

Phenomenological investigations with

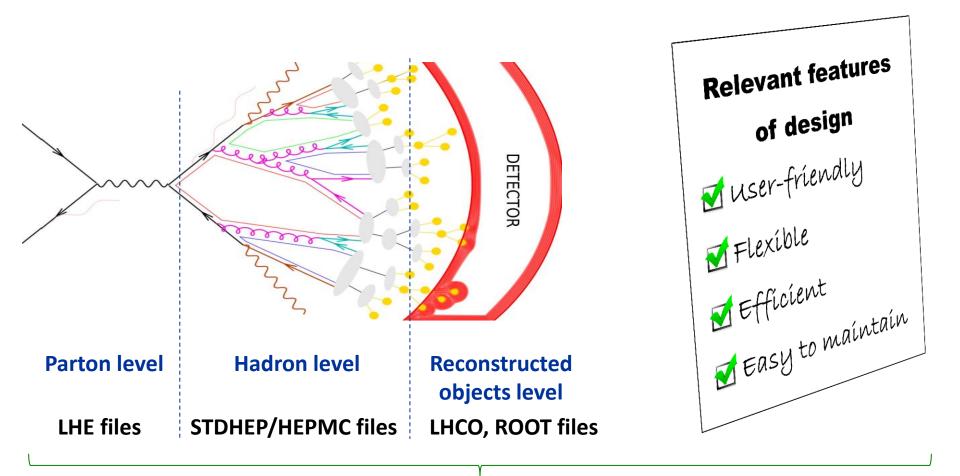
Eric Conte, Benjamin Fuks

2015 MadGraph school on Collider Phenomenology November 23-27 @ Shanghai

2. Launching MadAnalysis 5

3. Writing an analysis step-by-step

4. Behind the scene


2. Launching MadAnalysis 5

3. Writing an analysis step-by-step

4. Behind the scene

The primary goal of MadAnalysis 5: analyzing generated & simulated samples

A unique framework : MadAnalysis 5

Example of basic features:

- Reading of signal and background event files
- Production of histograms for different distributions.
- Definition of various selection cuts on the input samples.
- Results of the analysis summed up by a S/B-like ratio table.
- Dumping results in a smart report (PDF, DVI or HTML)

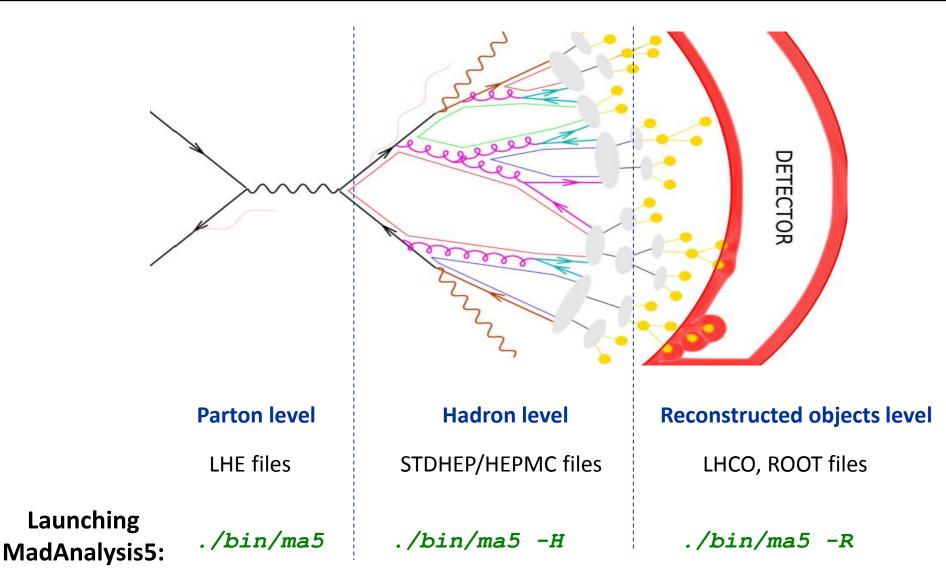
Datas	et	In	itegra	1	Entries /	events	м	ean		RMS	Underflow	Overflow
default			2747		0.75			8177		21.36	0.0	1.296
aoraa						72 Statistics		- 4 7 7			0.0	1100
						Countration	and the					
		E										
		F										
f	7000	E										
10		E										
= 10 fb ⁻¹	6000	F										
Ĕ.		E										
	5000	F										
\sim		F										
N. of mu (4000	E										
E		E										
of	3000	F										
		F								_		
	2000	E										
	2000											
	1000	E										
	1000	E										
		È.										
	0	0	10	20	30	40	50	60	70) 80	90	100
										mu l	(GeV/c)
									p _T l		(001/1	9

What is MadAnalysis 5?

