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Abstract

In this manual we present FeynRules, a new Mathematica package that facilitates the implementation of new particle
physics models. After the user implements the basic model information (e.g. particle content, parameters and Lagrangian),
FeynRules derives the Feynman rules and stores them in a generic form suitable for translation to any Feynman diagram
calculation program. The model can then be translated to the format specific to a particular Feynman diagram calculator
via FeynRules translation interfaces. Such interfaces have been written for CalcHEP/CompHEP, FeynArts/FormCalc,
MadGraph/MadEvent and
Sherpa, making it possible to write a new model once and have it work in all of these programs. In this paper, we describe
how to implement a new model, generate the Feynman rules, use a generic translation interface, and write a new translation
interface. We also discuss the details of the FeynRules code.
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Figure 1: The FeynRules flowchart.

Contents

1 Introduction 3

2 The Model Description 4
2.1 Model Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Index Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Gauge Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Scalar parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Tensor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Particle Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Restriction files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The Lagrangian 18

4 A Simple Example 19
4.1 Model Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Gauge Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Running FeynRules 23
5.1 Loading FeynRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Loading the Model-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Extracting the Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Writing TEX Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Manipulating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



6 The ToolBox 26
6.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Manipulating a Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Checking a Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Manipulating vertex lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Interfaces 30
7.1 Special Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 CalcHEP/CompHEP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 FeynArts Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 MadGraph/MadEvent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 TeX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Implementing an Interface 38
8.1 The Particle List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 The Mass and Width Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3 The External Parameter List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.4 The Internal Parameter List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.5 Writing a Translation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 Code Details 42
9.1 Model File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 Index Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3 Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.4 Majorana Fermions and Conjugated Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5 Implemented models and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Conclusions 46

1 Introduction

The Standard Model (SM) of high energy physics has been amazingly successful at describing and predicting the physics of
high energy colliders. We have found every particle in the SM except the Higgs, a fundamental scalar field which may be
responsible for breaking the electroweak interactions. We do not know if we will find the Higgs as a fundamental scalar field,
but we do know that the SM with the Higgs removed violates unitarity at around a TeV. On the other hand, even if we
discover the Higgs, we expect new physics to emerge at the TeV scale to stabilize it. Either way, we have strong theoretical
reason to believe a rich new spectrum of fields and symmetries will emerge at the TeV scale.

The Large Hadron Collider (LHC) will turn on this year with the primary purpose of probing this scale. To determine which
model of new physics is correct requires comparison of the predictions of the models and the results of the experiment. Such
predictions often require the computation of thousands if not tens of thousands of Feynman diagrams. Such a monumental
task is especially suited to computers. There are several programs on the market that calculate the Feynman diagrams which
can be used for this task. A few of these are CalcHEP/CompHEP[1, 2, 3], FeynArts/FormCalc[4, 5, 6, 7, 8, 9, 10, 11],
Herwig[12, 13, 14, 15], MadGraph/MadEvent[16, 17], Sherpa[18], and Omega/Whizard [19, 20]. Each of these programs has
its own strengths and it would be ideal if we could simultaneously implement a model in all of these programs. However,
implementing a new model in these Feynman diagram programs can be a tedious and error prone process, often requiring
the input of one vertex at a time.

The first program to take as input a model file with the Lagrangian, compute the Feynman rules and then write the model
file for a Feynman diagram calculator was LanHEP[21, 22, 23, 24]. It allows the user to write the Lagrangian in a form that is
close to the form written on paper, derives all the vertices and then writes a model file appropriate for CalcHEP/CompHEP.
It also allows the user to run several tests on the Lagrangian, thus reducing errors in the implementation. Nevertheless, this
package only produces model files appropriate for CalcHEP/CompHEP, and more recently an output which allows to write
FeynArts model files has been added. A user who wishes to use one of the other Feynman diagram calculators has not been
able to use this program directly.

FeynRules is a new package based on Mathematica R©1 which takes a model file with the Lagrangian as input and com-
putes the interaction vertices associated with this Lagrangian. The underlying algorithm, based on canonical quantization
formalism, is suitable not only for renormalizable theories, but allows the calculation of the Feynman rules in effective theories

1Mathematica is a registered trademark of Wolfram Research, Inc.
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involving higher-dimensional operators as well, which makes the package a useful tool for developing models containing the
SM as a low-energy effective theory. Furthermore, this package contains a set of functions allowing the user to test (e.g.
hermiticity, correct normalization, etc. ) and build their model one piece at a time. In addition to these built-in functions,
the user is invited to exploit the full power of the underlying Mathematica code to extend these functions and to create
his/her own new routines.

The basic input a user provides when implementing his/her model into FeynRules is the so called model file, a text file
containing all the properties of the model (particles, parameters, etc. ), and the Lagrangian written down using standard
Mathematica commands, augmented by some new symbols like Dirac matrices, which are necessary when writing down a
Lagrangian. The information contained in the model file, together with the interaction vertices computed inside Mathematica,
are stored in a generic format which is suitable for any further processing of this information. In a second step, FeynRules
can translate this generic model (with the vertices) into the model format of choice and allows in this way to implement the
new model in any tool for which such a “translation interface” exists. This approach allows FeynRules to go beyond previous
packages in several ways:

1. FeynRules is not tied to any existing Feynman diagram calculator.

2. The generic model format of FeynRules is suitable to be translated to any other format.

3. The user may choose his favorite Feynman diagram calculator, according to the strength and advantages of the latter.

4. The underlying Mathematica structure allows a ‘theorist-friendly’ environment, which makes the package useful as a
sandbox to develop a new model.

Let us comment on some of these points in more detail:
First, as the generic model information is not tied to any specific Feynman diagram calculator or programming language,

it is easy to write translation interfaces to other packages without any restrictions on the required format or details of the
programming language. In this way, the user can avoid performing different implementations of the same model for different
Feynman diagram calculators, which is generally a time-consuming and error prone process. Currently, such interfaces have
been written for CalcHEP/CompHEP, FeynArts/FormCalc, MadGraph/MadEvent and Sherpa, and we hope that we will have
more interfaces in the future. Furthermore, this approach allows the user to exploit the strength of each Feynman diagram
calculator for which a translation interface exists, because once a FeynRules implementation of the model is available, the
model can be automatically implemented into any of these codes (so long as the code supports all the vertices in the model).

Second, the user can rely on the power of the underlying Mathematica structure when writing the model file and using
FeynRules for phenomenological studies. This allows to easily write new user-defined routines without having to rely on
knowledge of any programming language exterior to Mathematica and provides thus a very general and theorist-friendly
environment where extensions of the FeynRules core code can be written. The FeynRules package and core code can always
be found together with an up-to-date manual at http://feynrules.phys.ucl.ac.be.

