== 4-fermion EFT with FCNC implementation == Authors: * Yoav Afik (yoavafik@campus.technion.ac.il) * Jonathan Cohen (jcohen@campus.technion.ac.il) * Eitan Gozani * Enrique Kajomovitz * Yoram Rozen Department of Physics, Technion: Israel Institute of Technology Haifa, Israel == Description of the model: This is a Contact Interaction model with b-s-l-l FCNC terms. The lagrangian of the model is described by: \\ {{{ #!latex \begin{eqnarray} \mathcal{L}_{eff} = \frac{C_{ij}^{U \mu}}{v^2} (\bar{u}_{L}^{i} \gamma_{\mu} u_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + \frac{C_{ij}^{D \mu}}{v^2} (\bar{d}_{L}^{i} \gamma_{\mu} d_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + \\ \frac{C_{ij}^{U e}}{v^2} (\bar{u}_{L}^{i} \gamma_{\mu} u_{L}^{j}) (\bar{e}_{L} \gamma_{\mu} e_{L}) + \frac{C_{ij}^{D e}}{v^2} (\bar{d}_{L}^{i} \gamma_{\mu} d_{L}^{j}) (\bar{e}_{L} \gamma_{\mu} e_{L}) \end{eqnarray} }}} Only the off-diagonal elements for the b-s admixtures are considered, since those are the ones related to the observed b-s-l-l anomalies. The matrices take the form: {{{ #!latex \begin{eqnarray} C_{ij}^{U \mu} = \begin{pmatrix} C_{u \mu} & 0 & 0 \\ 0 & C_{c \mu} & 0 \\ 0 & 0 & C_{t \mu} \end{pmatrix} , C_{ij}^{D \mu} = \begin{pmatrix} C_{d \mu} & 0 & 0 \\ 0 & C_{s \mu} & C_{b s \mu}^{*} \\ 0 & C_{b s \mu} & C_{b \mu} \end{pmatrix} \end{eqnarray} \begin{eqnarray} C_{ij}^{U e} = \begin{pmatrix} C_{u e} & 0 & 0 \\ 0 & C_{c e} & 0 \\ 0 & 0 & C_{t e} \end{pmatrix} , C_{ij}^{D e} = \begin{pmatrix} C_{d e} & 0 & 0 \\ 0 & C_{s e} & C_{b s e}^{*} \\ 0 & C_{b s e} & C_{b e} \end{pmatrix} \end{eqnarray} }}} A more simple model is also attached, contains only the b-s-l-l non-diagonal terms for simplicity. == Sample commands for MadGraph5_aMC@NLO: {{{ define p = g u c d s b u~ c~ d~ s~ b~ define j = g u c d s b u~ c~ d~ s~ b~ generate p p > mu+ mu- add process p p > mu+ mu- j add process p p > mu+ mu- j j }}} == Reference: * Please cite as: Afik, Y., Cohen, J., Gozani, E. et al. J. High Energ. Phys. (2018) 2018: 56. * Link to paper: https://link.springer.com/article/10.1007/JHEP08(2018)056