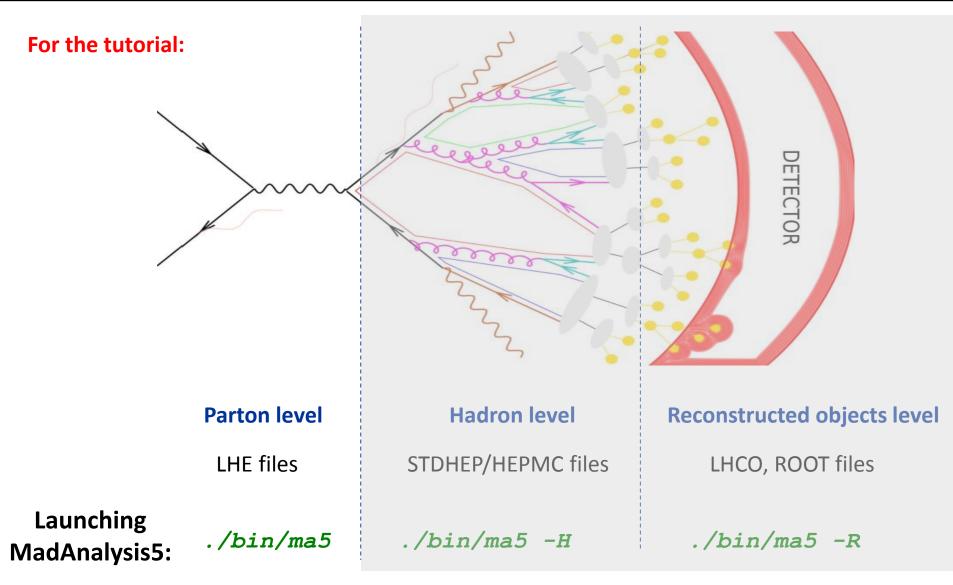
But MadAnalysis 5 can do other things for you:

- Producing special plots such as Writing the events in **ME/PS** merging validation plots another data format. (see talk devoted to merging) Applying **a jet-clustering** analysis in the **expert** algorithm to your mode hadronic events
 - Applying a **fast-simulation** detector (Delphes) to your hadronic events

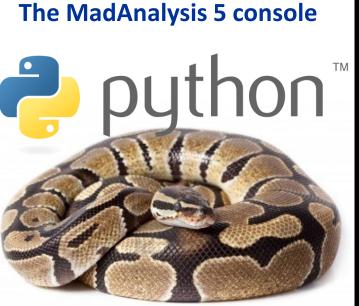
- Designing a sophisticated
- **Recasting an existed** analysis and computing a **limit** to a BSM signal



2. Launching MadAnalysis 5


3. Writing an analysis step-by-step

4. Behind the scene



Platform: Linux 2.6.18-348.12.1.el5	[Linux mode]
Reading user settings	
Checking mandatory packages:	

- python	[OK]
- python library: numpy	[OK]
- g++	[OK]
- GNU Make	[OK]
- Root	[OK]
- PyRoot libraries	[OK]
cking optional packages:	
- pdflatex	[OK]
- latex	[OK]
- dvipdf	[OK]
- zlib	[OK]
- FastJet	[OK]
- Delphes	[OK]

- Delphes-MA5tune [OK]

Checking the MadAnalysis library:

- => MadAnalysis libraries found.
- => MadAnalysis test program works.

