

From new physics simulations to the recasting of LHC results

Fuks Benjamin

LPTHE Paris / UPMC Paris VI

9th MCNet School @ Spa, Belgium

30 August - 4 September, 2015

Standard Model simulations at the LHC: the status

The need for better simulation tools has spurred a very intense activity

- Automated matrix element generation (MADGRAPH5, SHERPA, WHIZARD, etc.)
- Higher-order computations (MC@NLO, POWHEG)
- Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)
- Matrix element parton showering matching
- Merging techniques (MLM, CKKW, FxFx, UNLOPS)

Standard Model simulations

- * All processes relevant for LHC physics can be simulated with a very good precision
- * This precision will even improve within the next few years (electroweak corrections, etc.)

Standard Model simulations are under good control What about new physics?

New physics simulations at the LHC: the challenge

New physics is a standard in many tools today

- Prospective phenomenological studies
- Experimental searches (signal generation)
- Recasting of current results

Topics of this lecture

When new physics meets Monte Carlo simulations

New physics implementations in Monte Carlo tools (1)

- + How to implement a new physics model in a Monte Carlo program?
 - Model definition: particles, parameters & vertices (≡ Lagrangian)
 - To be translated in a programming language, following some conventions, etc.
 - Tedious, time-consuming, error prone (and no-brainer)
 - Iterations for all considered tools and models (high level of redundancy)
 - Beware of the restrictions of each tool (Lorentz structures, color structures)
 Validation is tricky

New physics implementations in Monte Carlo tools (2)

Automating new physics simulations

Automating new physics simulations: the status

From new physics simulations to the recasting of LHC results

Why is the UFO now a standard?

•	Color structures: not supported in full generality by Monte Carlo generators
•	The treatment of the color information is hard-coded
•	The interfaces to a specific tool discard all non-supported vertices
	Representations usually handled: 1, 3, 8 (limited in CALCHEP), sometimes 6
,	
◆ L	orentz structures and spins not supported in full generality by Monte Carlo programs
•*	 The treatment of the Lorentz structures of the different vertices is hard-coded
•*	 The possible spins for the particles are restricted
•*	 The interfaces discard all non-supported vertices
•*	 Spin representations usually handled: 0, 1/2, 1; sometimes 3/2, 2
•\$	 Lorentz structures usually handled: MSSM-like; sometimes any
*~	

Each interface dedicated to a given tool is specific

- \star Removal of vertices not compliant with the tool
- \star Translation to a specific format and programming language
- \Rightarrow not efficient
- \Rightarrow better: one translation and the tools parse it

The Universal FEYNRULES Output (UFO) in a nutshell

[Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)]

•	The UFO is used	by several progra	ıms		 	
	Aloha	GOSAM		HERWIG ++	MADANALYSIS 5	
	MADGRAPH5	_aMC@NLO		Sherpa	WHIZARD (soon)	

Summary

UFOs in details

- ✦ The UFO is a set of PYTHON files
 - Particle information (particles.py)
 - Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
 - Parameter information (parameters.py)
 - Propagator information (propagators.py)
 - Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
 - NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

Particles in UFOs

- Particles are stored in the particles.py file
 - Instances of the particle class
 - * Attributes define the particle spin and color representation, mass, width, PDG code, etc.)
 - * Antiparticles are automatically derived from the knowledge of the corresponding particle

```
q = Particle(pdg_code = 6,
                                        sq1 = Particle(pdg_code = 1000006,
G = Particle(pdg_code = 21,
                                                                                                 name = 'q',
                                                        name = 'sq1',
             name = 'G',
                                                                                                 antiname = 'q \sim ',
                                                        antiname = 'sq1~',
             antiname = 'G',
                                                                                                 spin = 2,
                                                        spin = 1,
             spin = 3,
                                                                                                 color = 3,
                                                        color = 3,
             color = 8,
                                                                                                 mass = Param.Mq,
                                                        mass = Param.Msq1,
             mass = Param.ZERO,
                                                                                                 width = Param.Wq,
                                                        width = Param.Wsq1,
             width = Param.ZERO,
                                                                                                 texname = 'q',
                                                        texname = 'sq1',
             texname = 'G',
                                                                                                 antitexname = 'q \sim ',
                                                        antitexname = 'sq1~',
             antitexname = 'G',
                                                                                                 charge = 0)
                                                        charge = 0)
             charge = 0)
                                                                                    q__tilde__ = q.anti()
                                        sq1__tilde__ = sq1.anti()
go = Particle(pdg_code = 1000021,
              name = 'qo',
                                        sq2 = Particle(pdg_code = 2000006,
              antiname = 'go',
                                                        name = 'sq2',
              spin = 2,
                                                        antiname = 'sq2~',
              color = 8,
                                                        spin = 1,
              mass = Param.Mgo,
                                                        color = 3,
              width = Param.Wgo,
                                                        mass = Param.Msq2,
              texname = 'go',
                                                        width = Param.Wsg2,
              antitexname = 'go',
                                                        texname = 'sq2',
              charge = 0)
                                                        antitexname = 'sq2~',
                                                        charge = 0)
                                        sq2_tilde_ = sq2.anti()
```

