Validation of the MadAnalysis 5 implementation of CMS-SUS-13-011

Beranger Dumont (LPSC Grenoble)

beranger.dumont@lpsc.in2p3.fr

July 3, 2014

This note contains detailed validation material for the MadAnalysis 5 implementation [1] of the CMS search [2] for stops in the single-lepton mode at the 8 TeV run of the LHC. Note that this analysis requires MINUIT libraries. Therefore, the line

LIBFLAGS += -1Minuit

should be added to the Makefile of the Build/ directory before compilation.

The validation was based on LHE files provided by the CMS collaboration. Showering and hadronization of the events was done with PYTHIA 6.4, and simulation of detector effects was done within MadAnalysis 1.1.11, using delphesMA5tune with a dedicated detector card [3].

References

- [1] http://inspirehep.net/record/1301484/
- [2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13011
- [3] http://madanalysis.irmp.ucl.ac.be/attachment/wiki/PhysicsAnalysisDatabase/ delphesMA5tune_card_CMS_SUSY.tcl

1 Cutflows

$t \to t \tilde{\chi}_1^0 \ (650/50) \ \text{cutflow}$									
for SR $\tilde{t} \to t \tilde{\chi}_1^0$, high $\Delta M, E_T^{\text{miss}} > 300 \text{ GeV}$									
cut	# events	relative change	# events	relative change					
	(scaled to σ and \mathcal{L})		(official)	(official)					
Initial number of events	272.2	272.2							
trigger	113.3	-58.4%							
≥ 1 candidate lepton	59.8	-47.2%							
≥ 4 central jets	29.6	-50.5%							
$E_T^{\text{miss}} > 50 \text{ GeV}$	29.0	-2.0%	31.6	31.6					
$E_T^{\text{miss}} > 100 \text{ GeV}$	27.3	-5.9%	29.7	-6.0%					
≥ 1 b-tagged jet	23.8	-12.8%	25.2	-15.2%					
veto isol lepton and track	19.8	-16.8%	21.0	-16.7%					
No hadronic tau	19.4	-2.0%	20.6	-1.9%					
$\Delta \phi(E_T^{\text{miss}}, j_1 \text{ or } j_2) > 0.8$	16.7	-13.9%	17.8	-13.6%					
Hadronic $\chi^2 < 5$	9.8	-41.3%	11.9	-33.1%					
$M_T > 120 \text{ GeV}$	7.9	-19.4%	9.6	-19.3%					
$E_T^{\text{miss}} > 300 \text{ GeV}$	5.2	-34.2%							
$M_{T2}^W > 200 \mathrm{GeV}$	3.9	-25.0%	4.2	-56.3%					

Table 1: Cutflow for the $\tilde{t} \to t \tilde{\chi}_1^0$ benchmark point with $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (650, 50)$ GeV in the high ΔM , $E_T^{\text{miss}} > 300$ GeV signal region.

$t \to t \tilde{\chi}_1^0 \ (250/50) \ \text{cutflow}$									
for SR $\tilde{t} \to t \tilde{\chi}_1^0$, low ΔM , $E_T^{miss} > 150 \text{ GeV}$									
cut	# events	relative change	# events	relative change					
	(scaled to σ and \mathcal{L})		(official)	(official)					
Initial number of events	108731.2	108731.2							
trigger	33258.0	-69.4%							
≥ 1 candidate lepton	22947.8	-31.0%							
≥ 4 central jets	9443.4	-58.8%							
$E_T^{\text{miss}} > 50 \text{ GeV}$	7365.0	-22.0%	8033.0	8033.0					
$E_T^{\text{miss}} > 100 \text{ GeV}$	3787.2	-48.6%	4059.2	-49.5%					
≥ 1 b-tagged jet	3166.0	-16.4%	3380.1	-16.7%					
veto isol lepton and track	2601.4	-17.8%	2770.0	-18.0%					
No hadronic tau	2557.2	-1.7%	2683.1	-3.1%					
$\Delta \phi(E_T^{\text{miss}}, j_1 \text{ or } j_2) > 0.8$	2021.3	-21.0%	2019.1	-24.7%					
Hadronic $\chi^2 < 5$	1092.0	-46.0%	1375.9	-31.9%					
$M_T > 120 \text{ GeV}$	261.3	-76.1%	355.1	-74.2%					
$E_T^{\rm miss} > 150 {\rm ~GeV}$	107.9	-58.7%	124.0	-65.1%					

Table 2: Cutflow for the $\tilde{t} \to t \tilde{\chi}_1^0$ benchmark point with $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (250, 50)$ GeV in the low ΔM , $E_T^{\text{miss}} > 150$ GeV signal region.

