

From new physics simulations to the recasting of LHC results

Fuks Benjamin

LPTHE Paris / UPMC Paris VI

9th MCNet School @ Spa, Belgium

30 August - 4 September, 2015

1. When new physics meets Monte Carlo simulations

2. New physics simulations with Monte Carlo event generators

3. Interpretation of LHC results and recasting the experimental searches

Standard Model simulations at the LHC: the status

✦ The need for better simulation tools has spurred a very intense activity

- ✤ Automated matrix element generation (MADGRAPH5, SHERPA, WHIZARD, *etc.*)
- ✤ Higher-order computations (MC@NLO, POWHEG)
- ✤ Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)
- ✤ Matrix element parton showering matching
- ✤ Merging techniques (MLM, CKKW, FxFx, UNLOPS)

✦ Standard Model simulations

- ✤ All processes relevant for LHC physics can be simulated with a very good precision
- ✤ This precision will even improve within the next few years (electroweak corrections, *etc.*)

Standard Model simulations are under good control What about new physics?

New physics simulations at the LHC: the challenge

◆ New physics is a standard in many tools today

- ✤ Prospective phenomenological studies
- ✤ Experimental searches (signal generation)
- ✤ Recasting of current results

Topics of this lecture

When new physics meets Monte Carlo simulations

New physics implementations in Monte Carlo tools (1)

- ✦ How to implement a new physics model in a Monte Carlo program?
	- ✤ Model definition: particles, parameters & vertices (≣ Lagrangian)
	- ✤ To be translated in a programming language, following some conventions, *etc.*
	- ✤ Tedious, time-consuming, error prone (and no-brainer)
	- ✤ Iterations for all considered tools and models (high level of redundancy)
	- ✤ Beware of the restrictions of each tool (Lorentz structures, color structures) ✤Validation is tricky

$$
\mathcal{L} = \frac{\bar{C}_H}{2v^2} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right]
$$
\n
$$
\mathcal{L} = \frac{\bar{C}_H}{2v^2} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right]
$$
\n
$$
\mathcal{L} = \frac{\bar{C}_H}{2v^2} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right]
$$
\n
$$
\mathcal{L} = \begin{bmatrix} \frac{\bar{C}_H}{2v^2} & \frac{\partial^{\mu} \left[\Phi^{\dagger} \Phi \right]}{\partial \Phi^{\dagger} \Phi} \\ \frac{\partial^{\mu} \left[\Phi^{\dagger} \Phi \right]}{\partial \Phi^{\dagger} \Phi} \end{bmatrix}
$$
\n
$$
\mathcal{L} = \begin{bmatrix} \frac{\partial H}{\partial \Phi} \\ \
$$

New physics implementations in Monte Carlo tools (2)

Automating new physics simulations

Automating new physics simulations: the status

Why is the UFO now a standard?

Each interface dedicated to a given tool is specific

- ★ Removal of vertices not compliant with the tool
- ★ Translation to a specific format and programming language
- 㱺 **not efficient**
- 㱺 **better: one translation and the tools parse it**

The Universal FEYNRULES Output (UFO) in a nutshell

[Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)]

UFOs in details

- ✤ Particle information (particles.py)
- ✤ Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- ✤ Parameter information (parameters.py)
- ✤ Propagator information (propagators.py)
- ✤ Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- ✤ NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

