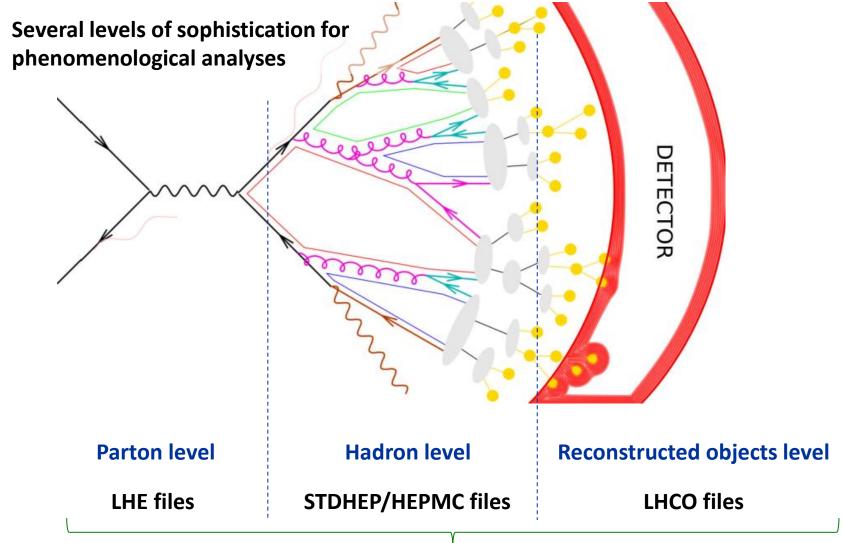


Status and new developments in MadAnalysis 5

Eric CONTE, Benjamin FUKS, Guillaume SERRET

GDR Terascale @ LPNHE Paris 5 – 7 November 2012

Outlines


Overview

Writing an analysis step-by-step in the normal mode

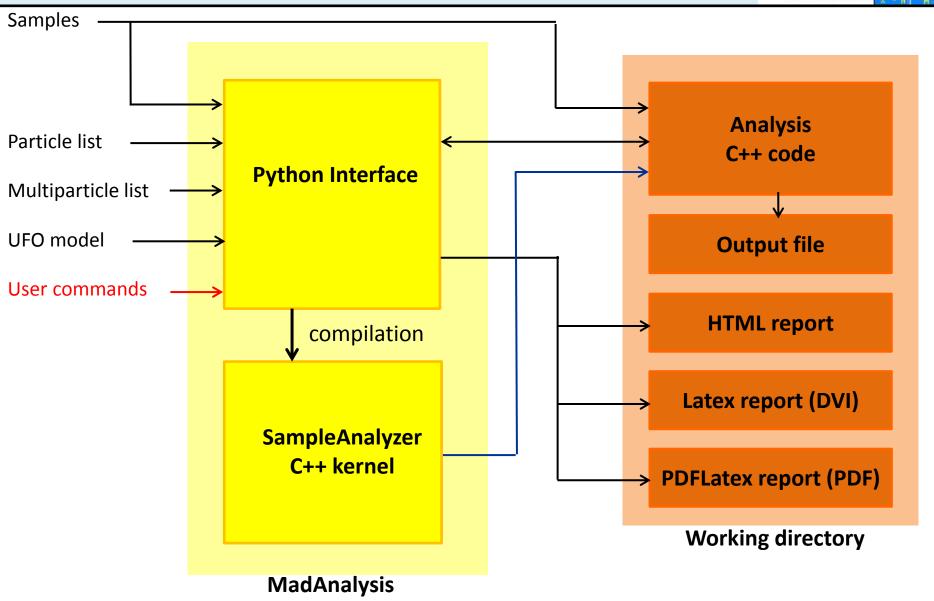
New functionalities since MadAnalysis 5.1.2

