets
${\tt import}$	Wj2.hep	as	Wjets

Introduction	Overview	Examples	Future plans	Summary
000	00000	000000	0000	O
— · ·				

Plots and cuts.

- The command plot.
- * Creation of an histogram.
- * Global observables \Leftrightarrow the entire event.
- * Properties of the particles in the event.
- * Ordering of the particles.
- * Combining particles
 - ► Sum and differences.
 - ► Vectorial or scalar.
- * Linear or logarithmic scales.
- Cuts.
- * Selecting/rejecting events.
- * Selecting/rejecting particles.
 ▶ not rejecting the event.
- * Still under development.
- Executing the analysis: submit.
- Reports.
- * HTML reports.
- * **LATEX** reports.

plot MET
plot N(mu)
plot PT(mu[1])
plot ETA(mu) [logY]
plot M(mu[1] mu[2])
plot dM(mu+ mu-)

reject MHT < 50 select (mu) PT > 50

generate_html <dir>
generate_latex <dir>
generate_pdflatex <dir>

	Examples 000000	

Outline.

Introduction.

Overview of MADANALYSIS 5.

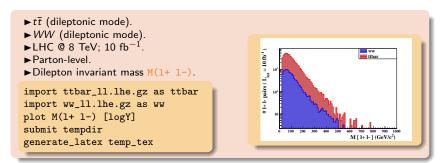
3 Examples for normal and expert users.

4 Development plans.

5 Conclusions.

MADANALYSIS 5- Status and plans

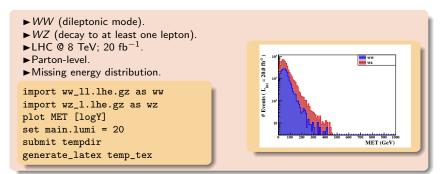
	Examples ●00000	
D		


Particle properties.

• Kinematical distributions related to particle species.

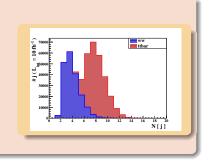
- * Intuitive commands.
- * Available observables:

BETA, DELTAR, E, ET, ETA, GAMMA, M, MT, P, PHI, PT, PX, PY, PZ, R, THETA, Y.


* Scalar and vectorial sums/differences are implemented.

siobal event observables.

- Global event kinematical observables.
 - * Missing and visible energy of the event MET, ET.
 - * Missing and visible hadronic energy of the event MHT, HT
 - * Partonic center-of-mass energy SQRTS.

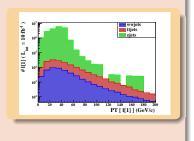

	Examples 00●000	

Multiplicities.

• Particle content.

- * Particle content of the event NPID, NAPID.
- * Particle multiplicity N
- ► $t\bar{t}$ + 0, 1, 2 jets (hadronic mode).
- $\blacktriangleright WW$ +0, 1, 2 jets (semileptonic mode).
- ►LHC @ 8 TeV; 10 fb⁻¹.
- ► Hadron-level.
- ► Jet multiplicity.

```
import ttbar_hh.lhe.gz as ttbar
import ww_l.lhe.gz as ww
define j = j b b~
plot N(j)
submit tempdir
generate_latex temp_tex
```



	Examples 000●00	

Leading lepton properties.

- Particle ordering.
 - * Can be access with the squared brackets [<i>] .
 - * Several possible ordering variables. E, ET, ETA, P, PT, PX, PY, PZ.
- $\triangleright Z + 0, 1, 2, 3, 4$ jets (dileptonic mode).
- $\blacktriangleright WW + 0, 1, 2$ jets (dileptonic mode).
- ► $t\overline{t}$ + 0, 1, 2 jets (dileptonic mode).
- ►LHC @ 8 TeV; 10 fb⁻¹.
- ► Hadron-level.
- ► Energy ordering.
- ► Leading lepton p_T .
- ► The binning is specified.

```
import z.lhe.gz as zjets
import ttbar.lhe.gz as ttjets
import ww.lhe.gz as wwjets
define l = l+ l-
plot PT(l[1]) 20 0 200 [logY]
set selection[1].rank = Eordering
submit tempdir
generate_latex temp_tex
```

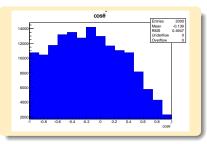

MADANALYSIS 5- Status and plans

_	 	
	Examples 0000●0	

Expert users: W-boson polarization (1).

- Property to be investigated.
 - * Polarization of the *W* issued from a top leptonic decay.
 - * Process: $t\bar{t}$ in the semileptonic decay channel.
 - * Property investigated to an angular distribution $d\sigma/d\cos\theta^{\star}$.
- The angle θ^* is the angle between:
 - * The momentum of the W evaluated in the top rest frame.
 - * The momentum of the lepton evaluated in the W rest frame.