Summary

Parameters in UFOs

```
Parameters are stored in the parameters.py file
   Instances of the parameter class
   * External parameters are organized following a LesHouches-like structure
     (blocks and counters)
   PYTHON-compliant formula for the internal parameters
    aS = Parameter(name = 'aS',
                                                                     Mgo = Parameter(name = 'Mgo',
                 nature = 'external',
                                                                                    nature = 'external',
                 type = 'real',
                                                                                    type = 'real',
                 value = 0.1184,
                                                                                    value = 500,
                 texname = '\\alpha _s',
                                                                                    texname = '\\text{Mgo}',
                 lhablock = 'SMINPUTS',
                                                                                    lhablock = 'MASS',
                 lhacode = [3]
                                                                                    lhacode = [1000021])
     G = Parameter(name = 'G')
                                                                      Wq = Parameter(name = 'Wq',
                 nature = 'internal',
                                                                                    nature = 'external',
                 type = 'real',
                                                                                    type = 'real',
                 value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi)',
                                                                                    value = 1.50833649,
                 texname = 'G')
                                                                                    texname = '\\text{Wq}',
                                                                                    lhablock = 'DECAY',
                                                                                    lhacode = [6]
```

Interactions: the UFO strategy

Vertices are decomposed in a spin x color basis, coupling strengths being coordinates

Example: the quartic gluon vertex can be written as

* Each element of this decomposition is stored separately in the vertex.py file

- ★ vertices.py: defines all model decompositions
- ★ lorentz = the spin basis (stored in lorentz.py; reused across vertices for economical reasons)
- \star color = the color basis (directly defined in the file)
- ★ couplings = the coordinates (stored in couplings.py; reused across vertices for economical reasons)

```
V_2 = Vertex(name = 'V_2',
    particles = [ P.G, P.G, P.G, P.G ],
    color = [ 'f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)' ],
    lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
    couplings = {(1,1):C.GC_4,(0,0):C.GC_4,(2,2):C.GC_4})
```


New physics simulations: other challenges

New physics simulations: cascade decays (1)

Concrete models

- Many new states to be supplemented to the Standard Model
- Usually pair-produced
- Further cascade-decaying into each other
- The lightest new state can be stable (and a dark matter candidate)

Is the simulation of 2 to N processes (with N large) a problem?

The issue is the computing time

- Matrix element generation is possible
- Computationally challenging
- Practically useless: only diagrams with intermediate resonances usually dominate

New physics simulations: cascade decays (2)

- Production and decay processes are factorized
 - Propagators can be seen as sums of products of external wave functions

Example:
$$\mathcal{M} \sim j_1^{\mu} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right] j_2^{\nu} = \sum_{\lambda} \underbrace{j_1^{\mu} \varepsilon_{\mu}^*(\lambda)}_{\mathcal{M}_{\text{prod}}(\lambda)} \underbrace{\varepsilon_{\nu}(\lambda) j_2^{\nu}}_{\mathcal{M}_{\text{dec}}(\lambda)}$$

- Case I: loss of spin correlations
 - \star Helicity sums performed independently at the production and decay levels

ΡΥΤΗΙΑ 6

[Sjostrand, Mrenna, Skands (JHEP '06)]

★ Example:

$$\sum_{\lambda} \underbrace{j_1^{\mu} \varepsilon_{\mu}^*(\lambda)}_{\mathcal{M}_{\text{prod}}(\lambda)} \sum_{\lambda'} \underbrace{\varepsilon_{\nu}(\lambda) j_2^{\nu}}_{\mathcal{M}_{\text{dec}}(\lambda)}$$

- Case 2: including spin correlations
 - ★ Helicity sums performed after accounting for production and decays
 - ★ Example:

* Resonance mass smearing: partial recovery [Frixione, Laenen, Motylinksi, Webber (JHEP '07)]

New physics simulations: cascade decays (3)

Is a correct decay handling important: yes!