Summary and perspectives

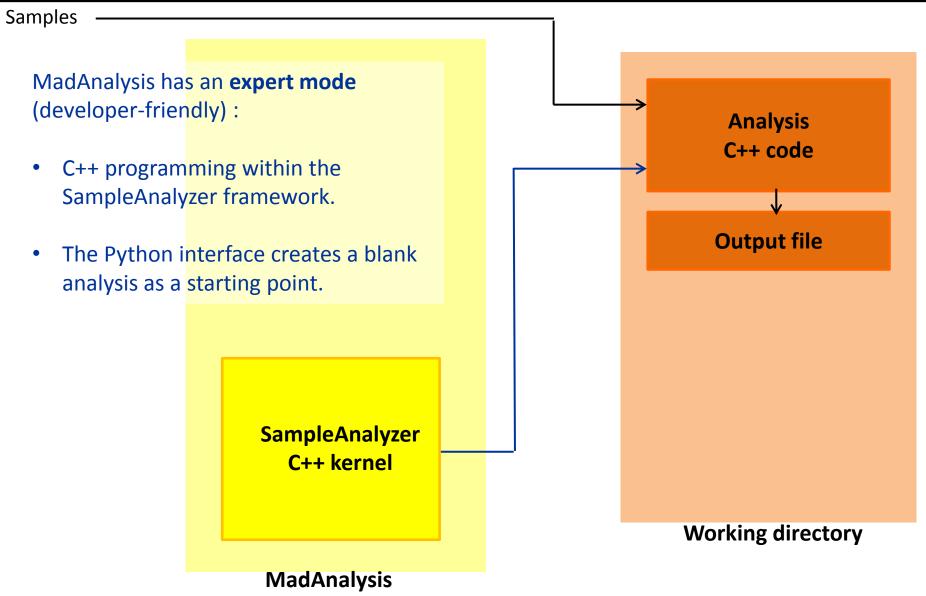
A unique framework : MadAnalysis 5

Scope:

- Reading of signal and background event files
- Definition of various selection cuts on the input samples.
- Production of histograms for different distributions.
- Results of the analysis summed up by a S/B-like ratio table.



Relevant features of MadAnalysis design:


- Study at any sophistication level (parton, hadron, reconstructed)
- Supporting any event file format (STDHEP, HEPMC, LHE, ...)
- **User-friendly** → professional analyses in a simple way
- Flexible: no limit on the analysis complexity
- Easy to maintain and to validate

Installation step

Requirements

Mandatory	Optional
Python 2.6 or a more recent version (but not the 3.X series)	zlib
GNU GCC compiler	Latex / PDFLatex
ROOT 5.27 or a more recent version	FastJet 3.0 or a more recent version

Downloading MadAnalysis 5:

- From the official website http://madanalysis.irmp.ucl.ac.be (tarball to untar)
- From MadGraph 5 interface (available soon)

First start of MadAnalysis 5:

Execution

Parton level	Hadron level	Reconstructed objects level
bin/ma5 or bin/ma5 –P	bin/ma5 –H	bin/ma5 -R

Initial sequence:

- Step 1: Testing all dependencies
- Step 2: Compiling the static library of SampleAnalyzer
- Step 3: Locating MadGraph and importing the list of particles and multiparticles

Defining new particles and multiparticles

- Particles are defined by labels, which could point to one or several PDG-id.
- SM and MSSM labels are automatically loaded at the starting of MadAnalysis.
- The user can define his own labels :

```
ma5> define mu = mu+ mu-
```

All labels defined in a UFO model can be loaded too.

Importing datasets

- For MadAnalysis, a dataset is a collection of samples which will be merged.
- All sample files are stored in a dataset.

```
ma5> import tt*.lhe
```

```
ma5> import tt*.lhe as ttbar
ma5> import Wj*.lhe as Wjets
```

Possibility to tag datasets as signal or background.

Defining a selection: plots and/or cuts

- Histograms
 - Observable can be related to the event or the properties of a particle
 - Plethora of observables: N, E, ET, M, MT, P, PT, PX, PY, PZ, THETA, ETA, ...
 - Combining particles

```
ma5> plot MET
ma5> plot PT(mu)

ma5> plot M(mu+ mu-)
```

Cuts: selecting / rejecting events

```
ma5> reject MHT < 50
ma5> select N(mu) >= 2
```

• Cuts: selecting / rejecting a particle or a combination

```
ma5> select (mu) PT > 50
ma5> select 80 < M (mu+ mu-) < 100
```


Defining a selection: plots and/or cuts

Several options or syntaxes allow to extend the potential of MadAnalysis. Some examples:

- By defaut, a combination is interpreted as the vector sum of momenta.
 This interpretation can be changed by adding a prefix to the observable label.
 For instance: vPT, sPT, dsPT, dvPT, rPT
- List of observables specific to the reconstructed object level: ISOL, HE_EE, NTRACKS, ...
- Selecting a particle according to its rank in energy (or to other observables)

```
ma5> plot(mu+[1])
```

Selecting a particle according its history (requirements on mother, grand-mother ...)

