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Abstract
We present the MADANALYSIS 5 implementation of the recent ATLAS-EXOT-
2016-27 monojet search. This search allows us to probe various new physics
scenarios featuring a dark matter particle through the so-called monojet chan-
nel in which the final-state signature consists in one highly-energetic jet re-
coiling against missing transverse energy carried by dark matter particles. The
results are based on the analysis of a dataset of 36.2 fb�1 of proton-proton
collisions recorded by the ATLAS detector with a center-of-mass energy of
13 TeV. The validation of our reimplementation relies on a comparison of our
predictions with the official ATLAS results in the context of a supersymmetry-
inspired simplified model in which the Standard Model is extended by a neu-
tralino and a stop decaying into a charm quark and a neutralino.

1 Introduction
In this contribution, we present the validation of the implementation, in the MADANALYSIS 5 [1–3]
framework, of the ATLAS-EXOT-2016-27 search for dark matter in the monojet channel [4]. This search
is in particular sensitive to certain supersymmetric scenarios, dark matter setups and extra dimensional
models. Each of those models can indeed predict, in specific realizations, the production of a pair of
invisible particles in association with a highly-energetic jet (i.e., the signature under consideration).

For our validation procedure, we focus on a compressed supersymmetric configuration in which
the searched for signature arises from the associated production of a hard jet with a pair of invisible
squarks that each decays into a soft light jet and a neutralino. This process is illustrated by the rep-
resentative Feynman diagram of Fig. 1.1. The considered analysis is in particular sensitive to the case
of a compressed light stop that decays into a charm quark and a neutralino (through a flavor-violating
loop-induced subprocess),

pp ! j t̃⇤t̃ ! j c�̃0

1

c̄�̃0

1

. (1.1)

This decay mode of the top quark becomes especially relevant when the more standard decay channels
involving either a top quark or a chargino are closed.

2 Description of the analysis
The ATLAS monojet analysis targets a final-state containing at least one very energetic jet that is assumed
to originate from initial state radiation, as well as a certain amount of missing transverse energy Emiss

T .
The analysis strategy is twofold, depending on the selection cut on the missing transverse energy. In a
first series of ten signal regions (IM1, IM2, . . ., IM10), it considers inclusive missing transverse energy
selections,

Emiss

T > E
threshold

, (1.2)

where the 10 different thresholds range from 250 GeV to 1 TeV, as shown on the first line of the table of
Fig. 1.2. In a second series of signal regions, the analysis instead considers exclusive missing tranverse
energy selection,

Emin

threshold

 Emiss

T  Emax

threshold

. (1.3)
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Fig. 1.1: Representative Feynman diagram corresponding to the production of a pair of squarks q̃ that each decays
into a neutralino �̃0

1 and a light quark q.

Fig. 1.2: Missing transverse energy requirements of the 20 signal regions of the ATLAS-EXOT-2016-27 analysis.

The thresholds associated with the 10 corresponding signal regions (EM1, EM2, . . ., EM10) are shown
in the second table of Fig. 1.2.

2.1 Object definition
Jets are recontructed following the anti-kT algorithm [5] with a radius parameter R = 0.4, and only
those jets with a transverse momentum pjT and pseudorapidity ⌘j satisfying

pjT > 20 GeV and |⌘j | < 2.8 (1.4)

are retained. Among those jets, those with a transverse momentum greater than 30 GeV and with a
pseudorapidity smaller than 2.5 (in absolute value) are potentially considered as b-tagged, according to
a b-tagging working point that is in average 60% efficient [6].

Electron candidates are required to have a transverse momentum peT and pseudorapidity ⌘e obeying
to

peT > 20 GeV and |⌘e| < 2.47 , (1.5)

whereas muon candidates must obey to

pµT > 10 GeV and |⌘µ| < 2.7 . (1.6)

Any non-b-tagged jet with pjT > 30 GeV lying within a cone of radius �R < 0.2 from an electron
is discarded, whilst any electron lying within a cone of radius �R < 0.2 centered on a b-tagged jet is
removed. Any electron that would then lie within a cone of radius 0.2 < �R < 0.4 of a jet is finally
removed in a second step. In addition, jets with a pjT > 30 GeV are discarded if they are lying in a cone
of radius �R < 0.4 centered on any muon.

The missing transverse momentum vector /pT
is defined as the opposite of the vector sum of the

momenta of all reconstructed physics object candidates with a pseudorapidity smaller than 4.9, and the
missing transverse energy Emiss

T is defined by its norm.

2.2 Event Selection
Event preselection imposes first the presence of a significant amount of missing energy,

Emiss

T > 250 GeV, (1.7)

6



Fig. 1.3: Exclusion contour in the (Mt̃,M�̃) plane of the considered stop-neutralino class of simplified model. We
compare the MADANALYSIS 5 findings (orange) with the official ATLAS numbers (blue).

and next that the final state features a monojet-like topology, the leading jet being imposed to satisfy

pT (j1) > 250 GeV. (1.8)

Electron and muon vetos are then enforced, and any jet j has to be well separated from the missing
momentum,

��(j, /pT
) > 0.4 . (1.9)

Selected events are then categorized into the inclusive and exclusive signal regions introduced in Fig. 1.2.

3 Validation
For our validation, we generate events for various simplified models inspired by the MSSM. We consider
a class of models where the Standard Model is extended by a stop (of mass M

˜t) and a neutralino (of
mass M�̃), all other superymmetric states being taken decoupled. For each choice of mass parameters,
our signal event samples are normalized to an integrated luminosity of 36.2 fb�1 and to a cross section
evaluated at the NLO+NLL accuracy [7].

Signal events have been generated with MADGRAPH5_AMC@NLO [8] and PYTHIA 8 [9] for
the hard scattering matrix elements and the simulation of the parton showering and hadronization, re-
spectively. We have considered event samples describing final states featuring different jet multiplicities,
that we have merged through the MLM scheme [10,11]. The merging scale as been set, for each point, to
Qmatch = M

˜t/4 GeV for a MADGRAPH5 xqcut parameter set to 125 GeV. The A14 PYTHIA tune [12]
has been used while showering and hadronizing events with PYTHIA 8, and the simulation of the ATLAS
detector has been achieved with the DELPHES 3 program [13], assuming a b-tagging efficiency of 60%
for a pT -dependent mistagging rate equal to 0.1 + 0.000038 ⇤ pT .

In the absence of any official ATLAS cutflow for given benchmark scenarios, we have decided
to validate our reimplementation by reproducing the ATLAS exclusion contour for a set of compressed
benchmark points for which the stop decays as t̃

1

! c�0

1

. Our results are presented in Fig. 1.3 in
which we superimpose the exclusion contour obtained with MADANALYSIS 5 (orange) with the official
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ATLAS one (blue). We observe an excellent degree of agreement, which makes us considering our
reimplementation as validated.

4 Summary
We have implemented the ATLAS-EXOT-2016-27 analysis the MADANALYSIS 5 framework, an analy-
sis searching for dark matter models in the monojet channel and in 36.2 fb�1 of ATLAS collision data at
a center-of-mass energy of 13 TeV. In the absence of any detailed validation material, we have validated
our reimplementation in reproducing the exclusion curve provided by ATLAS in the context of a class
of simplified models where the Standard Model is extended by a neutralino and a stop that decays into
the t̃

1

! c�0

1

channel. We have obtained an exceptionally good agreement, so that our reimplementation
has been considered as validated.
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