Particles in UFOs

- ◆ Particles are stored in the particles.py file
	- ✤ Instances of the particle class
	- ✤ Attributes define the particle spin and color representation, mass, width, PDG code, *etc.*)
	- ✤ Antiparticles are automatically derived from the knowledge of the corresponding particle

```
q = Particle(pdg_code = 6,
                                        sq1 = Particle(pdq_{code} = 1000006,G = Particle(pdg_code = 21,
                                                                                               name = 'q',name = 'sq1',name = 'G',antiname = 'q \sim',antiname = 'sq1~',antiname = 'G',spin = 2,
                                                       spin = 1,
             spin = 3,
                                                                                               color = 3,color = 3,color = 8,mass = Param.Mq,mass = Param.Msq1,mass = Param.ZER0,width = Param.Wq,width = Param.Wsq1,
             width = Param.ZER0,texname{ } = 'q',
                                                       texname{ } = 'sq1',texname{ } = \cdot G\cdot,
                                                                                               antitexname = 'q~',antitexname = 'sq1~',antitexname = 'G',charge = 0)
                                                       charge = 0)
             charge = 0)
                                                                                  q_{i}tilde = q_{i}anti()
                                        sq1 tilde = sql.anti()
go = Particle(pg\_code = 1000021,name = 'go',sq2 = Particle(pdq_{code} = 2000006,antiname = 'go',name = 'sq2',spin = 2,
                                                       antiname = 'sq2~',color = 8,spin = 1,
              mass = Param.Mqo,color = 3,width = Param.Wqo,mass = Param.Msq2,texname{ } = 'go',width = Param.Wsq2,
              antitexname = 'go',texname{ } = 'sq2',charge = 0)
                                                       antitexname = 'sq2~',charge = 0)
                                        sq2 tilde = sq2.anti()
```
Parameters in UFOs

```
◆ Parameters are stored in the parameters.py file
   ✤ Instances of the parameter class
   ✤ External parameters are organized following a LesHouches-like structure
     (blocks and counters)
   ✤ PYTHON-compliant formula for the internal parametersaS = Parameter(name = 'aS',Mgo = Parameter(name = 'Mgo',nature = 'external',nature = 'external',type = 'real',type = 'real',value = 0.1184,value = 500,
                   texname = \lambdaalpha _s',
                                                                                          texname = '\\text{Mgo}',
                   \texttt{lhablock} = \texttt{'MINPUTS}',\lambdahablock = 'MASS',
                   \text{hacode} = [3]\text{lhacode} = [ 1000021 ] )G = Parameter(name = 'G',Wq = Parameter(name = 'Wq',nature = 'internal',nature = 'external',type = 'real',type = 'real',value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath,pi)',value = 1.50833649,texname{ } = 'G')texnamewith{texname = '\\text{Wq}'.\lambdahablock = 'DECAY',
                                                                                          \text{lhacode} = [6]
```
Interactions: the UFO strategy

✦ Vertices are decomposed in a spin x color basis, coupling strengths being coordinates

✤ Example: the quartic gluon vertex can be written as

✤ Each element of this decomposition is stored separately in the vertex.py file

- ★ vertices.py: defines all model decompositions
- ★ lorentz ≡ the spin basis (stored in lorentz.py; reused across vertices for economical reasons)
- \star color = the color basis (directly defined in the file)
- ★ couplings ≡ the coordinates (stored in couplings.py; reused across vertices for economical reasons)

```
V_2 = Vertex(name = 'V_2',
             particles = [ P.G, P.G, P.G, P.G ],
             color = [\; 'f(-1,1,2)*f(3,4,-1)'; 'f(-1,1,3)*f(2,4,-1)'; 'f(-1,1,4)*f(2,3,-1)' ]lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],couplings = {(1,1):C.GC_4, (0,0):C.GC_4, (2,2):C.GC_4})
```
★ lorentz.py

```
VVVV1 = Lorentz (name = 'VVVV1',spins = [3, 3, 3, 3],
                structure = 'Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)')
```


New physics simulations: other challenges

New physics simulations: cascade decays (1)

✦ Concrete models

- ✤ Many new states to be supplemented to the Standard Model
- ✤ Usually pair-produced
- ✤ Further cascade-decaying into each other
- ✤ The lightest new state can be stable (and a dark matter candidate)

Is the simulation of 2 to N processes (with N large) a problem?

✦ The issue is the computing time

- ✤ Matrix element generation is possible
- ✤ Computationally challenging
- ✤ Practically useless: only diagrams with intermediate resonances usually dominate

New physics simulations: cascade decays (2)

- ✦ Production and decay processes are factorized
	- ✤ Propagators can be seen as sums of products of external wave functions

Example:
$$
\mathcal{M} \sim j_1^{\mu} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right] j_2^{\nu} = \sum_{\lambda} j_1^{\mu} \varepsilon_{\mu}^*(\lambda) \underbrace{\varepsilon_{\nu}(\lambda) j_2^{\nu}}_{\mathcal{M}_{\text{prod}}(\lambda)}.
$$

- ✤ Case 1: loss of spin correlations
	- ★ Helicity sums performed independently at the production and decay levels

PYTHIA 6

★ Example:

$$
\sum_{\lambda}j_1^{\mu}\varepsilon^*_{\mu}(\lambda)\sum_{\lambda'}\varepsilon_{\nu}(\lambda)j_2^{\mu}\over\mathcal{M}_{\mathrm{dec}}(\lambda)}
$$

✤ Case 2: including spin correlations

- **★ Helicity sums performed after accounting for production and decays**
- ★ Example:

[Sjostrand, Mrenna, Skands (JHEP '06)]

★ Resonance mass smearing: partial recovery [Frixione, Laenen, Motylinksi, Webber (JHEP '07)]

New physics simulations: cascade decays (3)

Multipartonic matrix element merging (1)

- ✤ Monojet-based dark matter searches
- ✤ Compressed spectra searches
- ✤ *etc.*