The outline of the paper is as follows: In Section 2 we discuss the structure of the FeynRules model files, the key ingredient
of a FeynRules implementation where all the particles and parameters are declared. In Section 3 we show how to write a
Lagrangian in FeynRules using standard Mathematica commands, augmented by some new symbols representing special
objects like Dirac matrices, and in Section 4 we give as a complete example the implementation of QCD with six quark
flavors. In Section 5 we explain how to run the code to compute interaction vertices. Section 6 is devoted to the ToolBox, a
set of additional functions which are not directly related to the computation of the interaction vertices, but which might be
useful at different stages during the development and the implementation of a new model. In the Sections 7 and 8 we discuss
the translation interfaces to Feynman diagram calculators and how it is possible to write new interfaces using the generic
model information contained in FeynRules. Finally, in Section 9 we briefly discuss some details concerning the underlying
algorithms and in Section 10 we draw our conclusions.

2 The Model Description

At the level of Feynman diagram calculations, a new model consists of the following:

1. a set of quantum fields.

2. a set of parameters.

3. a Lagrangian density.

In order to implement such a new model in a program that calculates Feynman diagrams, this information must be
entered in a format appropriate for the respective program. Each program has its own format making this a tedious and
error prone process. FeynRules solves this problem by allowing the user to write their model in a generic “FeynRules”
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format and then run a FeynRules interface that translates this format into the format appropriate for the Feynman diagram
calculation program of choice. To do this, the user creates a FeynRules model description containing the essential model
information as well as various options that simplify the process of writing the Lagrangian and the translation into various
Feynman amplitude programs.

Because many fields have similar properties and interactions, it is convenient to group particles into classes. For this
reason, and others, the FeynRules model format was taken to be an extension of the FeynArts format. This extension
includes new classes and new options for each class that are useful for calculating the Feynman rules and/or for translation
to a Feynman amplitude program.

In the following subsections, we describe these classes and options and how they are used in the model description. All
of this information can be entered in a plain text file or it may be entered directly into a Mathematica notebook. If the
information is entered in a Mathematica notebook, we believe it is a good idea to transfer it to a plain text file when it is
finished and ready to share with the world.

2.1 Model Information

Information about the model may be included using the optional variables M$ModelName and M$Information. The first
of these is a string giving the name of the model. The default model name is the filename of the model file if the model
description is entered in a text file.

The variable M$Information acts as an electronic signature of the authors of the model. It consists of a replacement list
containing the name(s), institution(s), and email(s) of the author(s), the date the model implementation was created, a list of
references that the author(s) would like cited when this model implementation is used, a URL for the model if available2 and
a version number for the model. The author list and references will be written to the screen whenever a user loads this model,
reminding them to give the authors due credit. The full contents of M$Information can be seen by evaluating the function
ModelInformation[] at any time after the model is loaded. An example of the use of M$ModelName and M$Information is
shown below:

M$ModelName = "my new model";

M$Information = {Authors -> {"Mr. X", "Ms. Y"},

Institutions -> {"UCL"},

Emails -> {"X@ucl.be", "Y@ucl.be},

Date -> "01. 01. 2010",

References -> {"reference 1", "reference 2"},

URLs -> {"http://feynrules.phys.ucl.ac.be/view/Main/MyNewModel"},

Version -> "1.0"

};

2.2 Index Definitions

Many fields and parameters carry indices specifying their members and how they transform under symmetry groups. For
example, an SU(N) gauge field Gaµ carries two indices:

• a Lorentz index µ ranging from 0 to 3.

• an adjoint gauge index a ranging from 1 to N2 − 1.

FeynRules treats a field ψi1i2... as an object of the form psi[index1, index2. . . ], where index1, index2, . . . denote objects of
the form Index[name, value]. For FeynRules to run properly, all the indices have to be declared in the model description,
together with the range of values they can take. This is done by including the IndexRange command as in the following
examples:

IndexRange[ Index[Colour] ] = Range[3]

IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ]

This declares two indices named Colour and Gluon which range form 1 to 3 and 1 to 8 respectively. Notice the appearance of
the NoUnfold command on the right-hand side of the declaration for the index Gluon. This command is ignored by FeynRules
but plays a role in FeynArts. If included, the FeynArts interface will write this to the FeynArts model file. For more details
on how indices are used inside FeynRules, see Section 9.

2A model database has been created on the FeynRules website. We encourage the authors of models to publish their model there once they
have finished their physics analyses and are ready to share it with the world.
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Table 1: Model Information

M$ModelName A string, specifying the name of the model.
The default value is the name of the model
file.

M$Information A replacement list, acting as an electronic
signature of the model implementation.

ModelInformation[ ] Prints the contents of M$Information in a
Mathematica notebook.

Options for M$Information
Authors A list of strings, specifying the authors of

the model implementation.
Institutions A list of strings, specifying the institutions

of the authors.
Emails A list of strings, specifying the email ad-

dresses of the authors. The order of the
email addresses is the same as the order in
which the names of the authors have been
specified.

Date A string specifying the date.
References A list of strings, containing the references

the authors would liked cited whenever the
model implementation is used.

URLs A list of strings, containing the URL’s for
this model.

Version A version number for the model. Each time
the model is improved, this version number
should be increased and a note written in
the model file describing the change.

Table 1:
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Table 2: Index Information

Index[name,value] Represents an index of type name with
value value.

IndexRange[Index[name]] Declares an index of type name along with
its range.

Range[value] Declares the range of an index to be from
1 to value.

IndexStyle[name, symbol] Fixes the StandardForm and
TraditionalForm of an index of type
name to print as symbol.

NoUnfold FeynArts command. This is only used by
the FeynArts Interface.

Lorentz Name for Lorentz indices, ranging from 1
to 4, and printing as µ.

Spin Name for Dirac indices, ranging from 1 to
4, and printing as s.

Table 2:

As already stated above, an index is represented internally by an object of the form Index[Colour, ...]. To make
the output more readable, the user can specify how FeynRules should print an index of a given type. This is done via the
IndexStyle command. Some examples are:

IndexStyle[ Colour, i ]

IndexStyle[ Gauge, a ]

which tell FeynRules to print indices of type Colour and Gluon as i and a respectively.
Four-vector indices (Lorentz) and Dirac indices (Spin) are predefined in FeynRules and do not need to be declared in

the model description. Both indices range from 1 to 4, and print as µ and s respectively.

2.3 Gauge Groups

The structure of a typical Lagrangian is governed by symmetries which fix the form of the interactions. For this reason, it is
useful to declare gauge group classes in the FeynRules model description. Here each gauge group class is given a name, and a
set of options which specify the details of the gauge group. All gauge group classes are contained in the list M$GaugeGroups,
for example:

M$GaugeGroups = {

gaugegroup1 == { options },

gaugegroup2 == { options },

...}

A complete list of options may be found in Table 3. We here detail a few of them:
Gauge group classes are divided into abelian and non abelian groups, distinguished by the option Abelian which can take

the value True or False.
The symbols defined by SymmetricTensor and StructureConstant are internally defined as tensor parameters, which

are completely symmetric and antisymmetric in all indices. In particular, the SU(2) structure constant has been implemented
explicitly and is given by the symbol Eps, which represents the Levi-Civita totally antisymmetric tensor.