Multipartonic matrix element merging (1)

- Monojet-based dark matter searches
- Compressed spectra searches
- ♣ etc.

Radiation can be predicted in different ways

- Matrix-element-based predictions
 - This relies on the fixed-order theory
 - Technical limit on the number of final state particles
 - Valid for hard and well-separated partons
 - * Correct handling of the color and spin information and of the quantum interferences

Parton-shower-based predictions

- This resums of large soft-collinear logarithms
- Technically easy and no limit on the final-state multiplicity
- Valid for soft and/or collinear partons

Approximate handling of the color and spin information, of the quantum interferences

Multipartonic matrix element merging (2)

Multipartonic matrix element merging (3)

Main merging techniques used for new physics

- The MLM merging technique [Mangano, Moretti, Piccinini & Traccani (JHEP '07); Alwall, de Visscher & Maltoni (JHEP'09)]
 Define a jet measure for parton-level jets (after showering): k_T² = min(p_{Ti}², p_{Tj}²)R_{ij} or k_T = p_{Ti}
 An event is selected if each reconstructed jet matches one parton and vice versa
 Extra jets are allowed for the highest multiplicity topology
 NLO extension: the FxFx merging scheme [Frederix & Frixione (JHEP '12)]
 The CKKW(-L) merging technique [Catani, Krauss, Kuhn, Webber (JHEP'01); Lönnblad & Prestel (JHEP'12)]
 - * Reweighting according to the most-likely shower history (Sudakovs, α_s, parton densities)
 - Emission already included at the matrix-element level are vetoed
 - Improvement: unitarized merging (all-order subtractions makes the subsamples Q^c independent) [Lönnblad & Prestel (JHEP'13)]

New physics simulations: NLO calculations

Automated NLO calculations with MADGRAPH5_aMC@NLO

A few models are now available ... and validated

[http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Example: a stop simplified model

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15)]

Summary

Example: stop simplified model

The stop simplified model: kinematical distributions

- NLO matrix elements matched to parton showering: differential distributions
 - Test case: 500/1000 GeV stop; 50/200 GeV bino; 13 TeV collisions
 - * Standard coupling strengths for a maximally mixing stop and a bino
 - Shower: PYTHIA 8.2 [Sjostrand, Mrenna & Skands (CPC'08)]
 - ✤ Jet reconstruction: anti-k_T & FASTJET [Cacciari, Salam & Soyez (JHEP'08, EPJC'12)]
 - Analysis (single lepton case) & figures: MADANALYSIS 5 [Conte, BF, Serret (CPC'13)]

When new physics meets Monte Carlo simulations

New physics simulations with Monte Carlo event generators

Summary

New physics simulations so far

Reinterpreting LHC physics analyses (1)

 Exploit the full potential of the LHC (for Priority #1 of the European strategy for pairs Designing new analyses to probe new idea 	article physics		
Recasting LHC analyses to study models n			
LHC data has been collected with signification	cant human and financial efforts		
 Important for on-going analyses (within point) 			
 Important for future opportunities (within 			
Data preservation in high-energy physics	,		
 Studies are on-going and go beyond raw d 	•		
Related tools need to be supported by t	he entire community [Kraml et al. (EPJC'12)		
Both theorists and experimentalists			
-	HC analysis results		

Reinterpreting LHC physics analyses (2)

- \blacklozenge The simplified model spectrum (SMS) approach is fast and powerful, but limited
 - Too conservative (final state topologies, different kinematics, etc.)
 - Considered decay patterns and assumptions rarely realized (many channels, etc.)
 - Works however not too bad in many cases for a fair estimate of constraints

The SMS approach for LHC result reinterpretations (1)

The SMS approach for LHC result reinterpretations (2)

200

100L 600

correct $A\epsilon$

800

900 1000 1100 1200 1300 1400

 $m_{q^{(1)}}~[{
m GeV}]$

Limitations (using SMODELS):

SUSY versus UED

700

400

500

600 700

 M_{Q_3} [GeV]

MSSM reinterpretations with

FASTLIM

800

900

1000

300

Beyond the SMS approach

Detector modeling with DELPHES

Detector simulation with DELPHES 3 [de Favereau, Delaere, Demin, Giammanco, Lemaître, Mertens & Selvaggi (JHEP'14)]

- Starts from hadron-level Monte Carlo information
- Derive calorimetric and track information; object reconstruction is then necessary
 - \star Close to what actually happens
- \clubsuit DELPHES is modular \succ extra modules and tuning can be added / included
 - * Extra information on lepton isolation or track information; skimming of the output files. etc.