◆ Radiation can be predicted in different ways

- ✦ Matrix-element-based predictions
	- ✤ This relies on the fixed-order theory
	- ✤ Technical limit on the number of final state particles
	- ✤Valid for hard and well-separated partons
	- ✤ Correct handling of the color and spin information and of the quantum interferences

✦ Parton-shower-based predictions

- ✤ This resums of large soft-collinear logarithms
- ✤ Technically easy and no limit on the final-state multiplicity
- ✤ Valid for soft and/or collinear partons

✤ Approximate handling of the color and spin information, of the quantum interferences

Multipartonic matrix element merging (2)

Multipartonic matrix element merging (3)

Main merging techniques used for new physics

- ◆ The MLM merging technique [Mangano, Moretti, Piccinini & Traccani (JHEP '07); Alwall, de Visscher & Maltoni (JHEP'09)] **[❖]** Define a jet measure for parton-level jets (after showering): $k_T^2 = \min(p_{Ti}^2, p_{Ti}^2)R_{ij}$ or $k_T = p_{Ti}$ ✤ An event is selected if each reconstructed jet matches one parton and *vice versa* ✤ Extra jets are allowed for the highest multiplicity topology ✤ NLO extension: the FxFx merging scheme **[Frederix & Frixione (JHEP '12)]** ◆ The CKKW(-L) merging technique [Catani, Krauss, Kuhn, Webber (JHEP'01); Lönnblad & Prestel (JHEP'12)]
	- \cdot Reweighting according to the most-likely shower history (Sudakovs, α_s , parton densities)
	- ✤ Emission already included at the matrix-element level are vetoed
	- \clubsuit Improvement: unitarized merging (all-order subtractions makes the subsamples Q^c independent) **[Lönnblad & Prestel (JHEP'13)]**

New physics simulations: NLO calculations

Automated NLO calculations with MADGRAPH5_aMC@NLO

✤ Matching to parton showers

- ★ Monte Carlo counterterms associated with the new colored states are included
- \star Restrictions on the parton shower code to employ (PYTHIA 8.2, HERWIG++)

A few models are now available …

and validated **and validated and validated and validated** *magnetic contracts* **http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]**

Example: a stop simplified model

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15)]

Example: stop simplified model

The stop simplified model: kinematical distributions

- ✦ NLO matrix elements matched to parton showering: differential distributions
	- ✤ Test case: 500/1000 GeV stop; 50/200 GeV bino; 13 TeV collisions
	- ✤ Standard coupling strengths for a maximally mixing stop and a bino
	- **[◆] Shower: PYTHIA 8.2** [Sjostrand, Mrenna & Skands (CPC'08)]
	- ✤ Jet reconstruction: anti-kT & FASTJET **[Cacciari, Salam & Soyez (JHEP'08, EPJC'12)]**
	- **[•] Analysis (single lepton case) & figures: MADANALYSIS 5 [Conte, BF, Serret (CPC'13)]**

1. When new physics meets Monte Carlo simulations

2. New physics simulations with Monte Carlo event generators

New physics simulations so far

Reinterpreting LHC physics analyses (1)

Reinterpreting LHC physics analyses (2)

- ✦ The simplified model spectrum (SMS) approach is fast and powerful, but limited ✤ Too conservative (final state topologies, different kinematics, *etc.*)
	-
	- ✤ Considered decay patterns and assumptions rarely realized (many channels, *etc.*)
	- ✤ Works however not too bad in many cases for a fair estimate of constraints

The SMS approach for LHC result reinterpretations (1)

Limitations (using SMODELS):

 $m_{q^{(1)}}$ [GeV]

900 1000 1100 1200 1300 1400

SUSY *versus* UED

The SMS approach for LHC result reinterpretations (2)

400

300

 200

 100 ₆₀₀

-- SUSY-T2 (T2 $A\epsilon$)

 800

correct $A\epsilon$

 $\overline{700}$

MSSM reinterpretations with

600 700

 M_{Q_3} [GeV]

800

900

1000

200

300

400

500

FASTLIM

Beyond the SMS approach

Detector modeling with DELPHES

✦ Detector simulation with DELPHES 3 **[de Favereau, Delaere, Demin, Giammanco, Lemaître, Mertens & Selvaggi (JHEP'14)]**

- ✤ Starts from hadron-level Monte Carlo information
- ✤ Derive calorimetric and track information; object reconstruction is then necessary
	- **★ Close to what actually happens**
- \cdot DELPHES is modular \rightharpoonup extra modules and tuning can be added / included
	- ★ Extra information on lepton isolation or track information; skimming of the output files. *etc.*