Information about the different representations of each gauge group are specified using the option Representations

which is a list of the representations used in the model. For each representation, a symbol and the index which it acts on
can be specified as in

Representations -> {{T1, Colour1}, {T2, Colour2},...}.

This defines two representations of the gauge group, whose generators are T1 and T2 acting on the indices Colour1 and
Colour2 respectively. Note that

• T1 and T2 are now automatically defined as tensors with indices {Gluon, Colour1, Colour1} and {Gluon, Colour2,

Colour2}, where Gluon denotes the index of the adjoint representation, carried by the gauge boson specified by the
GaugeBoson option.
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• The indices Colour1 and Colour2 as well as Gluon must be declared as indices.

As an example, here is the declaration of a U(1) and an SU(3) gauge group:

M$GaugeGroups ={ ...,

U1EM == {Abelian -> True,

GaugeBoson -> A,

Charge -> Q,

CouplingConstant -> ee},

...,

SU3C == {Abelian -> False,

GaugeBoson -> G,

StructureConstant -> f,

CouplingConstant -> gs,

Representations -> {T, Colour}},

...

}

where T is the symbol representing the SU(3) matrices in the fundamental representation, and Colour is the name of the
gauge index carried by the quarks.

We note here that when a gauge group is declared, FeynRules automatically constructs the field strength tensor and
covariant derivative associated with it. This can be used in the Lagrangian, for example, to create the kinetic and self
interaction terms for the gauge bosons. For an abelian gauge group, the field strength tensor is given by FS[A, mu, nu],
where A is the gauge boson and mu and nu denote the Lorentz indices carried by the field strength tensor. In the case of a non
abelian gauge group, it is given by FS[G,mu,nu,a], where G is the gauge boson, mu and nu denote the Lorentz indices and a

the (adjoint) gauge-index carried by the field strength tensor. The covariant derivative is given by DC[phi, mu], where phi

is the field that it acts on and mu is the Lorentz index3. Although there is a sign convention for the coupling constant, it
must be used consistently throughout the Lagrangian. We note that the convention in the field strength tensor defined here
is the following:

F aµν = ∂µG
a
ν − ∂νG

a
µ + gsf

abcGbµG
c
ν (1)

and the convention for the covariant derivative is:

Dµφ = ∂µφ+ igsG
a
µT

aφ (2)

where gs is the coupling constant, f is the structure constant and G is the gauge boson. This convention can however be
changed by setting the variable FR$DSign to -1 (The default value is 1).

2.4 Parameters

A model also contains many parameters such as coupling constants, mixing angles, masses, gauge charges, etc. . These are
specified in the model desciption as a list of parameters with options as in the following example:

M$Parameters = {

...,

param1 == { options },

param2 == { options },

...

}

where param1 and param2 are the user-defined names of these parameters and options is a list of optional information about
each parameter.

The first option a user should specify for any parameter is whether it is external (independent) or internal (dependent).
This is done with the ParameterType option which can be set to either:

1. External: This is an independent parameter and is given by a numerical value (e.g. the strong coupling αs = 0.118).
This is the default for scalar parameters.

2. Internal: This is a dependent parameter and is specified in terms of the other parameters (e.g. gs =
√

4παs). This is
the default for tensor parameters.

3The authors are grateful to M. Wiebusch for implementing the covariant derivative in FeynRules.
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Table 3: Gauge Group Options

Abelian Mandatory. Specifies whether the gauge
group is abelian (True) or not (False).

GaugeBoson Mandatory. Gives the name of the gauge
boson associated with the gauge group.
The gauge boson name must be included
in the particle list. The gauge bosons
corresponding to different gauge groups
should always be defined in separate parti-
cle classes.

CouplingConstant Mandatory. Gives the symbol of the cou-
pling constant associated with the gauge
group. This symbol must be included in
the parameter list.

Charge Mandatory for abelian groups. The sym-
bol corresponding to the U(1) charge con-
nected with this gauge group.

StructureConstant Mandatory for non abelian groups. The
symbol associated with the structure con-
stant of the gauge group.

SymmetricTensor The symbol associated with the completely
symmetric tensor of a non abelian gauge
group.

Representations A list, containing all the representations
defined for this gauge group. A representa-
tion is a list of two elements, {T, Colour},
T being the symbol by which the genera-
tors of the representation are denoted, and
Colour being the name of the index this
representation acts on.

Definitions A list of replacement rules that should be
applied by FeynRules before calculating
vertices.

Table 3:

Table 4: Field Strength Tensor and Covariant Derivative

FS[A, µ, ν] The field strength tensor Fµν connected
with the U(1) gauge boson A.

FS[G, µ, ν, a] The field strength tensor F aµν connected
with the non abelian gauge boson G.

DC[φ, µ] The covariant derivative acting on φ with
Lorentz index µ.

Table 4:
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Correctly specifying the relationship between parameters in this way is crucial for obtaining correct results from the Feynman
diagram calculators. For example, it is well known that MZ , MW and cos θW are related by cos θW = MW /MZ (at tree
level). Violations of this relation (at tree level) in the SM lead to a loss of unitarity and incorrect results.

FeynRules further distinguishes between two types of parameters:

1. Scalar parameters which do not carry any indices (e.g. coupling constants, masses, etc. ).

2. Tensor parameters which carry one or more indices (mixing matrices, gauge matrices, etc. ).

A list of the options common to scalar and tensor parameters can be found in Table 5 while a list of the options unique to
tensor parameters can be found in Table 6.

Many Feynman diagram calculators have the strong and electromagnetic interactions built in. For this reason, it is
necessary to use fixed names for the parameters associated with these interactions. A list of the special parameters is given
in Table 7. In the rest of this subsection we comment on the details of scalar and tensor parameters.

2.4.1 Scalar parameters

The value of a scalar parameter is specified by the Value option. For external parameters, the value is a number, whereas for
internal parameters, the value is the formula which defines the parameter. The formula can be in terms of other parameters,
whether internal or external. However, formulas using other internal parameters should come later in the parameter list. (For
example, if the definition of the weak mixing angle is in terms of the W boson mass, then the weak mixing angle definition
should come later in the parameter list than the W boson mass definition.) The default value is 1. Some examples are:

• Value -> 127.9,

• Value -> Sqrt[1-sw^2],

• Value -> Sqrt[ 4 Pi \[Alpha]S ].

The definition option can be used in place of the value option if desired. If this is done, the parameter will be replaced
according to the definition before the vertices are derived.

The option ComplexParameter, which can take the values True or False, determines whether FeynRules treats the
parameter as complex. The default value is False (it treats the parameter as real).

Besides these options which are directly used by FeynRules, there is an additional set of options that is not necessary for
FeynRules to derive Feynman rules, but is needed by some of the interfaces to Feynman diagram calculators.