2 Final number of events

benchmark point	CMS result	MA5 result					
$\tilde{t} \to t \tilde{\chi}_1^0, \log \Delta M, E_T^{\text{miss}} > 150 \text{ GeV}$							
(250/50)	108 ± 3.7	100.1					
$\tilde{t} \to t \tilde{\chi}_1^0$, high	$\Delta M, E_T^{\text{miss}} > 3$	$300 {\rm GeV}$					
(650/50)	3.7 ± 0.1	3.6					

Table 3: Final number of events for $\tilde{t} \to t \tilde{\chi}_1^0$ in the two relevant signal regions. For each benchmark point, the first number indicates the stop mass, the second the LSP mass.

benchmark point	CMS result	MA5 result							
$\tilde{t} \to b \tilde{\chi}_1^{\pm}, \log \Delta M, E_T^{\text{miss}} > 150 \text{ GeV}$									
(250/50/0.5)	157 ± 9.9	141.2							
(250/50/0.75)	399 ± 18	366.8							
$\tilde{t} \to b \tilde{\chi}_1^{\pm}, \operatorname{high} \Delta M, E_T^{\mathrm{miss}} > 150 \; \mathrm{GeV}$									
(450/50/0.25)	23 ± 2.3	23.4							
$\tilde{t} \to b \tilde{\chi}_1^{\pm}, \operatorname{high} \Delta M, E_T^{\mathrm{miss}} > 250 \; \mathrm{GeV}$									
(600/100/0.5)	6.1 ± 0.5	5.4							
(650/50/0.5)	6.7 ± 0.4	5.8							
(650/50/0.75)	6.3 ± 0.4	5.7							

Table 4: Final number of events for $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ in the three signal regions. The benchmark points are given in the format $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}, x)$ with x setting the chargino mass according to $m_{\tilde{\chi}_1^+} = x \cdot m_{\tilde{t}_1} + (1-x)m_{\tilde{\chi}_1^0}$.

3 Histograms

In the histograms below, the solid lines correspond to the results from the MadAnalysis 5 implementation, while the dashed lines are the official CMS results. All histograms are filled after preselection cuts. When $M_T > 120$ GeV is mentioned, this cut is applied in addition to the preselection cuts. The notation for the benchmark points is as in Tables 3 and 4.

4 Limit-setting procedure

Limits are derived using exclusion_CLs.py. The 95% CL upper limits on the model cross section obtained from the code are compared to the CMS value [2] for the eleven benchmark points considered above, as well as the best expected signal region for each benchmark point. "T2tt" and "T2bw" benchmark points correspond to the $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ simplified models, respectively. Regarding signal regions, "TT" and "TB" correspond to signal regions targeting the $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ simplified models, respectively, while "LM" and "HM" correspond to low ΔM and high ΔM , and the final number correspond to the E_T^{miss} cut.

