

Beyond the Standard Model phenomenology with MADANALYSIS 5

Fuks Benjamin

CERN - IPHC - U. Strasbourg

E. Conte, B. Fuks & C. Wymant

HEP@VUB meeting

Jan 27-31, 2014

Beyond the Standard Model phenomenology with MADANALYSIS 5

From FEYNRULES to event analyses

MADANALYSIS 5 in a nutshell

[Conte, BenjFuks, Serret (CPC '13); Conte, BenjFuks (arXiv:1309.7831)]

- What is MADANALYSIS 5?
 - A framework for phenomenological analyses
 - Multiple input format: STDHEP, HEPMC, LHE, LHCO, ROOT
 - * Any level of sophistication: partonic, hadronic, detector, reconstructed
 - User friendly, flexible and fast
 - * Interfaces to several HEP packages to process events (fastsim, showering, clustering, etc.)

Professional analyses in an easy way
 No limit on the analysis complexity

Two modules

- * A PYTHON command line interface (interactive and soon independent of ROOT)
- A C++/ROOT core module, SAMPLEANALYZER

Normal mode

- ✤ Intuitive commands typed in the PYTHON interface
- Analysis performed behind the scenes (black box)
- * Human readable output: HTML and ${\rm _AT_EX}$

Expert mode (not covered here) [Conte, Dumont, Fuks, Wymant (in prep.)]

C++/ROOT programming within the SAMPLEANALYZER framework

New release very soon (multi-analysis, new objects, etc.)

MADANALYSIS 5: normal running mode

[Conte, BenjFuks, Serret (CPC '13); Conte, BenjFuks (arXiv:1309.7831)]

* [Cacciari, Salam (PLB '06)]

** [de Favareau, Delaere, Demin, Giammanco, Lemaitre, Mertens, Selvaggi (arXiv:1307.6346)]

Beyond the Standard Model phenomenology with MADANALYSIS 5

Summary

MADANALYSIS 5: expert running mode

[Conte, Dumont, Fuks, Wymant (in prep.)]

* [Cacciari, Salam (PLB '06)]

** [de Favareau, Delaere, Demin, Giammanco, Lemaitre, Mertens, Selvaggi (arXiv:1307.6346)]

Beyond the Standard Model phenomenology with MADANALYSIS 5

Basic concepts (1)

,	Looking	g for help				
In-line help from the	ma5>help portained comman	d Model phenomenology with MADAI				
command-line interface Auto-completion using the tab key	EOF t Wj2 hep as define display display_datasets ma5>	display_multiparticles display_particles exit help	history import install open	plot quit reject remove	reset resubmit select set	shell submit swap
	Da	atasets				
 Events samples are defined through the label. Supported file formats: LHE, STE HEPMC, LHCO, ROOT 	ough a ma5>import -> Stori -> Stori ma5>import	ttbar* as top-antitop ng the file 'ttbar.hep. ng the file 'ttbar2.hep Wjets.lhe.gz as Wboson	gz' in th .gz' in t lel phenor	ie datase he datas nenolog	et 'top-an set 'top-a y with MAE	titop'. ntitop'
 Several samples can be grouped (e.g., to increase statistics) Wildcards can be used 	-> Stori ma5>import -> Stori	ng the file 'Wjets.lhe. VV.hep as diboson ng the file 'VV.hep' in	gz' in th the data	e datase Iset 'dił	et 'Wboson poson'.	*.

Basic concepts (2)

Particles and multiparticles

- Particles are defined through their PDG code.
- * One can associate labels with particles (makes our lives easier)
- One can define multiparticles
- Default: SM + MSSM (as in MADGRAPH 5) + invisible + hadronic
- Can be defined from a UFO model

```
ma5>define TheMuon = 13
ma5>define TheAntiMuon = -13
ma5>define AllMuon = TheMuon TheAntiMuon
ma5>display l+
   The multiparticle 'l+' is defined by the PDG-ids -13 -11.
ma5>display e+
   The particle 'e+' is defined by the PDG-id -11.
ma5>display invisible
mdThe multiparticle 'invisible' is defined by the PDG-ids -16 +14 +12 +12 +14 +16 +1000022.m
ma5>remove TheMuon
ma5>display TheMuon
*** ERROR: no object called 'TheMuon' found.
```

Basic concepts (3)