Since the parameter can be a general Mathematica symbol which may not be appropriate for programming languages
other than Mathematica, Parameter- Name specifies what to replace the symbol by before writing out the Monte Carlo
model files. It should not contain special symbols. By default, ParameterName is the same as the Mathematica symbol for
the parameter. Some examples are

• ParameterName -> aS,

• ParameterName -> lam

for the symbols αS and λ respectively.
Many Monte Carlo programs use a Les Houches (LH) format to input the external parameters. The LH block to which

a parameter should be added can be chosen via the BlockName option. If no LH block is specified, then the parameter is
automatically assigned to the block FRBlock. The number by which the external parameter should be labeled inside a given
LH block is by default the order in which the parameters appear inside the model desciption, starting from 1. This number
can however be changed using the OrderBlock option.

Some Monte Carlo programs, such as MadGraph/MadEvent, require that the order of a coupling is known a priori (e.g.
gs is a coupling of order one in QCD while αs is a coupling of order two). This information can be passed into FeynRules
via the InteractionOrder option, which is used in the following way:

InteractionOrder -> {QCD, 2}

Notice that this option is available for both external and internal parameters, and that it is not inferred through the relation
among external and internal parameters. Furthermore, it has no default value, i.e. if left unspecified by the user, the
interaction order for this parameter will be left undefined.

We include an example of a complete scalar parameter specification:
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Table 5 : Parameter Options
ParameterType Specifies whether a parameter is External

or Internal. The default value is
External for scalar parameters and
Internal for tensor parameters.

Value Gives the value or the formula which de-
fines the parameter. The formula can be
in terms of other parameters, whether in-
ternal or external. The default value is 1.

Definitions A list of replacements rules that should
be applied by FeynRules before calculating
vertices.

ComplexParameter Defines whether the parameter should be
treated as real (False) or complex (True).
By default, this option is set to False for
scalar parameters but to True for tensor
parameters.

TeX This option tells FeynRules how to write
the TEX form of this parameter. This is
used when writing TEX output. By de-
fault, this is the same as the Mathematica
symbol.

Description A string, describing the parameter.
Additional information for Feynman diagram calculators
ParameterName Specifies what to replace the symbol by

before writing out the Feynman diagram
calculator model files. It should not con-
tain special symbols. By default, this is
the same as the Mathematica symbol.

BlockName Specifies the LH block name of the parame-
ter. By default, the block name is FRBlock.
This option is only available for external
parameters.

OrderBlock The LH block number. By default, this
number is given by the order in which the
parameters appear in the model desciption,
starting from 1. This option is only avail-
able for external parameters.

InteractionOrder Specifies the order of the parameter in a
particular coupling. This option has no de-
fault value.

Table 5:
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gs == {

ParameterType -> Internal,

Value -> Sqrt[4 Pi \[Alpha]S],

ParameterName -> G,

InteractionOrder -> {QCD, 1},

TeX -> Subscript[g, s],

Description -> "Strong coupling constant"}

2.4.2 Tensor parameters

Tensor parameters are declared by giving the option Indices a value as in the following examples:

• Indices -> {Index[Generation]},

• Indices -> {Index[Generation],Index[Generation]},

• Indices -> {Index[SU2],Index[SU2]}.

Tensors share common options with scalar parameters, but value and/or definitions must be given for each component of
the tensor. For example, the Cabibbo matrix might have the following value option:

Value -> {CKM[1,2] -> Sin[cabi],

CKM[1,1] -> Cos[cabi],

CKM[2,1] -> -Sin[cabi],

CKM[2,2] -> Cos[cabi]}

Unlike scalar parameters, tensors are by default complex and internal. Tensors also have some new options with respect
to scalar parameters. In many situations, tensors correspond to unitary, hermitian or orthogonal matrices. This can be
specified by turning the Unitary, Hermitian or Orthogonal options to True. The default value for each is False.

FeynRules usually assumes the summation convention on indices. This requires the indices to come in pairs. However,
it is sometimes useful to break this rule. An example is a diagonal Yukawa matrix. The summation convention requires the
Yukawa interaction term to be written as Hψ̄fyff ′ψf ′ . However, if the Yukawa matrix is diagonal, it is convenient to write
this as yfHψ̄fψf which violates the summation convention. This can be accomplished in FeynRules by setting the option
AllowSummation to True for the Yukawa coupling y. FeynRules will then allow its index to be summed over along with the
two that define the summation convention (in this case the indices on the fermions). This option is only available for tensors
carrying one single index.

A complete tensor specification example is given here:

CKM == {

Indices -> {Index[Generation], Index[Generation]},

Unitary -> True,

Definitions -> {CKM[3, 3] -> 1,

CKM[i_, 3] :> 0 /; i != 3,

CKM[3, i_] :> 0 /; i != 3},

Value -> {CKM[1,2] -> Sin[cabi],

CKM[1,1] -> Cos[cabi],

CKM[2,1] -> -Sin[cabi],

CKM[2,2] -> Cos[cabi]},

Description -> "CKM-Matrix"}

We note the simultaneous use of the Value and the Definitions options. The definitions are applied before calculating the
vertices and thus allow the Feynman rules to be simplified by omitting any vertices proportional to CKM[1,3] and CKM[2,3],
which are zero. The result of this is to speed up both FeynRules and the programs that use the Feynman rules thus generated.
If, on the other hand, all the values had been entered using the Value option, vertices between the first and third generation
would have appeared in the vertex list where the coupling would have been zero. The result would be that the Feynman
diagram calculation programs would include these vertices in their calculations and only set them to zero after wards.

2.5 Particle Classes

The declaration of the particle classes in the model desciption follows similar lines as the parameters and the gauge groups,
the main difference being that the classes are labeled according to the spin of the particle, following the original FeynArts
syntax:
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Table 6: Tensor parameter options
Indices Mandatory. A list of indices attached to

the tensor.
Unitary Defines a tensor as unitary (True) or not

(False). False by default.
Hermitian Defines a tensor as hermitian (True) or not

(False). False by default.
Orthogonal Defines a tensor as orthogonal (True) or

not (False). False by default.
AllowSummation See the description above. False by de-

fault. This option is only available for ten-
sors with exactly one index.

Table 6:

Table 7: Special Parameter Names
gs The symbol for the strong coupling con-

stant.
aS The ParameterName for g2

s/4π.
T The symbol for the fundamental represen-

tation of the strong gauge group.
f The symbol for the structure constants of

the strong gauge group.
ee The symbol for the electromagnetic cou-

pling constant.
aEW The ParameterName for e2/4π.
aEWM1 The ParameterName for α−1

EW .
Q The symbols by which the electric charge

is represented.

Table 7:
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• S: Scalar fields.

• F: Dirac and Majorana spinor fields.

• V: Vector fields.

• T: Spin-2 fields (only real fields are supported).

• U: Ghost fields (only complex ghosts are supported).