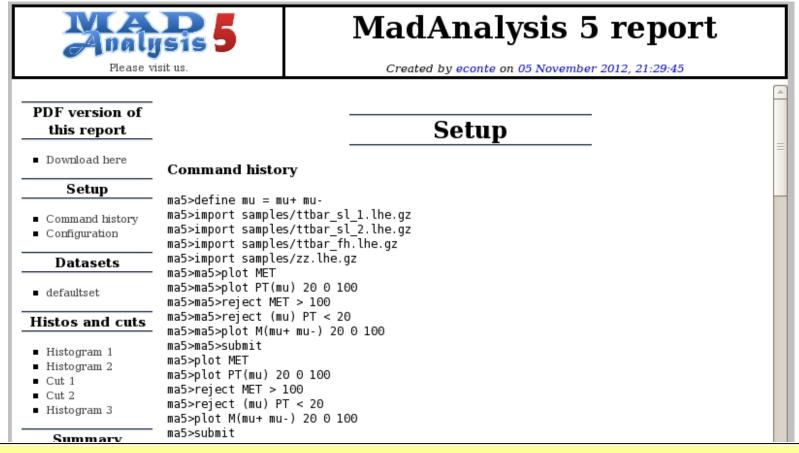
$$ma5> plot(mu+ < w+ < t~)$$

Launching the analysis:

This can be done by the command submit

- Creating a working directory (with a default name if no name is specified)
- Compiling the C++ job
- Launching the analysis over the different samples contained in the datasets

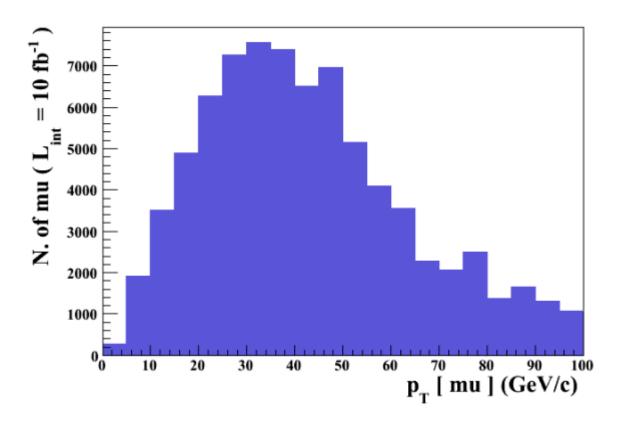
```
* SampleAnalyzer 2.0 for MadAnalysis 5 - Welcome.
* Option choices: selecting analysis = 'MadAnalysis5job'.
* Extracting the following sample files:
* 1/4 ~/samples/ttbar sl 1.lhe.gz
    => sample produced by MadGraph.
    => Number of processed events: 1000.
```


If you modify, after the submission, the analysis or the layout of the plots, the results can be updated in an optimized way by the command resubmit.

Opening a generated report:

The command open displays the HTML report of the last job created.

Other reports can be opened by: open workindir/PDF or open workingdir/DVI



Opening a generated report:

one extract

Dataset	Integral	Entries / events	Mean	RMS	Underflow	Overflow
defaultset	82747	0.752	42.8177	21.36	0.0	1.296

Statistics table

- the cross section of the sample is automatically extracted from the sample
- Integrated luminosity is by default 10 pb⁻¹. This value can be set by the user:

```
ma5> set main.lumi =
```

New functionality: jet clustering

(STDHEP or HEPMC) event files contain plethora of hadrons.

Jet clustering is required!

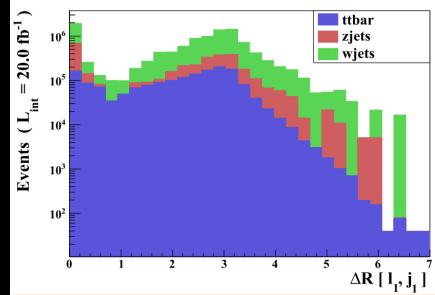
This can be done with MadAnalysis 5 in reco mode: bin/ma5 -R

- Need to install FastJet and interface it to MadAnalysis
- → Just one command line from the Python interface!

```
ma5> install fastjet
```