Summary

Detector modeling with RIVET

Detector simulation based on RIVET [Buckley, Butterworth, Lonnblad, Grellscheid, Hoeth, Monk, Schulz & Siegert (CPC'13)]

Transfer functions (efficiencies, resolution) extracted from ATLAS and CMS information

Starts from hadron-level Monte Carlo information and then gets reconstructed object

Current existing programs

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 03.09.2015 - 38

Reimplementing new physics analyses: challenges

Implementing a new analysis in a recasting tool

 \checkmark

Example I: CMS-SUS-I3-II (stops with one lepton)

- Missing information for the validation
 - Efficiencies
 - Cutflows and Monte Carlo information for given benchmarks

😑 💿 🖉 Joint MC4BSM and LPC "dat 🗙 <u>1</u> PhysicsRest	IltsSUS13011 < ×
→ C 🔒 https://twiki.cern.ch/twiki/bin/view	/CMSPublic/PhysicsResultsSUS13011#Additional_Material_to_aid_the_P
dditional Material to aid the Phenomenol	ogy Community with Reinterpretations of these Results
Summary of yields for the $\tilde{t} \to t \tilde{\chi}_1^0$ model with $m_{\tilde{t}} = 650$ GeV and $m_{\tilde{\chi}_1^0} = 50$ GeV. No trigger efficiency or ISR reweighting is applied. In the first block of the able, the first row shows the yield after requiring at least one analysis lepton, at least 4 jets, and MET > 50 GeV. In each subsequent row, the preselection equirements are added one at a time. In the second block of the table the lownass (LM) signal region yields are indicated. In the third block the high-mass HM) signal region yields are indicated. The number after LM or HM indicates	Update of the analysis wiki page Shared LHE files and PYTHIA cards
he MET requirement. The latter results may be compared to the signal yields	

Discussions with

CMS needed

Example 2: ATLAS-EXO-2014-04 (monophotons)

Example 3: When things are borderline... (1)

Large differences are found

ATLAS-CONF-2013-047 (multijet + missing energy)

- * Large differences for one or two signal regions (out of 8)
- \star The reinterpretation cannot be totally wrong as 6 regions are fine
- * Issues related to the jets (smearing, Monte Carlo details)

#	Cut Name	ϵ_{ATLAS}	$\epsilon_{Atom} \pm Stat$	$\epsilon_{\rm Atom}/\epsilon_{\rm ATLAS}$
1	base: pTj1 > 130	100.	100. ±	
2	base: $pTj2 > 60$	99.37	99.94 ± 1.44	1.01
	pTj3 > 60	79.02	95.88 ± 1.41	1.21
4	B base: $dphi_min_23 > 0.4$	69.1	79.96 ± 1.28	1.16
5	BT: MET/meff_ $3j > 0.4$	33.19	26.14 ± 0.73	0.79
6	BT: meff_inc > 1800	23.8	19.09 ± 0.63	0.8

#	Cut Name	€ _{ATLAS}	$\epsilon_{Atom} \pm St$	at $\epsilon_{Atom}/\epsilon_{ATLAS}$
1	base: pTj1 > 130	100.	100. ±	
2	base: $pTj2 > 60$	94.5	93.96 ± 1.0	08 0.99
3	pTj3 > 60	44.12	35.26 ± 0.0	66 0.8
4	pTj4 > 60	14.38	8.87 ± 0.1	33 0.62
5	C base: $dphi_min_23 > 0.4$	12.62	7.82 ± 0.2	31 0.62
6	C base: dphi_min_inc > 0.2	11.63	7.39 ± 0.1	3 0.64
7	CM: MET/meff_4j > 0.25	9.	5.86 ± 0.2	27 0.65
8	CM: meff_inc > 1200	3.75	2.55 ± 0.1	18 0.68

Example 4: When things are borderline... (2)

- ATLAS-EXOT-2014-04 (monophotons)
 - Effects non-reproducible with DELPHES (cleaning cuts, triggers, good vertexing)
- ATLAS-SUS-2013-09 (stops in the dilepton channel)
 - Information on effects non-reproducible with DELPHES lost (student has quit physics)