MadGraph 5 NOT found:

- => Particle labels from input/particles_name_default.txt
- => 87 particles successfully exported.
- => Multiparticle labels from

madanalysis/input/multiparticles_default.txt

- => Creation of the label 'invisible' (-> missing energy).
- => Creation of the label 'hadronic' (-> jet energy).
- => 8 multiparticles successfully exported.

ma5>

Che

Compilation and other software tricks behind the scene = physicist-friendly

- Inspection of your system:
 - Autodetection of the required packages (g++, root,numpy)
 - Autodetection of the optional packages (zlib, delphes, fastjet, ...)
 - Autodetection of MadGraph if it is installed.
- First time you used MadAnalysis: compilation of the core libraries
- Users could bypass or force a step of the MadAnalysis recipe
 →configuration file madanalysis/ inputs/user_installation.dat

Platform: Linux 2.6.18-348.12	.1.el5	[Linux	mode
Reading user settings			
Checking mandatory packages:			
- python	[OK]		
- python library: numpy	[OK]		
– g++	[OK]		
- GNU Make	[OK]		
- Root	[OK]		
- PyRoot libraries	[OK]		
Checking optional packages:			
- pdflatex	[OK]		
- latex	[OK]		
- dvipdf	[OK]		
- zlib	[OK]		
- FastJet	[OK]		
- Delphes	[OK]		
- Delphes-MA5tune	[OK]		
Checking the MadAnalysis libr	ary:		
=> MadAnalysis libraries fo	ound.		
=> MadAnalysis test program	works.		

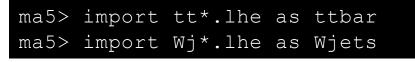
Optional libraries could be installed quickly from the console with the command **install**

2. Launching MadAnalysis 5

3. Writing an analysis step-by-step

4. Behind the scene

Defining new particles and multiparticles


- Particles are defined by labels, which could point to one or several PDG-id.
- SM and MSSM labels are automatically loaded at the starting of MadAnalysis.
- The user can define his own labels :

ma5> define mu = mu+ mu-

Importing datasets

- For MadAnalysis, a **dataset** is a collection of samples which will be merged.
- All sample files are stored in a dataset.

ma5> import tt*.lhe

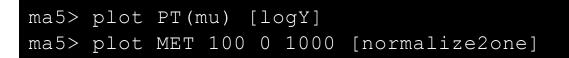
• Possibility to tag datasets as **signal** or **background**.

```
ma5> set ttbar.type = signal
ma5> set Wjets.type = background
```


Defining an analysis: plots and/or cuts

Histograms

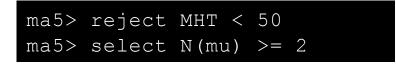
- Observable can be related to the event or the properties of a particle
- Plethora of observables: N, E, ET, M, MT, P, PT, PX, PY, PZ, THETA, ETA, ..., ALPHAT
- Including sophisticated observables: ALPHAT, MT2, MT2W


ma5> plot MET ma5> plot PT(mu) ma5> plot M(mu+ mu-)

More options are available:

• Specifying the histogram binning

ma5> plot MET 100 0 1000


• Specifying other options

Defining an analysis: plots and/or cuts

• <u>Cuts</u>: selecting / rejecting events

• <u>Cuts</u>: selecting / rejecting a particle or a combination

ma	a5>	select	(mı	(ג	ΡT	>	5()		
ma	a5>	select	80	<	Μ	(mu	1+	mu-)	<	100

Defining an analysis: plots and/or cuts

Several options or syntaxes allow to extend the potential of MadAnalysis. Some examples:

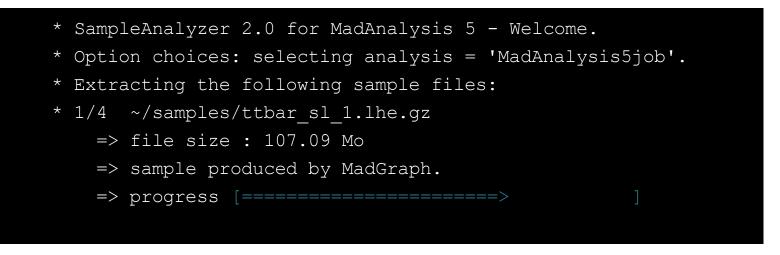
• Selecting a particle according to its rank in energy (or to other observables)

ma5> plot PT(mu+[1])

