== Alternative Left-Right Symmetric Model == '''Model''' Alternative Left-Right Symmetric Model (ALRM)[[BR]] '''Author''' Mustafa Ashry[[BR]] 1. Center for Fundamental Physics, Zewail City of Science and Technology, Sheikh Zayed, 12588 Giza, Egypt 2. Department of Mathematics, Faculty of Science, Cairo University, 12613 Giza, Egypt '''Emails''' mustafa@sci.cu.edu.eg[[BR]] mashry@zewailcity.edu.eg[[BR]] '''Model Description''' As any other left-right symmetric model, ALRM is a QFT gauged by SU(2)_L×SU(2)_R×U(1)_B-L. B and L being the baryon and lepton numbers. An extra discrete S symmetry is imposed to differentiate between Higgs fields and their dual fields and hence their interactions. As in the SM, left fermions compose SU(2)_L doublets. Right charged leptons are accommodated in SU(2)_R doublets with corresponding extra particles (scotinos) and right up-quarks in SU(2)_R doublets with corresponding extra exotic down-type quarks. Right neutrinos and down-quarks are SU(2)_L,R singlets. The Higgs sector composes of an SU(2)_L-doublet, an SU(2)_R-doublet and a bidoublet. The physical gauge sector of the model contains the electroweak gauge bosons (photon, W and Z bosons) and two extra gauge bosons (W' and Z') correspond to the SU(2)_R group. The left-right symmetry is broken to the SM SU(2)_L×U(1)_Y, Y being the hypercharge, by the SU(2)_R-doublet vev, then the electroweak symmetry is broken to the U(1)_em through the bidoublet and the SU(2)_R-doublet vevs. Accordingly, all ferminos and gauge bosons (except of course photon) become massive through the so-called Higgs mechanism. Dirac (massive) neutrinos are considered with the mixing MNS matrix implemented with the normal hierarchy. Three mixed generation of quarks is considered and hence the general case of the CKM matrix is implemented. The model contains ten physical Higgs bosons: four neutral CP-even higgs bosons, one (the lightest) of which is fixed to have a mass mh=125 GeV. Four charged Higgs bosons and two CP-odd pseudoscalar Higgs bosons. The mass spectrum is calculated and the rotation matrices are implemented analytically. Minimization conditions and spectrum relations are all used to express the whole model parameters and spectra in terms of only five independent (external) parameters: tanbeta,lambda_2,lambda_3,alpha_1,alpha_2. As in any two-Higgs doublet model, e.g., MSSM, tanbeta is the ratio between two vevs. The parameters lambda_2,lambda_3,alpha_1,alpha_2 are dimensionless potential parameters. The charged Higgs masses are implemented as external parameters. '''References''' 1. M. Ashry and S. Khalil, ''Phenomenological aspects of a TeV-scale alternative left-right model'', Physical Review D 91, 015009 (2015) (arXiv:1310.3315) ([https://inspirehep.net/record/1258411]). 1. Mustafa Ashry, ''TeV-scale left-right symmetric model with minimal Higgs sector'', Master Thesis, Cairo University, Cairo (2015), Egypt ([http://scholar.cu.edu.eg/sites/default/files/science_math_mashry/files/mashry_msc.thesis.pdf]). '''Warnings''' For the CalcHEP files, it's advised to use those uploaded to the page ([https://feynrules.irmp.ucl.ac.be/attachment/wiki/ALRM/ALRM_CalcHEP.rar]) and not to reproduce them again from the model files. In the later case, you will be faced by a conflict between the string size produced by FeynRules and this allowed by CalcHEP. In fact, those CalcHEP files uploaded to the page are general and there is no need to produce them again, unless you have modified the model itself and want to generate the new ones. '''Acknowledgements''' Special thanks to ''W. Abdallah''; being revised the CalcHEP files and fixed the string size errors manually. The author would like to thank ''W. Abdallah'', the late colleague ''A. Elsayed'' and ''A. Moursy'' for their helpful hints and useful discussions. Thanks to Prof. ''M. E. Peskin'' and Dr. ''B. Fucks'' for replying the questions and for their guiding notes.[[BR]]