	Signal region		s, 2 SF leptons
	Process		$\rightarrow bW^{(*)}\tilde{\chi}_1^0$
	Point		= 150 GeV, $m(\tilde{\chi}_1^0) = 50$ GeV
	Source	ATLAS	CheckMATE
	Generated events	157106.0	50000.0
	Total Events	157106 ± 0	-
Vowy good yoults	Generator Filter*	100000 ± 190	-
Very good results	Cleaning Cuts*	990930 ± 0	-
(for a SUSY benchmark)	Trigger*	49660 ± 180	-
(101 a 3031 Deficilitat K)	Two 10 GeV SF leptons	3668.1 ± 60	3670 ± 18
	Isolation	2844.6 ± 53	3270 ± 18
	opposite sign	2805.2 ± 52	3270 ± 18
	$m_{\ell\ell} > 20 { m ~GeV}$	2744.7 ± 52	3150 ± 18
	Trigger lepton p_T requirements	2613.5 ± 51	2980 ± 18
	2 b-jets	1074.1 ± 33	1190 ± 13
	$m_{T2}^{\mathrm{b-jet}} \geq 160 \mathrm{GeV}$	151.9 ± 12	182 ± 5.4
	$m_{T2} \leq 90 \text{ GeV}$	147.6 ± 12	175 ± 5.3
	leading lepton $p_T < 60 \text{ GeV}$	75.3 ± 8.7	60.3 ± 3.1

Summary

Example 5: sometimes...

Unfortunately: many more examples!

A wishlist from theorists to experimentalists - part I

- Analysis description
 - Clear description of the selections, including their sequence
 - * A tabulated form would be appreciable (possibly on the analysis wiki pages)
 - * Efficiencies for physics (electrons, muons, jets, taus, b-tagging, mistagging rates, etc.)
 - \star Including pT and η dependence
 - \star Or a reference with the information
 - Efficiencies for triggers, event cleaning, etc.
 - \bigstar Effects that cannot be modeled in our fast simulation
 - Digitized figures
 - * Missing in particular the performance results (reading off log-scale histograms...)
 - \star ROOT format, text format, etc.
 - Special variables (e.g., the CMS razor)
 - \star Providing snippets of code would be highly appreciated
 - ★ Some variables have different definitions in different analyses (e.g., asymmetric M_{T2})

A wishlist from theorists to experimentalists - part 2

 \bullet Validation material \succ quality of the reinterpretation

Benchmark scenarios

- ★ Spectra and decay tables (under an SLHA-form)
- ★ Several scenarios are appreciable
- ★ Publicly available on the wiki pages or HEPDATA
- Monte Carlo tools configuration
 - ★ Cards, tunes, merging information, etc.
 - **★** Better, the CMS way: LHE files with shower inputs (no new source of discrepancies)
 - ★ Publicly available on the wiki pages or HEPDATA
- Detailed cutflows for the benchmarks, with the correct selection ordering
 - \star Including each step of the (pre)selection
 - \star For several benchmarks
 - ★ The more steps are available, the better (even the preselection, the cleaning, etc.) (pin-down the differences in our machinery, in the fastsim vs. CMS-ATLAS simulation)
- Kinematical distributions at different steps of the selection
 - \star Extra cross-check of our machinery

The LHC legacy (I)

The LHC legacy: data preservation

[Dumont, BF, Kraml et al. (EPJC '15)]

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 03.09.2015 - 49

The stop simplified model: the recasting episode

Recasting of the CMS analysis

The CMS-SUS-13-011 analysis: recasting and simulations

 The CMS study relies on leading order simulation and MLM merging Simulated signal: p p → t t[*] + 0,1,2 jets at the leading order Parton showering: PYTHIA 6 with the Z2 tune [Field (APPB '11)]
✦ Analysis
 Selection of top-antitop plus missing energy final states yielding a single lepton signature One single lepton and 4 jets (mainly issued from the stop-antistop system decay) Large missing energy At least one <i>b</i>-jet Top reconstruction quality Transverse variable constraints
Observation
The selection does not really depend on the extra jets
\star The main hadronic activity comes from the decay products
The limit should be agnostic of the merging

The CMS-SUS-13-011 analysis: multijet merging

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 03.09.2015 - 52

The CMS-SUS-13-011 analysis: modern tools effects

The CMS-SUS-13-011 analysis: merging and NLO

New physics simulations with Monte Carlo event generators

Interpretation of LHC results and recasting the experimental searches

Summary

+ Lots of effort have been invested in new physics simulations during the last decade

- Streamlining the link between models and events
- Multipartonic matrix element merging
- Cascade decays
- Next-to-leading order corrections
- Techniques are (and will be) used for signal simulations both by theorists and experimentalists

The LHC legacy

- It is crucial to be able to reinterpret the LHC results in any theoretical context
- * This is a very active field of the last few years: several tools are now ready to be used
- Reproducibility is the ability of an entire experiment to be reproduced, possibly by an independent (pheno) study