= A Coloron Model = == Corresponding Authors == * Elizabeth Drueke (Michigan State University) * Reinhard Schwienhorst (Michigan State University) * Natascia Vignaroli (Michigan State University) * Devin G. E. Walker (SLAC National Accelerator Laboratory) * Jiang-Hao Yu (The University of Texas at Austin) == Other Contributors == * Joseph Nutter (Michigan State University) * R. Sekhar Chivukula (Michigan State University) * Elizabeth H. Simmons (Michigan State University) == Description of the Model == The {{{ #!latex $SU(3)_1 \times SU(3)_2 \to SU(3)_C$ }}} breaking induced by the expectation value of the {{{ #!latex ({$\bf 3,\bar{ 3}$}) }}} scalar field Phi generates color-octet and color-singlet scalars. The most general renormalizable potential for Phi is: {{{ #!latex $V(\Phi)=-m^2_{\Phi}\text{Tr}(\Phi\Phi^\dagger) -\mu (\text{det }\Phi+\text{H.c.})+\frac{\xi}{2}\left[ \text{Tr}(\Phi\Phi^\dagger) \right]^2+\frac{k}{2}\text{Tr}(\Phi\Phi^\dagger\Phi\Phi^\dagger) \ ,$ }}} where {{{ #!latex $\text{det } \Phi = \frac{1}{6}\epsilon^{ijk}\epsilon^{i'j'k'}\Phi_{ii'}\Phi_{jj'}\Phi_{kk'} \ ,$ }}} and where, without loss of generality, one can choose mu > 0. Assuming {{{ #!latex $m^2_\Phi >0$, }}} Phi acquires a (positive) diagonal expectation value: {{{ #!latex $\langle \Phi \rangle = u \cdot \mathcal{I} \,.$ }}} The Phi expansion around the vacuum gives: {{{ #!latex $\Phi=u+\frac{1}{\sqrt{6}}\left(\phi_R+i\phi_I\right)+\left(G^a_H+iG^a_G\right)T^a \ ,$ }}} where {{{ #!latex $\phi_R$, $\phi_I$ }}} are singlets under SU(3)_C Additionally, {{{ #!latex $G^a_G$, $a=1,\dots,8$, }}} are the Nambu-Goldstone bosons associated with the color-symmetry breaking, and {{{ #!latex $G^a_H$ }}} are color octets. GH can be produced in pairs through its interactions with gluons: {{{ #!latex $\frac{g^2_s}{2}f^{abc}f^{ade}G^b_{\mu}G^{\mu d}G^c_H G^e_H +g_s f^{abc} G^a_{\mu} G^b_H \partial^{\mu} G^c_H \ ,$ }}} or it can be produced singly via gluon-gluon fusion. This occurs at one-loop order through the cubic interaction {{{ #!latex $\frac{\mu}{6} d_{abc} G^a_H G^b_H G^c_H \,,$ }}} which arises from the {{{ #!latex $\mu(\det\Phi+\text{H.c.})$ }}} term in the potential; where {{{ #!latex $d_{abc}$ }}} is the SU(3) totally symmetric tensor. The single production of GH can be described by the effective coupling {{{ #!latex $-\frac{1}{4} C_{ggG} d_{abc} G^a_{\mu\nu} G^{\mu\nu b} G^c_H$ }}} with {{{ #!latex $C_{ggG}=\sqrt{\frac{1}{6}}\frac{\alpha_s}{\pi }\frac{\mu}{M^2_{G_H}}\left(\frac{\pi^2}{9}-1\right) \ .$ }}} Note that single production is suppressed by a factor {{{ #!latex $(\pi^2/9 -1)^2$, }}} which is an accidental suppression factor coming from the loop. Above the threshold for decays into a single top quark, GH has two main decay modes: the decay into gluons, which occurs at loop-level similar to single coloron production, and the flavor-violating decay into tc. The corresponding rates are: {{{ #!latex $\Gamma \left[G_H \to (\bar{c}_L t_R +\bar{t}_R c_L )\right] =\left(V_{cb}\right)^2 \frac{M_{G_H}}{16 \pi} \frac{m^2_t}{u^2}\left(1-\frac{m^2_t}{M^2_{G_H}}\right)^2 \,, $ \newline $\Gamma \left[G_H \to gg \right]=\frac{5 \alpha^2_s}{1536 \pi^3}\frac{\mu^2}{M_{G_H}}\left(\frac{\pi^2}{9}-1\right)^2 \,.$ }}} We set u=mu (the stability of the potential forbids mu>u); and consider for simplicity the set of {{{ #!latex $(M_{G_H}, \mu)$ }}} values that give a 50% GH decay into tc and 50% into gg. GH is a very narrow resonance, with a width of the order of 10^-4 GeV. Various Feynman Diagrams for GH processes discussed in [http://arxiv.org/abs/1409.7607v2 1409.7607v2] are shown below: [[Image(Coloron.png)]] [[Image(Colorong.png)]] [[Image(Colorong2.png)]] [[Image(ColoronDouble1.png)]] [[Image(ColoronDouble2.png)]] See more details in * [http://arxiv.org/abs/1409.7607v2 1409.7607v2] * [http://arxiv.org/abs/1412.3094 1412.3094] == Model Files == * [attachment:proc_card_mg5.dat proc_card]: for generation of 500 GeV coloron (place in Cards/) * [attachment:run_card.dat run_card]: for generation of 500 GeV coloron (place in Cards/) * [attachment:Octet-tcgg-new.zip Octet-tcgg]: the model == Generation specifics == In [http://arxiv.org/abs/1409.7607v2 1409.7607v2], the samples were generated with the coloron mass as the scale, dsqrt_q2fact1, and dsqrt_q2fact2 in the run_card.dat file. These samples were also generated without !MadGraph cuts as demonstrated in the run_card.dat for 500 GeV mass included above. The specific generations run were {{{ p p > GH, GH > b c~ l+ vl @1 GHT=1 QED=2 p p > GH, GH > b~ c l- vl~ @2 GHT=1 QED=2 }}} To generate the settings for a specific coloron mass, use the appropriate model directory contained in the Octet-tcgg zip file.