 By default, a combination is interpreted as the vector sum of momenta. This interpretation can be changed by adding a prefix to the observable label. For instance : vPT, sPT, dsPT, dvPT, rPT

ma5> plot sPT(mu+[1] mu+[2])

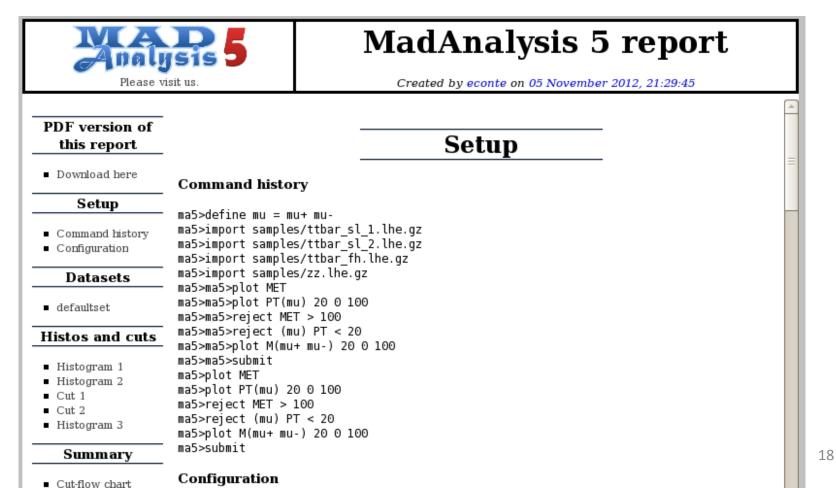
• Selecting a particle according to its history (requirements on mother, grand-mother ...)


ma5> plot PT(mu+ < w+ < t~)</pre>

Launching the analysis:

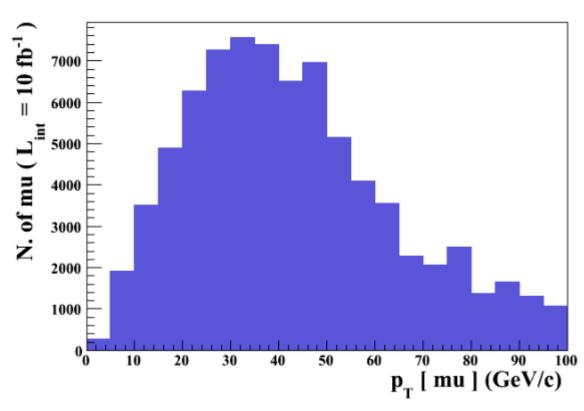
This can be done by the command **submit**

- Creating a working directory (with a default name if no name is specified)
- Compiling the C++ job
- Launching the analysis over the different samples contained in the datasets


If you modify, after the submission, the analysis or the layout of the plots , the results can be updated in an optimized way by the command **resubmit**.

Opening a generated report:

The command **open** displays the HTML report of the last job created.

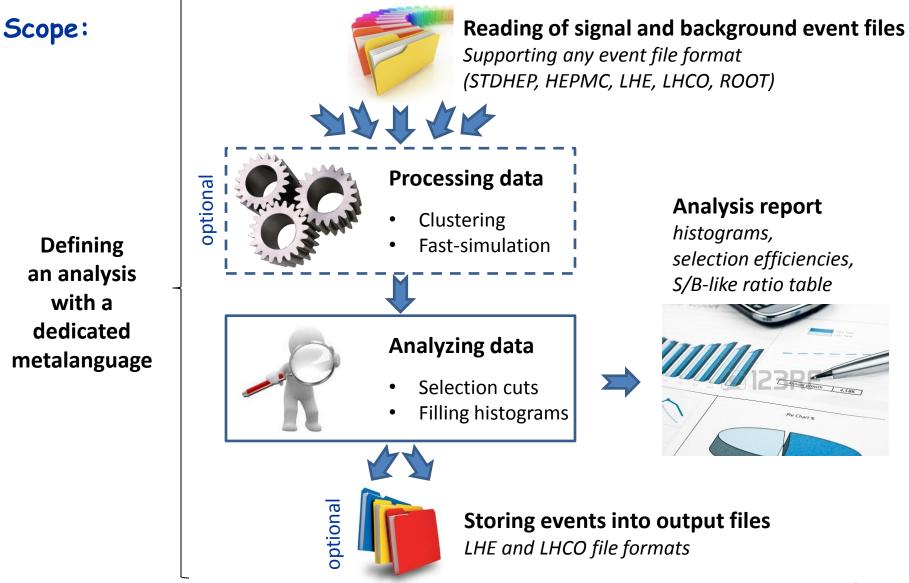

Reports in PDF and DVI format are also available.

