= {{{VPolar}}}: The Standard Model at NLO in QCD with helicity-polarized W and Z bosons = === Contact Author === Richard Ruiz * Institute of Nuclear Physics Polish Academy of Science (IFJ PAN) * rruiz AT ifj.edu.pl In collaboration with: M. Javurkova, R.C.L. de Sá, and J. Sandesara arXiv:2401.17365 [ [#Javurkova 1] ] D. Buarque Franzosi, O. Mattelaer, and Sujay Shil arXiv:1912.01725 [ [#BuarqueFranzosi 2] ] ==== Usage resources ==== * For instructions and examples on using the VPolar UFO libraries, see M. Javurkova, et al, arXiv:2401.17365 [ [#Javurkova 1] ] * For additional background, see also D. Buarque Franzosi, et al, arXiv:1912.01725 [ [#BuarqueFranzosi 2] ] * See '''Validation''' section below for additional information * '''Special note:''' this UFO was developed using MG5aMC and calls the '''1L''', '''1T''', and '''1A''' propagators defined in ALOHA (see '''aloha_object.py''' and ''create_aloha.py''). These may be defined differently in other generators. If they are not defined in your favorite generators, they must be added to the ''propagators.py'' file in the {{{VPolar}}} UFO. The file '''particles.py''' must then be updated to reflect the propagator names. R. Ruiz is happy to assist with this. ==== Citation requests ==== * If using the UFO, please cite , see M. Javurkova, et al, arXiv:2401.17365 [ [#Javurkova 1] ] == Model Description -- helicity polarization as a Feynman rule == The broad idea of the ''helicity polarization as a Feynman rule'' is to treat the helicity-truncated propagator (see [ [#BuarqueFranzosi 2] ] for details) as the Feynman rule for a particle that sits in a definite helicity polarization. The helicity-truncated propagator is given by {{{ #!latex \begin{align} \Pi_{\mu\nu}^{V\lambda}(q) = \frac{-i\varepsilon_\mu(q,\lambda)\ \varepsilon^*_\nu(q,\lambda)}{q^2-M_V^2 +iM_V\Gamma_V} \end{align} and is related to the full propagator by \begin{align} &\Pi_{\mu\nu}^V (q) = \frac{-i\left(g_{\mu\nu} - q_\mu q_\nu / M_V^2\right)}{q^2-M_V^2 +iM_V\Gamma_V}\ \\ &=\sum_{\lambda\in\{0,\pm1,A\}} \eta_\lambda\ \left( \frac{-i\varepsilon_\mu(q,\lambda)\ \varepsilon^*_\nu(q,\lambda)}{q^2-M_V^2 +iM_V\Gamma_V} \right)\ . \end{align} }}} Here, {{{$\eta_\lambda=+1$}}}, unless {{{$\lambda=0$}}} and {{{$V_{\lambda}$}}} is in the t-channel; in that case {{{$\eta_\lambda=-1$}}}. By making the graphical identification [[Image(mgPolar_FeynmanRule.png, 40%)]] then one can interpret the full propagator in Eq. 3 as the sum of propagators (or interfering graphs) for a collection of particles {{{$V_\lambda$}}}, where each {{{$V_\lambda$}}} has its own propagator. The {{{VPolar}}} UFOs implement this idea for the W and Z bosons. == UFO Description and Usage == ==== ZPolar ==== * The {{{SM_Loop_ZPolar}}} UFO contains the SM Lagrangian and includes QCD counter terms up to NLO in QCD. (This means it can be used for both tree-level computations and loop-level computations up to one loop in QCD.) Importantly, the SM Z boson has been replaced with the longitudinal state {{{Z0}}}, the transverse state {{{ZT}}}, the auxiliary state {{{ZA}}}, and the unpolarized state {{{ZX}}}. The state {{{ZX}}} is essentially the original Z boson. - The PIDs are: 23 for {{{ZX}}}, 230 for {{{Z0}}}, 231 for {{{ZT}}}, and 232 for {{{ZA}}} - The W boson is '''NOT''' polarized in this UFO - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_Loop_ZPolar.tgz ./ - ~/Path $ tar -zxvf SM_Loop_ZPolar.tgz ==== WPolar ==== * The {{{SM_Loop_WPolar}}} UFO is like {{{SM_Loop_ZPolar}}} but for the W boson - The PIDs are: +24 for {{{WX^+}}}, +240 for {{{W0^+}}}, +241 for {{{WT^+}}}, and +242 for {{{WA^+}}} - For the {{{W^-}}} fields, use {{{-PID}}} - The Z boson is '''NOT''' polarized in this UFO - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_Loop_WPolar.tgz ./ - ~/Path $ tar -zxvf SM_Loop_WPolar.tgz ==== VPolar ==== * The {{{SM_Loop_VPolar}}} UFO is like {{{SM_Loop_WPolar}}} and {{{SM_Loop_ZPolar}}} but for both the W and the Z - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_Loop_VPolar.tgz ./ - ~/Path $ tar -zxvf SM_Loop_VPolar.tgz ==== LO UFOs ==== * The {{{SM_VPolar_XLO}}}, {{{SM_WPolar_XLO}}}, and {{{SM_ZPolar_XLO}}} UFOs are like the three UFOs above but '''DO NOT CONTAIN''' QCD counter terms - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_VPolar_XLO.tgz ./ - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_WPolar_XLO.tgz ./ - ~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/VPolarization/SM_ZPolar_XLO.tgz ./ ==== Regenerating NLO UFOs ==== Computing the counter terms ({{{WriteCT[]}}} in NLOCT) is incredibly memory intensive. {{{WPolar}}} and {{{ZPolar}}} each requires 10+ GB of RAM. {{{VPolar}}} requires 20ish GB of RAM. The output of NLOCT for {{{VPolar}}} ({{{2023_0201_SM_Loop_VPolar_FA.nlo}}}) is provided for convenience (see attachments). ==== Usage in MG5aMC@NLO ==== For usage in MadGraph5aMC@NLO, see the appendix of M. Javurkova, et al, arXiv:2401.17365 [ [#Javurkova 1] ]. == Studies that have used the above model files == * Please email to update this space. == References == [=#Javurkova] [1] M. Javurkova, R. Ruiz, R. Coelho Lopes de Sa, and J. Sandesara, ''Polarized ZZ pairs in gluon fusion and vector boson fusion at the LHC,'' arXiv:2401.17365 [=#BuarqueFranzosi] [2] D. Buarque Franzosi, O. Mattelaer, R. Ruiz, S. Shil, ''Automated Predictions from Polarized Matrix Elements,'' '''JHEP''' 2020, 82 (2020) arXiv:1912.01725