Each particle class can contain all the particles with the same quantum numbers (although they may have different masses).
This allows the user to write compact expressions for the Lagrangian, for example, consider the QCD Lagrangian:

LQCD = −1

4
GaµνG

µν
a + q̄f i/∂qf + gsq̄fγ

µT aqfG
a
µ, (3)

where qf denotes the “quark class”, and avoids writing out explicitly the Lagrangian term for each quark flavor.
The particle declaration is written as:

M$ClassesDescription = {

particle1 == { options },

particle2 == { options },

...}

The particle classes have two mandatory options:

1. Each particle class must be given a name, specified by the ClassName option. This name is the symbol by which the
particle class is denoted in the Lagrangian. Note that FeynRules only reads in particle classes for which ClassName is
defined.

2. By setting the option SelfConjugate, the user specifies whether the particle has an antiparticle or not. The possible
values for this option are True or False.

In addition to these two options, particle classes have several additional properties, which as in the case of the parameter
classes can be divided into two classes, those that are used directly by FeynRules and those that are only used by the interfaces
to Feynman diagram calculators. We begin by describing those properties directly related to FeynRules.

Quantum fields are tensors under various symmetry groups and therefore have a collection of indices. Additionally, a field
may carry indices as labels (which may not correspond to symmetry groups) as in the case of generation number. The Lorentz
and Spin indices are automatically declared by FeynRules and do not need to be declared by the user. Each additional index
is specified with the option Indices. Two examples of index declarations are given here:

Indices -> {Index[Generation]}

Indices -> {Index[Generation], Index[Colour]}

The order in which the indices are declared is the same as the order in which they are called in the construction of the
Lagrangian.

In addition to the tensor indices, a quantum field may carry charges of abelian groups. These are specified using the
QuantumNumbers option. For example

QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}

QuantumNumbers -> {Q -> 2/3}

The members of the particle class (which carry the same indices and quantum numbers) are given with the ClassMembers
option. If the class contains only one member, this is by default the ClassName. Some examples are:

ClassMembers -> {e, mu, tau}

ClassMembers -> {u, c, t}

for the charged leptons and charge +2/3 quarks respectively. If the class contains more than one member, the field carries
an index which distinguishes the different flavors living in the same class. This index must be declared using the Indices

option as above, but it also must be declared using the FlavorIndex option. This is necessary so that FeynRules can expand
the Lagrangian in this index when generating Feynman rules. For example:

FlavorIndex -> Generation
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Feynman rules are often desired in the mass eigenbasis, however it is often simpler to write the Lagrangian in terms of
the gauge eigenbasis. FeynRules allows the user to define both sets of fields and relate them using the option Definitions.
When FeynRules derives the Feynman rules, it will first apply the definitions, thus transforming the gauge basis into the
mass basis. As an example, consider the relation between the hypercharge gauge boson and the photon and Z bosons:

Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}

Finally, the masses and decay rates of the different class members can be fixed using the Mass and Width options4. Mass
is a list of the masses for each class member. If no value is given, the user may specify only the symbol as in:

Mass -> {MW}

Mass -> {MU,MC,MT}

Mass -> {Mu,MU,MC,MT}

where in the final example, the symbol Mu is given for the entire class, while the symbols MU,MC and MT are given to the
members. Notice that the mass symbol Mu for the entire class is by default a tensor parameter, with the AllowSummation

property set to True (See the example in Section 4). If no numerical value is given, a default value of 1 is defined by
FeynRules. The user can specify numerical values for the masses by expanding each symbol into a two-component list as in
the following examples:

Mass -> {MW, Internal}

Mass -> {MZ, 91.188}

Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}

Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

In the first example, MW is given the value Internal. This instructs FeynRules that the mass is an internal parameter that
is defined by the user in the parameter list. This is the only case in which a user needs to define a mass in the parameter
list. All other masses given in the definition of the particles should not be defined in the parameter list.

The phase φ carried by a Majorana fermion λ can be given specified the MajoranaPhase property for the fermion classes.
After it has been declared in the model desciption, the phase can be called inside a Mathematica program using the command

φ = MajoranaPhase[ λ ]

For ghost particles, there is an option Ghost which tells FeynRules the name of the gauge boson this ghost field is
connected to. There is a similar option Goldstone for scalar fields.

In addition to the options just described, there is a set of options which are not necessary for the calculation of Feynman
rules but which are used by the interfaces to Feynman diagram calculators.

As in the case of the parameters, the Mathematica symbol defined for a particle may not be appropriate for Feynman
diagram calculators. For this reason, the options ParticleName and AntiParticleName allow the user to specify the string
(or list of strings) that should be used in the external programs. An example follows:

ParticleName -> {"ne","nm","nt"}

where the class members may have been νe, νµ, ντ .
As previously mentioned, it is often convenient to define fields which are not mass eigenstates (for example, gauge

eigenstates). Since these fields are not necessary for the Feynman diagram calculators, there is an option Unphysical which
can be set to True and instructs the interface to not write the field to the Feynman diagram calculator model file.

According to the Les Houches accord, each particle is represented by a numerical code, called the PDG code of the particle.
This can be specified in the model desciption via the corresponding option called PDG, whose value is the PDG number of
the particle, or a list of the PDG numbers of the class members. An automatically generated PDG code is assigned if this
options is omitted. It is however strongly recommended to use the existing PDG codes whenever possible. Two examples
should suffice:

PDG -> 23

PDG -> {12,14,16}

Many Feynman diagram calculators draw the Feynman diagrams they generate. Some of these allow the user to specify
how to draw and label the propagators. FeynRules allows the user to specify this information with the following options. The
string attached to the propagator is given by PropagatorLabel, whose default value is the same as the name of the particle.
If there is more than one member of the class, the option should be set to a list of the strings for the members of the class.
The option PropagatorArrow determines whether an arrow should be placed on the propagator. The default value is False.
The option PropagatorType can take any of the following values:

4In the following we only discuss Mass. Width works in exactly the same way.
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Table 8: Particle Class Options
S, F, V, U, T Particle classes.
ClassName Mandatory. This option gives the symbol

by which the class is represented.
SelfConjugate Mandatory. Takes the values True or

False.
Indices The list of indices carried by the field. Note

that Lorentz indices (Lorentz, Spin) are
implicit and not included in this list.

FlavorIndex The name of the index making the link
between the generic class symbol and the
class members.

QuantumNumbers A replacement rule list, containing the
U(1) quantum numbers carried by the
class.

ClassMembers A list of all the members of a class. If the
class contains only one member, this is by
default the ClassName.

Mass A list of the masses for the class members.
A mass can be entered as the symbol that
represents the mass in the Lagrangian. Or,
it may be a two-component list, the first
element being the symbol for the mass,
and the second being the numerical value.
A generic symbol with default numerical
value 1 is generated if omitted.

Width A list of the decay rates for the class mem-
bers. Similar to Mass.

MajoranaPhase The Majorana phase of a Majorana
fermion.