Histograms - the command plot

- * Typing plot implies the creation of an histogram (check the *display* command once created)
- ◆ Global observables: related to the full event (MET, H_T, etc.)
- * Properties of a particle species (the p_T of the jets, etc.)
- Particle ordering can be used
- Particles can be combined
- Log scales can be employed
- Different ways to normalize the histogram
- Virtual particle properties can be studied

ma5>plot MET [
ETAordering	PTordering	PZordering	allstate	interstate	normalize2one			
ETordering	PXordering	Pordering	finalstate	logX	stack			
Eordering	PYordering]	initialstate	logY	superimpose			
ma5>plot MET [logY]							
ma5>plot N(mu)	ma5>plot N(mu)							
ma5>plot PT(mu[1])								
ma5>plot ETA(t) [interstate]]						
ma5>plot M(t t	~)							
ma5>plot dPHI(mu[1] mu[2])	[logX logY]						
d the standard I	Viodel phenomen	ology with MAD	ANALYSIS 5	Roniamin Li	uke Jila laipoi Set			

Basic concepts (4)

Selection cuts - the commands reject/select

Events can be selected/rejected whether a condition is satisfied or not

Particles can be selected/rejected from the analysis whether a condition is satisfied or not

ma5>reject	MHT < 200
ma5>select	N(j) > 3
ma5>reject	(j) PT < 20
ma5>reject	(j) $DELTAR(mu) < 0.4$

Executing the analysis - the command submit

	ma5>submit
	Creatingsfolder D'ANALYSIS_0'd.rejected whether a
	Copying 'SampleAnalyzer' source files
	Inserting your selection into 'SampleAnalyzer'
	Writing the list of datasets
	Writing the command line history
Create a C++ code with the analysis	VCreating Makefiles.f.ion is satisfied or not
	Compiling 'SampleAnalyzer'
Create all the histograms	Linking 'SampleAnalyzer'
	Running 'SampleAnalyzer' over dataset 'top-antitop'
• Apply all the cuts	************
• Generate the reports (open to open them)	* SampleAnalyzer for MadAnalysis 5 - Welcome. All YSIS - Line
• Generate the reports (open to open them)	* Initializing all components
	C-version: (1.1.8 (2013/08/06) the analysis
	- general: everything is default.
	C- extracting the list of event samples
	- analyzer 'MadAnalysis5job'

2. Analyzing events with MADANALYSIS 5

Beyond the Standard Model phenomenology with MADANALYSIS 5

The event samples analyzed in this talk

Setup for this talk	······································
LHC collider at a center-of-mass energy of 8 TeV, 20 fb ⁻¹	
INO lepton cut (pseudorapidity, transverse momentum, etc.) Int cuts: p= > 20 GoV AP: > 0.4 no pseudorapidity cut	
• Jet cuts. $p_T > 20$ GeV, $\Delta R_{jj} > 0.4$, no pseudorapidity cut • Hadron-level simulation	
	^'
Standard Model background for a dilepton + missing energy + jets signature	``````````````````````````````````````
top-antitop + jets: two leptonic decays	
WW + jets: two leptonic decays	
single top (tW) + jets: two leptonic decays	
* ZZ + jets: one leptonic and one invisible decay	
We include a dilecton + missing energy + jets signature new physics signal	·····、 :
Disclaimer: we do not care about its nature	
	·····
Cross section for the Standard Model background	
• NNLO: top-antitop pairs ($\approx 27 \text{ pb}$)	
* INLO + leading ININLO contributions: single top (\approx 2.5 pb) * NI O: diboson (\approx 5.8 pb for WW and \approx 0.3 pb for 77)	
= 1000001 (1000001 (1000000000000000000	
Tiultiparton matrix element merging: up to two jets	/

Beyond the Standard Model phenomenology with MADANALYSIS 5

Jet clustering (1)

Jet clustering (2)

✦ Jet reconstruction with MADANALYSIS 5 (and FASTJET) for the five considered samples

- The four background (top-antitop, WW, single top and ZZ) and the signal samples
- MADANALYSIS 5 must be run in the reconstructed mode: ./bin/ma5 -R

Checking the merging procedure

Beyond the Standard Model phenomenology with MADANALYSIS 5

Importing and defining the samples Importing the reconstructed LHE samples, setting their properties • We define the type (signal or background) of each dataset * We assign the cross section associated with each dataset (necessary for a correct normalization) ma5>import samples/signal.lhe as signal -> Storing the file 'signal. The sin the dataset 'signal'tand: ma5>import samples/t_tw.lhe.gz as singletop -> Storing the file 't_tw.lhe.gz' in the dataset 'singletop'. ma5>import samples/ttb2.lhe.gz as ttbar Importing the -> Storing the file 'ttb2.lhe.gz' in the dataset 'ttbar'. samples ma5>import samples/ww2l2v.lhe.gz as wwwl_U:alboso -> Storing the file 'ww2l2v.lhe.gz' in the dataset 'ww'. ma5>import samples/zz2l2v.lhe.gz as zz -> Storing the file 'zz2l2v.lhe.gz' in the dataset 'zz'. ma5>set ttbar.xsection = 27 ma5>set ww.xsection = 5.8Cross sections in pb ma5>set zz.xsection = 0.3 ma5>set singletop.xsection = 2.5ma5>set signal.xsection = 0.021 ma5>set ww.type = background Signal and ma5>set zz.type = background background ma5>set singletop.type = background definitions ma5>set ttbar.type = background

Beyond the Standard Model phenomenology with MADANALYSIS 5

Summary

Getting closer to the detector...