Large selection of jet algorithms

Adopting a jet algorithm


new options (the algorithm parameters)

```
ma5> set main.clustering.algorithm = antikt
ma5> set main.clustering.ptmin = 5
ma5> set main.clustering.radius = 1
```

New functionality: jet clustering


```
ma5> set main.clustering.algorithm = antikt
ma5> set main.clustering.ptmin
ma5> set main.clustering.radius
ma5> set main.outputfile = «output.lhe.gz»
ma5> import ttbar*.hep.gz as ttbar
ma5> import wjets.hep.gz as wjets
ma5> import zjets.hep.gz as zjets
ma5> set ttbar.xsection = 139.6
ma5> set wjets.xsection = 35678
ma5> set zjets.xsection = 10319
ma5> set main.lumi = 20
ma5 > select (1) PT > 20
ma5 > reject (j) PT < 50
ma5> reject THT < 200
ma5> plot DELTAR([[1], j[1]) 30 0 7 [logY]
ma5> submit
ma5> open
```


New functionality: merging plots

Matrix elements

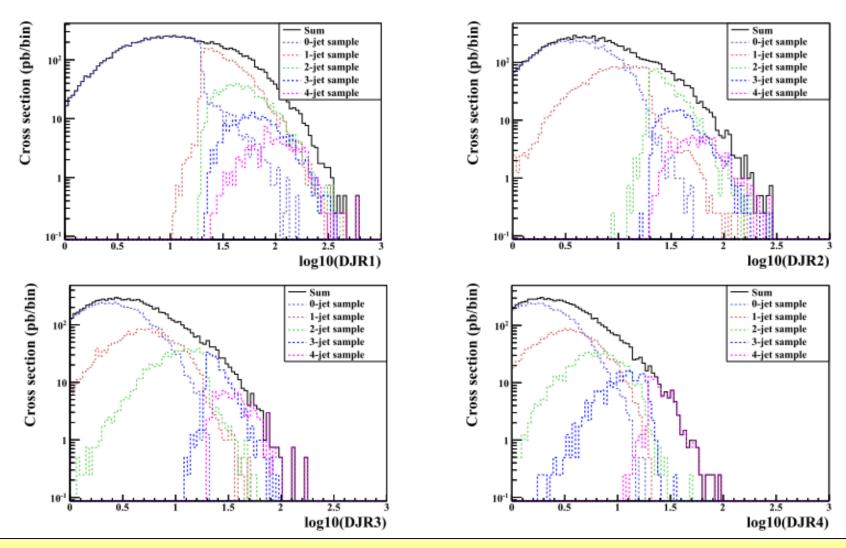
hard partons

2 complementary approaches

Need to merge them but avoid double counting.

Parton showers soft partons

- Merging matrix-elements with 0, 1, 2, 3, extra jets
 - Study of the smoothness of the differential jet rate (DJR) distributions.
 - The scale for which an event goes from a N \rightarrow N+1 jet configuration.
 - Extremely sensible to the merging procedure.
 - This validates the choices for the merging parameters.
- Running MadAnalysis 5 in hadron-level mode: bin/ma5 -H


```
ma5> set main.matching.check = true
ma5> set main.matching.njets = 4
```

We can choose $N_{max} \Rightarrow$ the number of desired histograms.

New functionality: merging plots

Example of Z production with 0, 1, 2, 3, 4 extra jets

New functionality: weighted events

- Up to now, MadAnalysis could only treat samples with unweighted events:
 - Each event has the same weight.
 - Histograms could be rescaled by using "the" cross-section value.
- In the next release (this week), MadAnalysis addresses weighted events.
 Weights are taken into account in :
 - Plots
 - Cuts and their statistical uncertainties.
- In particular, negative weights are considered too (NLO generators)

ROOT interprets correctly the negative weights from the version 5.30.

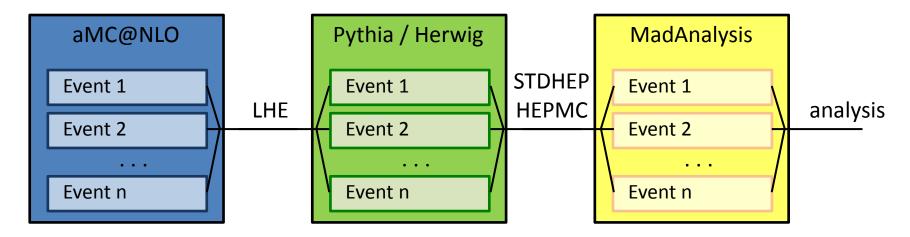
→ MadAnalysis 5 overcomes this restriction:
Correct results are obtained for ALL supported versions of ROOT.