Definitions A list of replacement rules that should be
applied by FeynRules before calculating
vertices.

Table 8:

• ScalarDash: A straight dashed line.

• Sine: A sinusoidal line.

• Straight: A straight solid line.

• GhostDash: A dashed line.

• Curly: A curly (gluonic) line.

2.6 Restriction files

In complicated models with large parameter spaces, it is sometimes preferable to restrict the model to certain slices of that
parameter space. This can be done as usual by adjusting the parameters to lie at that particular point in parameter space
and doing the desired calculation. However, sometimes these slices of parameter space are special in that many vertices
become identically zero and including them in the Feynman diagram calculation can be very inefficient. In order to allow
both the general parameter space and a restricted parameter space, we introduce the model restriction. A model restriction
is a Mathematica list, called M$Restrictions, containing replacements to the parameters which simplify the model. For
example, in the SM the CKM matrix has non-zero matrix elements, but it is sometimes useful to restrict a calculation to
a purely diagonal CKM matrix. Rather than creating a new implementation of the SM with a diagonal CKM matrix, a
restriction can be created and used when desired. The following statement restricts the SM to a diagonal CKM matrix
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Particle Class Options (continued)
ParticleName A list of strings, corresponding to the par-

ticle names as they should appear in the
output files for the Feynman diagram cal-
culation programs. By default, this is the
same as defined in ClassMembers. This
name must satisfy the constraints of what-
ever Feynman diagram calculation package
the user wishes to use it with.

AntiParticleName Similar to ParticleName.
TeXParticleName A list of strings. The default is the same

as ParticleName.
TeXAntiParticleName Similar to TeXParticleName.
Unphysical If True, this declares that the field should

not be included in the particle list written
for another code by a FeynRules interface.
The default is False.

PDG A list of the PDG codes of the particles.
An automatically generated PDG code is
assigned if this options is omitted.

PropagatorLabel A list of strings propagators should be la-
beled with when drawing Feynman dia-
grams. The default value is the same as
the ParticleName.

PropagatorType This specifies how to draw the propagator
line for this field. The default value is in-
ferred from the class.

PropagatorArrow Whether to put an arrow on the propaga-
tor (True) or not (False). False by de-
fault.

FullName A string, specifying the full name of the
particle, or a list containing the names for
each class member. By default FullName

is the same as ParticleName.
MixingPartners FeynArts option.
InsertOnly FeynArts option.
MatrixTraceFactor FeynArts option.

Table 9:
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M$Restrictions = {

...

CKM[i_, i_] :> 1,

CKM[i_, j_] :> 0 /; i != j,

...

}

When this restriction is applied, all vertices containing off diagonal CKM elements vanish identically and are removed before
passing it on to a matrix-element generator. The result is that these vertices never appear in Feynman diagrams and the
calculation is more efficient. Model restrictions can be defined either directly in the Mathematica notebook, or in a separate
text file with file extension .rst. Several restriction files can be created corresponding to various different slices of parameter
space. The user then selects the restriction file that they are interested in and applies it to the model before running the
translation interfaces.

3 The Lagrangian

Each new model is specified by a Lagrangian, which contains all the information about the interactions among the particles
in the model. Working out the mathematical form of these interactions, i.e. the Feynman rules, may however be a tedious
task. FeynRules uses the information about the particles and parameters, contained in the model desciption, and derives the
Feynman rules directly from the Lagrangian.

The Lagrangian can either be included in a text file with the rest of the model description or directly in a Mathematica
notebook and is entered using ordinary Mathematica commands, augmented by some new commands representing special
symbols like Dirac matrices needed to write down the Lagrangian. A summary of these commands can be found in Table 10.

Quantum fields are represented inside the Mathematica expression for the Lagrangian by an object of the form psi[a,b,c,...],
where psi is the name of the field as defined in the model desciption, and a, b, c,... denote the indices carried by the field,
appearing in the order in which they were declared in the model desciption. The same index notation holds true for tensor
parameters. We note that:

1. If the field carries Lorentz indices (Lorentz or Spin), which were implicit in the definition of the particle class, then
they always appear in the first positions in psi[a,b,c,...].

2. A class member does not carry the flavor index which makes the link between the class members and the generic class
symbol.

If a quantum field is not self conjugate, then FeynRules automatically creates the symbol for the antiparticle by adding
bar to the name of the particle, e.g. if e denotes the electron field, then ebar denotes the positron field. There are two
additional ways to get the names of the antiparticles, by using the commands HC[e] and anti[e]. The command HC is
actually much more general, and denotes the hermitian conjugate of an object. In this sense, it can also be used to create the
hermitian conjugate of an expression, e.g. HC[L] denotes the hermitian conjugate of the Lagrangian L. Notice in this context
that HC[e]does not exactly return the hermitian conjugate of the electron field e, but rather the field ē defined by ē = e†γ0.

For anticommuting fields and parameters, the Mathematica Dot command should be used, which prevents Mathematica
from changing the relative order among these fields and assures that the anticommutation is correctly taken into account in
the calculation of the Feynman rules. However, when vectors and/or matrices are multiplied using the Dot command, the
matrix multiplication is done by Mathematica and the resulting products are reordered unless the matrix multiplication is
wrapped inside the Inner command. As an example, consider the following product and its desired outcome:

(ū, d̄).

(

u
d

)

= ū u+ d̄ d, (4)

where u and d denote the up and down-type quarks. A naive use of the Mathematica Dot command leads to the result

{ubar, dbar}.{u, d} = u ubar + d dbar

where Mathematica reorders the fermions incorrectly. This problem can be overcome by using the Inner command in the
following way:

Inner[Dot, {ubar, dbar}, {u, d}] = ubar.u + dbar.d

which instructs Mathematica to use the Dot command with each resulting product. Each matrix multiplication must be
wrapped in Dot. For example, if the following product is desired:

(ū, d̄).

(

a11 a12

a21 a22

)

.