• Developer-friendly implementation:


- * Only the relevant part of the analysis is presented here.
 - \blacktriangleright Event processing, particle identification, histogram creation \Rightarrow manual.
- * Employing the built-in ToRestFrame and angle methods.
- * The momentum of the lepton is evaluated in the W rest frame. PHYSICS->ToRestFrame(lepton,w);
- The momentum of the W is evaluated in the top rest frame.
 PHYSICS->ToRestFrame(w,top);
- * Filling the histogram: histo->Fill(cos(lepton.angle(w)));

_		
	Examples	

Expert users: W-boson polarization (2).

- Property to be investigated.
 - * Polarization of the *W* issued from a top leptonic decay.
 - * Process: $t\bar{t}$ in the semileptonic decay channel.
 - * Property investigated to an angular distribution $d\sigma/d\cos\theta^{\star}$.
- The angle θ^* is the angle between:
 - * The momentum of the W evaluated in the top rest frame.
 - * The momentum of the lepton evaluated in the W rest frame.

• Parton-level results.

MADANALYSIS 5- Status and plans

Benjamin Fuks - MADGRAPH spring meeting @ Pittsburgh - 10.05.2012 - 19

	Future plans 0000	

Outline.

1 Introduction.

- 2 Overview of MADANALYSIS 5.
- 3 Examples for normal and expert users.

4 Development plans.

5 Conclusions.

	Future plans ●000	

Development plans.

• Three milestones.

- * Now: beta version 0.6.5 available on request.
 - http://www.madanalysis5.com
 - ▶ ma5team@iphc.cnrs.fr
- * June '12: public release, version 5.1.0.
- * Fall '12: version 5.1.2.
- * Christmas '12: version 5.2.0 (beta).
- On the way to MADANALYSIS 5.1
 - * **Beta-testing**: bugs appeared (and will appear) \Rightarrow to be fixed.
 - * Cuts: some unsupported features remain to be implemented.
 - * Implementation of ΔR : fixes required.
 - * Style and layout: improvements necessary here and there.
 - * Licensing (GPL adopted).
 - * Achievement of the manual.

Introduction	Overview	Examples	Future plans	Summary
000	000000	000000	0●00	O
E 11.14 0			- 1 0	

Fall '12: release of MADANALYSIS 5.1.2.

• Major improvements are scheduled.

- * Interface with MADGRAPH 5.
 - ► Automatic installation.
 - ► Automatic plots after event generation.
- * Matching plots.
- * Interface with FASTJET.
 - ► New HEP2LHE-like package.
- * Tutorials.
 - ► FEYNRULES-MADGRAPH 5 school in Natal.
- * Timing service
 - ► optimization of the code.
- * Exception service.

	Future plans oo●o	

Christmas '12: to a fast detector simulation (1).

• Why a fast detector simulation?

- * There are already two codes: PGS and DELPHES.
- * Each of those have limitations with respect to our needs.
 - Jet energy scale.
 - Complicated efficiency functions.
 - ▶ etc...
- * Only two options.
 - Hack those codes according to our needs.
 - **2** Implement a fastsim in MADANALYSIS 5 with the required features.

• Our choice: option #2.

- * No need to dig into other's code.
- * More flexibility, traceability.
- * We can use the strength of the MADANALYSIS 5 framework.
 - ► A user-friendly PYTHON interface.
 - More control.
 - ► Easy development of new features.
- * We can be ready for the LHC shutdown.
 - ▶ Not guaranteed with option #1.

Christmas '12: to a fast detector simulation (2).

Main development plans

- * Detector definition from the command line interface.
 - Existing scripts for common detectors (CMS, ATLAS): import CMS
 - Definition of new detectors (including geometry): define detector ILCdet; set ILCdet.shape = cylinder; ...
- * Resolution effects from the command line interface. smear(mu) = 'formula' (can depend on p_T, η, ...)

* Efficiencies.

```
set efficiency(tau) = 'formula'
```

- * Object tagging (b, c, τ ,...).
- * Scaling.

set scaling(E(j)) = 'formula'

• Secondary development plans

- * Fakes.
- * Electronic noise.
- * Cosmic rays.
- * Pile up.

		Summary O

Outline.

Introduction.

- 2 Overview of MADANALYSIS 5.
- 3 Examples for normal and expert users.

4 Development plans.

000	000000	000000	0000	•
				Summary

Summary.

- MADANALYSIS **5** is a new framework for collider phenomenology.
 - * Unique \Rightarrow partonic, hadronic or reconstructed events.
 - * User-friendly \Rightarrow PYTHON command line interface.
 - * Flexible \Rightarrow a C++ kernel.
- A special mode for expert users exists.
 - * **Developer-friendly** \Rightarrow C++ and ROOT skills required.
 - * No limitations \Rightarrow e.g., the W polarization.
- Major development plans.
 - * Interface with MADGRAPH 5.
 - * Matching plots.
 - * Interface with FastJet.
 - * Fast detector simulation.

Ask for the beta-version.

http://www.madanalysis5.com ma5team@iphc.cnrs.fr

MADANALYSIS 5- Status and plans

Benjamin Fuks - MADGRAPH spring meeting @ Pittsburgh - 10.05.2012 - 26