Opening a generated report: Details on histogramming

DatasetIntegralEntries / eventsMeanRMSUnderflowOverflowdefaultset827470.75242.817721.360.01.296Statistics table

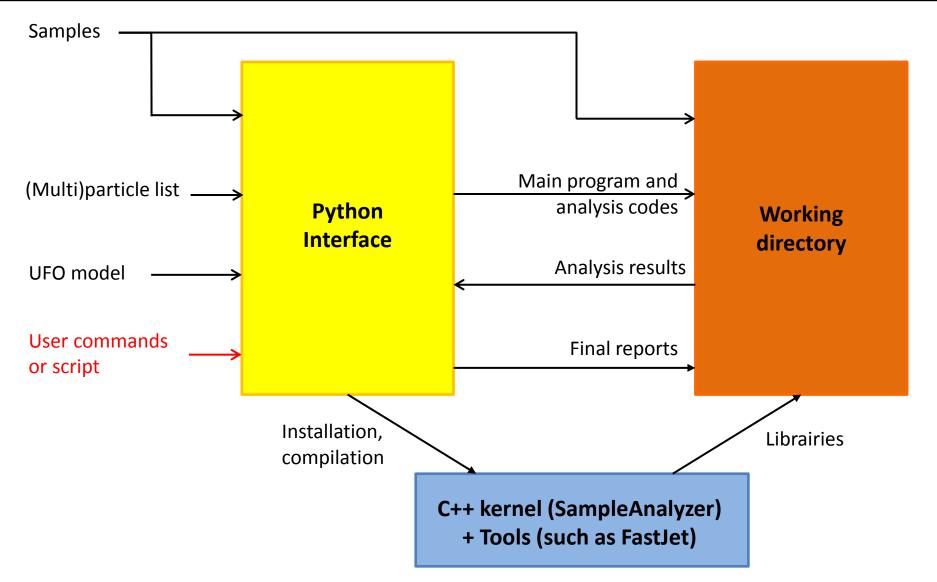
- the cross section of the sample is automatically extracted from the sample
- Integrated luminosity is by default 10 fb⁻¹. This value can be set by the user:

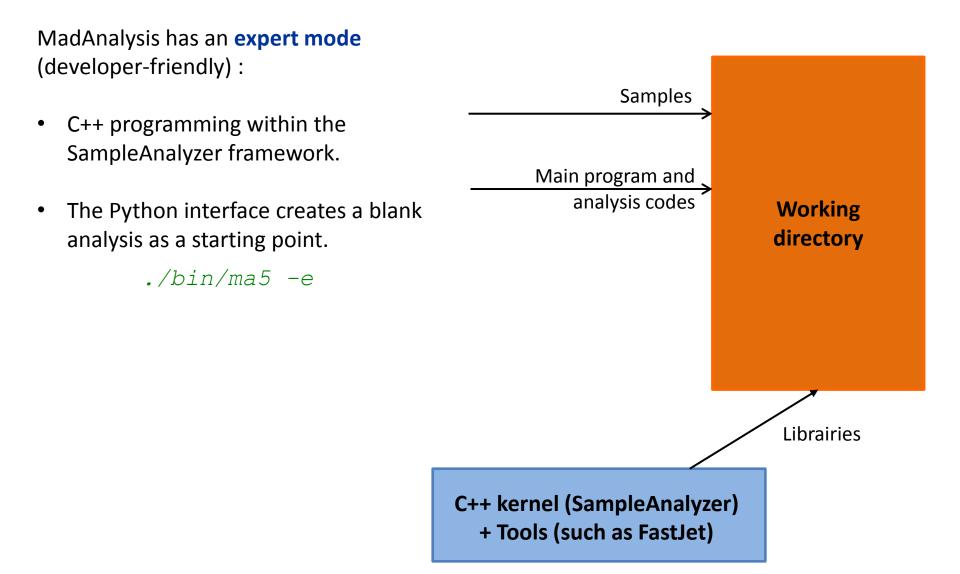
ma5> set main.lumi =


2. Launching MadAnalysis 5

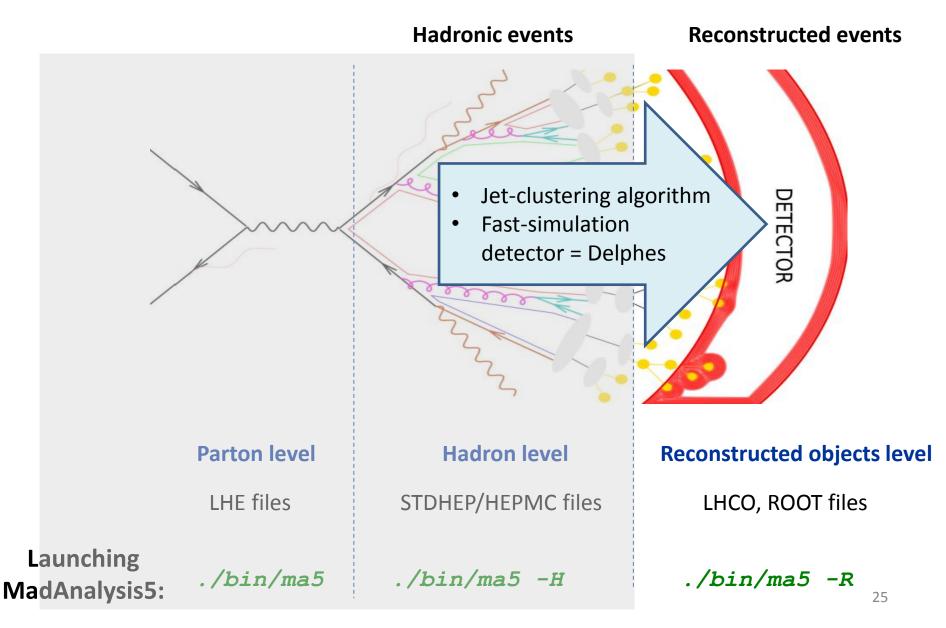
3. Writing an analysis step-by-step

4. Behind the scene


4. Behind the scene



4. Behind the scene


2. Launching MadAnalysis 5

3. Writing an analysis step-by-step

4. Behind the scene

5. Extra

5. Extra

Jet clustering algorithms:

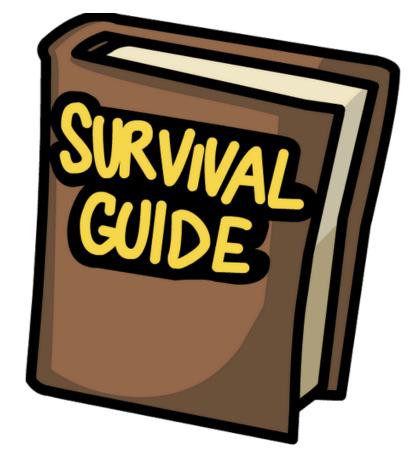
Need to install FastJet and interface it to MadAnalysis
 → just one command line:

ma5> install fastjet

• Large selection of jet algorithms

ma5> s	et	<pre>main.clustering.algorithm =</pre>						
antikt cambridge		cdfjetclu cdfmidpoint	genkt gridjet		siscone			

• Adopting a jet algorithm → new options (algorithm & object-identification parameters)


ma5> set main.clustering.algorithm = antikt
ma5> set main.clustering.ptmin = 5
ma5> set main.clustering.radius = 1
ma5> set main.clustering.bjet.efficiency = 0.5

• Possibility to save the clustered events in to a "simplified" LHE (and LHCO format soon)

ma5> set main.outputfile = "mysample.lhe.gz"

More info?

Manual and user guides

- Comput. Phys. Commun. 184 (2013) 222-256 arXiv:1206.1599
- Eur.Phys.J. C74 (2014) 10, 3103 arXiv:1405.3982

For questions, suggestion or bug report, please contact us with the launchpad framework: <u>https://bugs.launchpad.net/madanalysis5</u>