Summary

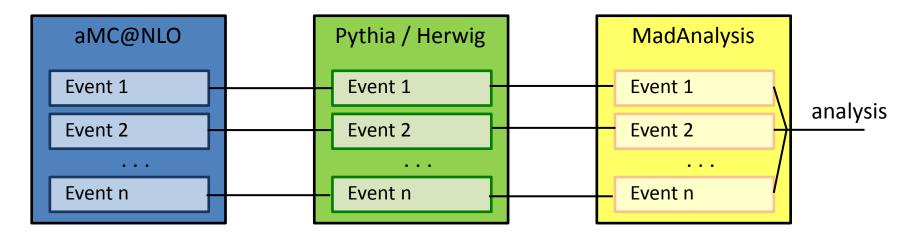
- MadAnalysis 5 = a unique framework for different levels of analysis:
 Parton level , Hadron level and Reconstructed objects level
- Designed to be fast and user-friendly.
- Two ways of using the program
 - Normal mode: python interface with intuitive commands.
 - Expert mode: requiring programming skills (C++, ROOT).
- Interfaced to FastJet, MadAnalysis 5 can:
 - launch a specified jet clustering sequence to hadronic events.
 - display the plots dedicated to check the ME/PS jet merging.
- Ready for reading aMC@NLO samples (in particular negative event-weights)

ma5team@iphc.cnrs.fr http://madanalysis.irmp.ucl.ac.be Comput. Phys. Commun. 184 (2013) 222

Perspectives


Completing the current features of MadAnalysis 5:

- Reading on-fly aMC@NLO events
 - → Need to "pipelinize" the data flow aMC@NLO MadAnalysis
- Submitting several analyses at the same time
 - → Reading the event only one time and applying successively several analyses
- No more hadronic event format: STDHEP or HEPMC (files too heavy for the storage)
 - → interfacing MadAnalysis to Pythia 6, Pythia 8 and Herwig
 - → pipeline scheme is required too
- Extending the generation of output file to other formats than LHE:
 - → user-friendly mode: LHCO (text format)
 - → expert mode: ROOT (binary format)


Perspectives

Current data-flow:

Pipelined data-flow:

Perspectives

(Very-)Fast simulation project :

The MadAnalysis team was actively involved in the CERN meeting about Fast simulators for the LHC (June 2012)

Designing with the Delphes team a unified framework for fast simulation

- Splitting the simulation into several modules
- Description on how these modules communicate
- Data format: how data are stored in the memory?
- Storage format: how data are stored on disk?

Back-Up

Installation and launching MA5

First start of MadAnalysis 5:

Execution

Parton level	Hadron level	Reconstructed objects level
bin/ma5 or bin/ma5 –P	bin/ma5 -H	bin/ma5 -R

Step 1: Testing all dependencies

```
Checking ROOT libraries ...

Loading ROOT libraries ...

Checking g++ libraries ...

Checking zlib libraries ...

Checking fastjet libraries ...

** WARNING: FastJet configuration program is not found.

** WARNING: To enable this functionality, please type 'install fastjet'.

Checking if pdflatex is installed...

Checking if latex is installed...
```

Installation and launching MA5

First start of MadAnalysis 5:

- Step 1: Testing all dependencies
- Step 2: Compiling the static library of SampleAnalyzer

Installation and launching MA5

First start of MadAnalysis 5:

- Step 1: Testing all dependencies
- Step 2: Compiling the static library of SampleAnalyzer
- Step 3: Locating MadGraph and importing the list of particles and multiparticles

```
MadGraph 5 NOT found => default particle names from the file:
   /home/econte/madanalysis/input/particles_name_default.txt
84 particles have been successfully exported.

MadGraph 5 NOT found => default multiparticle definitions from the file:
   /home/econte/madanalysis/input/multiparticles_default.txt
Creation of a multiparticle labelled by 'invisible' (related to missing energy).
Creation of a multiparticle labelled by 'hadronic' (related to jet transverse energy).
8 multiparticles have been successfully exported.
```