	xs95 MA5		xs95 CMS		bestSR MA5		bestSR CMS
Ι	3.41 pb		3.44 pb	Ι	TB_LM150		TT_LM150
Ι	5.83 pb	I	9.52 pb	Ι	TB_LM250	I	TT_LM150
	3.28 pb	Ι	3.78 pb	Ι	TB_LM200	Ι	TT_LM150
	0.0151 pb	Ι	0.0152 pb	Ι	TB_HM250	Ι	TT_HM300
	0.148 pb	Ι	0.141 pb	Ι	TB_HM150	Ι	TB_HM150
	0.0268 pb	Ι	0.0203 pb	Ι	TB_HM250	Ι	TB_HM250
Ι	4.96 pb	I	3.48 pb	Ι	TB_LM100	I	TB_LM150
	6.42 pb	Ι	6.32 pb	Ι	TB_LM200	Ι	TB_LM250
Ι	0.0144 pb	I	0.0103 pb	Ι	TB_HM250	Ι	TB_HM250
	1.53 pb	Ι	1.37 pb	Ι	TB_LM200	Ι	TB_LM150
	0.0143 pb	Ι	0.0110 pb	Ι	TB_HM250	Ι	TB_HM250
		<pre> xs95 MA5 3.41 pb 5.83 pb 3.28 pb 0.0151 pb 0.148 pb 0.0268 pb 4.96 pb 6.42 pb 0.0144 pb 1.53 pb 0.0143 pb</pre>	<pre> xs95 MA5 3.41 pb 5.83 pb 3.28 pb 0.0151 pb 0.148 pb 0.0268 pb 4.96 pb 6.42 pb 0.0144 pb 1.53 pb 0.0143 pb </pre>	<pre> xs95 MA5 xs95 CMS 3.41 pb 3.44 pb 5.83 pb 9.52 pb 3.28 pb 3.78 pb 0.0151 pb 0.0152 pb 0.148 pb 0.141 pb 0.0268 pb 0.0203 pb 4.96 pb 3.48 pb 6.42 pb 6.32 pb 0.0144 pb 0.0103 pb 1.53 pb 1.37 pb 0.0143 pb 0.0110 pb</pre>	<pre> xs95 MA5 xs95 CMS 3.41 pb 3.44 pb 5.83 pb 9.52 pb 3.28 pb 3.78 pb 0.0151 pb 0.0152 pb 0.148 pb 0.141 pb 0.0268 pb 0.0203 pb 4.96 pb 3.48 pb 6.42 pb 6.32 pb 0.0144 pb 0.0103 pb 1.53 pb 1.37 pb 0.0143 pb 0.0110 pb </pre>	<pre> xs95 MA5 xs95 CMS bestSR MA5 3.41 pb 3.44 pb TB_LM150 5.83 pb 9.52 pb TB_LM250 3.28 pb 3.78 pb TB_LM200 0.0151 pb 0.0152 pb TB_HM250 0.148 pb 0.141 pb TB_HM150 0.0268 pb 0.0203 pb TB_HM250 4.96 pb 3.48 pb TB_LM100 6.42 pb 6.32 pb TB_LM200 0.0144 pb 0.0103 pb TB_HM250 1.53 pb 1.37 pb TB_LM200 0.0143 pb 0.0110 pb TB_HM250</pre>	<pre> xs95 MA5 xs95 CMS bestSR MA5 3.41 pb 3.44 pb TB_LM150 5.83 pb 9.52 pb TB_LM250 3.28 pb 3.78 pb TB_LM200 0.0151 pb 0.0152 pb TB_HM250 0.148 pb 0.141 pb TB_HM150 0.0268 pb 0.0203 pb TB_HM250 4.96 pb 3.48 pb TB_LM100 6.42 pb 6.32 pb TB_LM200 0.0144 pb 0.0103 pb TB_HM250 1.53 pb 1.37 pb TB_LM200 0.0143 pb 0.0110 pb TB_HM250 </pre>

Surprisingly, all $\tilde{t} \to t \tilde{\chi}_1^0$ benchmark points have as best expected signal region a signal region optimized for $\tilde{t} \to b \tilde{\chi}_1^{\pm}$, instead of a signal region optimized for $\tilde{t} \to t \tilde{\chi}_1^0$ as given by CMS. Re-computing exclusions for the T2tt benchmark points considering only the eight $\tilde{t} \to t \tilde{\chi}_1^0$ signal regions yields:

benchmark point		xs95 MA5		xs95 CMS		bestSR MA5	bestSR CMS
T2tt_250_50	Ι	4.92 pb	Ι	3.44 pb	Ι	TT_LM150	TT_LM150
T2tt_250_75		12.5 pb	Ι	9.52 pb	Ι	TT_LM150	TT_LM150
T2tt_250_100		4.97 pb	Ι	3.78 pb	Ι	TT_LM200	TT_LM150
T2tt_650_50	Ι	0.0171 pb		0.0152 pb	Ι	TT_HM300	TT_HM300