Detector modeling with RIVET

✦ Detector simulation based on RIVET **[Buckley, Butterworth, Lonnblad, Grellscheid, Hoeth, Monk, Schulz & Siegert (CPC'13)]**

✤Transfer functions (efficiencies, resolution) extracted from ATLAS and CMS information

✤ Starts from hadron-level Monte Carlo information and then gets reconstructed object

Current existing programs

From new physics simulations to the recasting of LHC results

Reimplementing new physics analyses: challenges

Implementing a new analysis in a recasting tool

Example 1: CMS-SUS-13-11 (stops with one lepton)

- ✦ Missing information for the validation
	- ✤ Efficiencies
	- ✤ Cutflows and Monte Carlo information for given benchmarks

Discussions with

CMS needed

Example 2: ATLAS-EXO-2014-04 (monophotons)

Example 3: When things are borderline… (1)

✦ Large differences are found

- ✤ ATLAS-CONF-2013-047 (multijet + missing energy)
	- ★ Large differences for one or two signal regions (out of 8)
	- ★ The reinterpretation cannot be totally wrong as 6 regions are fine
	- ★ Issues related to the jets (smearing, Monte Carlo details)

Example 4: When things are borderline… (2)

- ✦ ATLAS-EXOT-2014-04 (monophotons)
	- ✤ Effects non-reproducible with DELPHES (cleaning cuts, triggers, good vertexing)
- ✦ ATLAS-SUS-2013-09 (stops in the dilepton channel)
	- ✤ Information on effects non-reproducible with DELPHES lost (student has quit physics)

Example 5: sometimes…

Unfortunately: many more examples!

A wishlist from theorists to experimentalists - part 1

- ✦ Analysis description
	- ✤ Clear description of the selections, including their sequence
		- \star A tabulated form would be appreciable (possibly on the analysis wiki pages)
	- ✤ Efficiencies for physics (electrons, muons, jets, taus, b-tagging, mistagging rates, *etc.*)
		- \star Including p_T and η dependence
		- \star Or a reference with the information
	- ✤ Efficiencies for triggers, event cleaning, *etc.*
		- \star Effects that cannot be modeled in our fast simulation
	- ✤ Digitized figures
		- ★ Missing in particular the performance results (reading off log-scale histograms…)
		- ★ ROOT format, text format, *etc.*
	- ✤ Special variables (*e.g.,* the CMS razor)
		- ★ Providing snippets of code would be highly appreciated
		- \star Some variables have different definitions in different analyses (e.g., asymmetric M_{T2})

<u>-----------------</u>

A wishlist from theorists to experimentalists - part 2

 \triangle Validation material \triangleright quality of the reinterpretation

✤ Benchmark scenarios

- ★ Spectra and decay tables (under an SLHA-form)
- ★ Several scenarios are appreciable
- ★ Publicly available on the wiki pages or HEPDATA
- ✤ Monte Carlo tools configuration
	- ★ Cards, tunes, merging information, *etc.*
	- ★ Better, the CMS way: LHE files with shower inputs (no new source of discrepancies)
	- ★ Publicly available on the wiki pages or HEPDATA
- **❖ Detailed cutflows for the benchmarks, with the correct selection ordering**
	- \star Including each step of the (pre)selection
	- \star For several benchmarks
	- ★ The more steps are available, the better (even the preselection, the cleaning, *etc.*) (pin-down the differences in our machinery, in the fastsim *vs.* CMS-ATLAS simulation)
- ✤ Kinematical distributions at different steps of the selection
	- ★ Extra cross-check of our machinery

The LHC legacy (1)

The LHC legacy: data preservation

[Dumont, BF, Kraml *et al.* **(EPJC '15)]**

The stop simplified model: the recasting episode

Recasting of the CMS analysis

The CMS-SUS-13-011 analysis: recasting and simulations

The CMS-SUS-13-011 analysis: multijet merging

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 03.09.2015 - 52

The CMS-SUS-13-011 analysis: modern tools effects

The CMS-SUS-13-011 analysis: merging and NLO

2. New physics simulations with Monte Carlo event generators

3. Interpretation of LHC results and recasting the experimental searches

Summary

✦ Lots of effort have been invested in new physics simulations during the last decade

- ✤ Streamlining the link between models and events
- ✤ Multipartonic matrix element merging
- ✤ Cascade decays
- ✤ Next-to-leading order corrections
- ✤ Techniques are (and will be) used for signal simulations both by theorists and experimentalists

◆ The LHC legacy

- ✤ It is crucial to be able to reinterpret the LHC results in any theoretical context
- ✤ This is a very active field of the last few years: several tools are now ready to be used
- ✤ **Reproducibility** is the ability of an entire experiment to be reproduced, possibly by an independent (pheno) study