Investigating some global event properties

- Missing and visible energy (MET, TET)
- * Missing and visible hadronic energy (MHT, THT)
- The partonic center-of-mass energy (SQRTS)
- * The α_T variable (ALPHAT): depends on the missing energy, H_T and jet configuration
- The particle content of the event (NPID, NAPID, N)

+	General	setup	for	the	histograms	
---	---------	-------	-----	-----	------------	--

- The luminosity in fb⁻¹ (set main.lumi = ...)
- Histogram format (set main.stacking_method = ...; etc.)

aci

Executing the analysis and browsing the results

- The command submit (the progress can be followed on the screen)
- *The command open (open a webpage with the report containing all results)

Beyond the Standard Model phenomenology with MADANALYSIS 5

Selection requirements

- The missing energy must be greater than I50 GeV
- ✤ The H_T must be greater than 100 GeV
- We want exactly two charged leptons
- We want two or three light jets

MADANALYSIS 5 provide the efficiencies for each sample and for each selection

Cut: reject MET < 150.0

Dataset	Events kept: K	Rejected events: R	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial	
signal	297.78 +/- 9.31	122.22 +/- 9.31	0.7090 +/- 0.0222	0.7090 +/- 0.0222	
singletop	1801.5 +/- 41.7	48198.5 +/- 41.7	0.036030 +/- 0.000833	0.036030 +/- 0.000833	Investigating the best analysis
ttbar	67347 +/- 242	472652 +/- 242	0.12472 +/- 0.00045	0.12472 +/- 0.00045	
ww	5804.9 +/- 74.3	110195.1 +/- 74.3	0.05004 +/- 0.00064	0.05004 +/- 0.00064	
zz	598.5 +/- 23.2	5401.5 +/- 23.2	0.09974 +/- 0.00387	0.09974 +/- 0.00387	

The signal over background ratio

The user can enter any formula (using S, B, ES, EB)

ma5>set main.SBratio = "S/sqrt(S+B)"

Checking the formula ...

Formula corresponding to the uncertainty calculation has been found and set to the variable main.SBerror : 1./pow(S+B,3./2.)*sqrt((S+2*B)**2*ES**2+S**2*EB**2) ma5>

Cut-flow chart

- How to compare signal (S) and background (B): S/sqrt (S+B).
- Associated uncertainty: 1./pow(S+B,3./2.)*sqrt((S+2*B)**2*ES**2+S**2*EB**2).

Cuts	Signal (S)	Background (B)	S vs B	
Initial (no cut)	420	712000	0.498	
Cut 1	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	Not relevant
Cut 2	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	(selections on objects)
Cut 3	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	
Cut 4	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	
Cut 5	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	
Cut 6	4.20e+02 +/- 2.38e-07	712000	4.98e-01 +/- 5.65e-10	
Cut 7	297.78 +/- 9.31	75552 +/- 258	1.0812 +/- 0.0676	
Cut 8	288.16 +/- 9.51	69996 +/- 249	1.0869 +/- 0.0717	Our selections
Cut 9	240.2 +/- 10.1	32182 +/- 174	1.334 +/- 0.112	
Cut 10	187.7 +/- 10.2	15172 +/- 121	1.514 +/- 0.164	SCHSICIVICY

Beyond the Standard Model phenomenology with MADANALYSIS 5

Investigating particle properties

Beyond the Standard Model phenomenology with MADANALYSIS 5

The final words (for all three talks)

The quest for new physics at the LHC has started

- Rely on Monte Carlo event generators for background and signal modeling (like MADGRAPH 5)
- Satellite tools have been intensively developed (like FEYNRULES, MADANALYSIS 5)

FEYNRULES: <u>http://feynrules.irmp.ucl.ac.be/</u>

- * Straightforward implementation of new physics model in the Monte Carlo tools
- Has its own computational modules
- Being interfaced to NLO tools

MADGRAPH 5 - AMC@NLO: <u>http://launchpad.net/madgraph5</u>

- Event generation and cross section calculations at the parton-level
- LO and NLO accuracy are possible
- Contains a lot of useful packages (MADSPIN, MADWEIGHT, etc...)
- Interface to showering + merging techniques

MADANALYSIS 5: <u>http://launchpad.net/madanalysis5/</u>

- Analysis of event samples generated by Monte Carlo tools
- Useful interfaces to detector simulators, jet reconstruction tools, etc.

Automation and precision for new physics phenomenology are on their way

We are almost there!