(

u
d

)

, (5)

where each element is noncommuting, it must be written as:
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Inner[Dot, Inner[Dot, {ubar, dbar} ,

{{a11, a12} , {a21, a22}}] , {u, d}]

to obtain the correct result.
When entering the Lagrangian, there are typically several indices to take into account. If there is no ambiguity, FeynRules

will restore many of them. In order to make this clear, we give several equivalent examples with different levels of index
suppression. We demonstrate these by constructing the QCD Lagrangian with up-type quarks. The Lagrangian is given by:

LQCD = −1

4
GaµνG

µν
a + iūfγ

µ∂µuf + gsūfγ
µT aufG

a
µ. (6)

where f denotes the flavor index of the up-type quark (f ∈ {1, 2, 3}).
The most minimal form of the quark interactions is:

gs uqbar.Ga[mu].T[a].uq G[mu, a]

uq being the symbol of the class of up-type quarks. Its indices include spin, color and generation. All three of these are
implicit. However, these could be made explicit like so:

gs Ga[mu, s, r] T[a, i, j] uqbar[s, f, i].uq[r, f, j] G[mu, a]

There may be times that this is necessary to get indices correctly contracted. We further note that the generations can be
separated and even treated differently if desired. If the generations are given unique names in the particle declaration, then
these names can be used. Here is an example that separates the generations but leaves the other indices implicit:

gs ubar.Ga[mu].T[a].u G[mu, a]

+ gs cbar.Ga[mu].T[a].c G[mu, a]

+ gs tbar.Ga[mu].T[a].t G[mu, a]

or, we can separate the generations and make all the indices explicit like so:

gs Ga[mu, s, r] T[a, i, j] ubar[s, i].u[r, j] G[mu, a]

+ gs Ga[mu, s, r] T[a, i, j] cbar[s, i].c[r, j] G[mu, a]

+ gs Ga[mu, s, r] T[a, i, j] tbar[s, i].t[r, j] G[mu, a]

Since the symbols u, c and t represent specific generations, they do not carry the generation index f .
The gluon kinetic term and self interaction terms are given by the square of the field strength tensor. FeynRules has

predefined a symbol for the field strength tensor, FS[G,mu,nu,a] where G is the gauge boson (gluon in this case), mu and nu

are Lorentz indices and a is the gauge index. Notice that there is a sign convention between the field strength tensor and the
covariant derivative. For the sign convention used in FS, see Section 2.3. This Lagrangian term can be given in FeynRules
as:

-1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]

When these pieces are combined, they are added together and given a name as in this complete example:

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]

+ I uqbar.Ga[mu].del[uq, mu]

+ gs uq.Ga[mu].T[a].uq G[mu, a]

This line may be contained in the model file or it may be given in a Mathematica notebook. Either way, after it is specified,
it may be used to create Feynman rules.

4 A Simple Example

In this section, we describe the implementation of QCD in FeynRules. This implementation is complete in the sense that all
the lines of the model file are presented in this section. This model will not use all the features of FeynRules, but it should
clarify how to write a new model. For more advanced examples, one of the models already implemented should be consulted.

The Lagrangian we consider is the following:

LQCD = −1

4
GaµνG

µν
a + q̄f (i /D −mf )qf − η̄a∂µD

µηa, (7)

where Gaµν denotes the gluon field strength tensor, ηa the ghost field associated to the gluon, and f runs over all six quark
flavor (u, d, s, c, b, t).
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Table 10: Special Symbols for the Lagrangian
del[φ, µ] Partial derivative of φ with respect to the

space-time coordinate xµ.
ME[µ, ν] Minkowski metric tensor ηµν .
IndexDelta[i,j] Kronecker delta δij .
Eps[a,. . . , b] Totally antisymmetric Levi-Civita tensor

with respect to the indices a,...,b.
HC[expr ] Hermitian conjugate of expr.
CC[ψ] The charge conjugate ψc of a Dirac field ψ.
FS Field strength tensor. See Section 2.3.
Ga[µ], Ga[µ, i, j] Dirac Matrix γµ, γµij .

ProjP, ProjP[i, j] Projection operator 1+γ5

2 ,
(

1+γ5

2

)

ij
.

ProjM, ProjM[i, j] Projection operator 1−γ5

2 ,
(

1−γ5

2

)

ij
.

ProjP[µ], ProjP[µ, i, j] γµ 1+γ5

2 ,
(

γµ 1+γ5

2

)

ij
.

ProjM[µ], ProjM[µ, i, j] γµ 1−γ5

2 ,
(

γµ 1−γ5

2

)

ij
.

right[ψ] The right-handed part of the fermion field

ψ, 1+γ5

2 ψ.
left[ψ] The left-handed part of the fermion field

ψ, 1−γ5

2 ψ.

Table 10:

4.1 Model Information

Each model file should begin with the model information, which acts as an electronic signature of the model file. Although
this information is optional, it can be useful to keep track of modifications made to the file, as well as the references used to
fix all the conventions in the Lagrangian, especially if the user of the model file is different form the author of the file. In our
case this information could be entered as follows:

M$Model_Name = "QCD";

M$Information = {

Authors -> {"N. Christensen", "C. Duhr"},

Institutions -> {"Michigan State University",

"Universite catholique de Louvain (CP3)"},

Emails -> {"neil@pa.msu.edu",

"claude.duhr@uclouvain.be"},

Date -> "June 6, 2008"

};

4.2 Indices

Apart from the model information, the frontmatter of each model file must contain the declaration of all types of indices
used inside the model. In QCD, we have three different fields appearing in the Lagrangian,

1. the gluon field Gaµ, carrying two indices, a Lorentz index µ ranging from 1 to 4 and an adjoint color index a ranging
from 1 to 8.

2. the quark field qs,f,i, carrying three indices, a spin index s ranging from 1 to 4, a flavor index ranging from 1 to 6 and
a fundamental color index i ranging from 1 to 3.

3. the ghost field ηa, carrying an adjoint color index a.

In Section 2 we mentioned that the Lorentz and spin indices are hard coded into FeynRules and need therefore not to be
declared. This leaves us with three indices to be declared at the beginning of the model file in the following way:
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IndexRange[ Index[Colour] ] = Range[3];

IndexRange[ Index[Gluon] ] = Range[8];

IndexRange[ Index[Flavor] ] = Range[6];

It is useful to instruct FeynRules how to write the indices, in order to make the output produced by FeynRules more
readable.

IndexStyle[Colour, i];

IndexStyle[Gluon , a];

IndexStyle[Flavor, f];

4.3 Gauge Groups

We now turn to the different kinds of classes we need to define in order to implement our model. As QCD is a gauge theory
based on the gauge group SU(3)c, we define this gauge group by adding the corresponding class to M$GaugeGroups like this

M$GaugeGroups = {

SU3C == {

Abelian -> False,

GaugeBoson -> G,

StructureConstant -> f,

Representations -> {T, Colour},

CouplingConstant -> gs

}

};

Notice that we used the conventions presented in Table 7 for the symbols related to the gauge group of the strong interactions.
Although this convention is not necessary for FeynRules to derive the correct Feynman rules, it is important when running
a translation interface to a Monte Carlo program, which have the strong interactions hard coded.

4.4 Parameters

Next we turn to the definition of the parameter classes. The QCD Lagrangian depends on the following set of free parameters:

1. the values of the quarks masses mf ,

2. the value of the strong coupling constant gs.

As we already explained in Section 2, masses are not defined as parameter classes, but are properties of the corresponding
particles classes. We will therefore only deal with them in the next subsection where we will define the particle classes
entering the model file. We are then left with only one free parameter, the strong coupling constant gs. We will follow the
convention used in most Monte Carlo programs to define the numerical value of gs through the relation gs =

√
4παs. Hence,

we define two new parameters:

1. an external parameter αs with numerical value 0.118.

2. an internal parameter gs defined by gs =
√

4παs.