5 Analysis steps

For completeness we also list the sequence of steps done in the analysis:

- 1. cut ISR boost factor (switched off for validation with cutflow)
- 2. object definitions:
 - Tracks: $p_T > 10 \text{ GeV}, |\eta| < 2.1$
 - SignalElectrons: $p_T > 30 \text{ GeV}$ and $|\eta| < 1.4442$

- SignalMuons: $p_T > 25$ GeV and $|\eta| < 2.1$
- OtherLeptons: electron with 5 GeV $< p_T < 30$ GeV and $|\eta| < 1.4442$ or muon with 5 GeV $< p_T < 25$ GeV and $|\eta| < 2.1$
- Jets: $p_T > 30$ GeV and $|\eta| < 2.4$ (anti- k_T , $\Delta R = 0.5$)
- Taus: jets with $p_T > 20$ GeV, $|\eta| < 2.4$ and tagged as hadronic taus
- 3. cut trigger: efficiencies from Twiki page (for validation with cutflow: 100% efficiency is there is at least one object in SignalElectrons \cup SignalMuons)
- 4. isolation of the SignalElectrons and SignalMuons leptons: if Σp_T in a cone of $\Delta R = 0.3$, excluding the lepton itself, is > min(5 GeV, $0.15 \times p_{T,\ell}$), the given lepton is moved to OtherLeptons
- 5. apply identification efficiencies: we will want ≥ 1 lepton from SignalElectrons \cup SignalMuons. We calculate the probability to have 0 lepton $(p_{0\ell})$ in SignalElectrons \cup SignalMuons, which corresponds to the product of $(1 - \varepsilon_i)$, where ε_i is the individual identification efficiency (given the nature of the lepton and its p_T). Then we reweight the event by $(1 - p_{0\ell})$. The ε_i used are:
 - electron: if $p_T < 30$ GeV, $\varepsilon_i = 0.78$; else if $p_T < 40$ GeV, $\varepsilon_i = 0.84$; else $\varepsilon_i = 0.87$
 - muons: if $p_T < 200$ GeV, $\varepsilon_i = 0.95$; else if $p_T < 300$ GeV, $\varepsilon_i = 0.90$; else $\varepsilon_i = 0.80$
- 6. cut ≥ 1 candidate lepton: size(SignalElectrons \cup SignalMuons) > 0
- 7. discard jets (remove from Jets) within $\Delta R = 0.4$ of a lepton from SignalElectrons \cup SignalMuons
- 8. cut ≥ 4 central jets: size(Jets) > 4
- 9. cut $E_T^{\text{miss}} > 50 \text{ GeV}$
- 10. cut $E_T^{\text{miss}} > 100 \text{ GeV}$
- 11. cut ≥ 1 b-tagged jet
- 12. count number of leptons $(n_{isol-\ell})$ from SignalElectrons, SignalMuons and OtherLeptons for which Σp_T in a cone of $\Delta R = 0.3$, excluding the lepton itself, is $< \min(0.20 \times p_{T,\ell})$
- 13. cut (do not appear separately in this cutflow): $n_{isol-\ell} = 1$
- 14. define SignalLepton as this one isolated lepton
- 15. for the tracks (from **Tracks**) with a charge of opposite-sign to the signal lepton, check if they are isolated (Σp_T in a cone of $\Delta R = 0.3$, excluding the track itself, is $< 0.10 \times p_{T,\text{track}}$)

- 16. cut veto isol lepton and track: number of the above defined isolated OS tracks = 0 and apply a weight of 0.885 to account for the difference in isolation between Particle Flow methods and our tracks-only method (0.885 has been obtained from the two cutflow charts below)
- 17. cut No hadronic tau: 0 element in Taus
- 18. the following cuts are defined without ambiguity from their names in the cutflow (the hadronic χ^2 and M_{T2}^W are calculated from the snippets of code provided by CMS on the Twiki page of the analysis). Note that the order in which cuts are applied is different in the cutflow and in the histograms.