This can be achieved by adding the corresponding classes to M$Parameters:

M$Parameters = {

\[Alpha]S == {

ParameterType -> External,

Value -> 0.118,

ParameterName -> aS,

BlockName -> SMINPUTS,

InteractionOrder -> {QCD, 2},

Description -> "Strong coupling at the Z pole."

},

gs == {
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ParameterType -> Internal,

Value -> Sqrt[4 Pi \[Alpha]S],

ParameterName -> G,

InteractionOrder -> {QCD, 1},

Description -> "QCD coupling"

}

};

Notice that we have to use the ParameterName property to fix the way αs should be printed when writing out model files
for Monte Carlo programs, because the symbol \[Alpha]S cannot be interpreted by any other programming language than
Mathematica. Furthermore, as gs is defined in terms of αs, αs appears before gs in the parameter list.

4.5 Particles

Finally, we have to define the particle classes, which can be done in the following way:

M$ClassesDescription = {

F[1] == {

ClassName -> q,

ClassMembers -> {d, u, s, c, b, t},

SelfConjugate -> False,

Indices -> {Index[Flavor], Index[Colour]},

FlavorIndex -> Flavor,

Mass -> {MQ, {MD, 0}, {MU, 0}, {MS, 0},

{MC, 1.25}, {MB, 4.5}, {MT, 174}},

Width -> {WQ, {WD, 0}, {WU, 0}, {WS, 0},

{WC, 0}, {WB, 0}, {WT, 1.6}},

PDG -> {1,2,3,4,5,6}

},

V[1] == {

ClassName -> G,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

Mass -> 0,

Width -> 0,

PDG -> 21

},

U[1] == {

ClassName -> \[Eta],

SelfConjugate -> False,

Indices -> {Index[Gluon]},

ParticleName -> "ghG",

AntiParticleName -> "ghG~",

Ghost -> G,

Mass -> 0,

Width -> 0,

QuantumNumbers -> {GhostNumber -> 1}

}

};

This defines three particle classes, corresponding to the quarks, the gluons and the ghosts respectively. Some comments are
in order:

1. As indices of type Lorentz and Spin are implicit in the definition of the particle classes (F, V), they do not need to be
listed in the Indices property.
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2. The FlavorIndex property is used to define which one of the two indices defined by the Indices property for the quark
class refers to the class members defined for this class.

3. For the quarks, we defined a generic mass symbol MQ, as well as six symbols referring to the masses of each individual
class member. Notice that the generic symbol MQ is defined as a tensor parameter carrying one single index of type
Flavor, for which the property AllowSummation is turned to True.

4. Similar to the definition of \[Alpha]S, the name \[Eta] for the ghost field is not appropriate for any other programming
language than Mathematica. We therefore use the ParticleName and AntiParticleName properties to define names
to be used when writing out model files for Monte Carlo programs.

5. The Ghost property for the class U[1] defines the field η to be the ghost field related to the gluon G.

4.6 Lagrangian

Having defined all the classes in the model file, we can now turn to the Lagrangian. The QCD Lagrangian has already been
discussed in Section 3, so we will be brief on this point. The Lagrangian reads:

LGauge = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a];

LQuark = I qbar.Ga[mu].del[q, mu]

+ gs qbar.Ga[mu].T[a].q G[mu,a]

- MQ[f]qbar[s,f,c].q[s,f,c];

dBRSTG[mu_,a_] := 1/gs ( del[\[Eta][a], mu]

+ gs f[a,a2,a3] G[mu,a2] \[Eta][a3] );

LGhost = - gs \[Eta]bar[a].del[dBRSTG[mu,a],mu];

LQCD = LGauge + LQuark + LGhost;

where we defined the ghost Lagrangian making use of the BRST transformation of the gluon. This is an example of how the
user can define new Mathematica routines that may be useful to simplify the writing of the Lagrangian inside Mathematica.
Furthermore, notice the appearance of the mass term MQ[f], which is the generic mass symbol for the quark class defined
for the class q. The Lagrangian can be either included in the model file, or just be given in the notebook.

We have now all the ingredients to run FeynRules and compute the interaction vertices associated to this particular
Lagrangian, which we will describe in the following section.

5 Running FeynRules

After the model description is created and the Lagrangian constructed, it can be loaded into FeynRules and the Feynman
rules obtained.

5.1 Loading FeynRules

The first thing that must be done when using FeynRules is to load the FeynRules package. This should be done before any
of the model desciption is loaded in the kernel and so should be the first line of the Mathematica notebook5. In order to load
the FeynRules package, the user must first specify the directory where FeynRules is stored and then load it in the following
way:

$FeynRulesPath = SetDirectory[ <the address of the package> ];

<< FeynRules‘

5.2 Loading the Model-File

After the FeynRules package has been loaded6, the model can be loaded using the command LoadModel in the following way:

5In other words, if the model description is done in a Mathematica notebook, it should come after FeynRules is loaded.
6We note that the user may want to change the current directory of Mathematica at this point. Otherwise, all FeynRules output may end up

in the main FeynRules directory.
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LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For FeynRules to run properly, the extension of
each model file should be .fr. If the model description is entered directly in the Mathematica notebook, then the list of files
will be empty. In this case, LoadModel[] should come after all the lines of the model description are loaded into the kernel
(executed).

Similarly, the model restrictions can be loaded via the command

LoadRestriction[ < file.rst >, < file2.rst >, ... ]

In case the model restriction was defined directly in the Mathematica notebook, then the list of files will be empty. Note
that a model restriction should always be loaded after the the model description was loaded using the LoadModel command.

Any time the model description changes, the model must be reloaded. Currently, this means that the Mathematica kernel
must be killed and the FeynRules package and model must be reloaded from the beginning. An exception to this is the
Lagrangian. It can be changed and extended without reloading the model description.

5.3 Extracting the Feynman Rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can be extracted using the command FeynmanRules.
For the rest of this section, we will use the QCD Lagrangian defined in Eq. (6). Here is an example of generating the Feynman
rules7:

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are written out on the screen, and also stored internally in the variable vertsQCD. The
function FeynmanRules has several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the screen with the option ScreenOutput as in this
example:

vertsQCD = FeynmanRules[ LQCD, ScreenOutput -> False];

In this case, the Feynman rules are generated and stored in vertsQCD but are not displayed on screen.
In the two previous examples, the flavors were not expanded. For example, the preceding commands will only generate

a single quark-gluon vertex (q qbar G). It is often desirable to expand in flavor indices, obtaining separately the vertices (d
dbar G, u ubar G, s sbar G, etc.). To do this, use the FlavorExpand option. This option can be used to specify individual
flavor indices to expand over as in FlavorExpand->Flavorwhere only the Flavor index is expanded over (and not any other
flavor indices if defined). It may specify a list of flavor indices to expand, as in FlavorExpand->{Flavor,SU2W}. Or, it may
be used to expand over all the flavor indices as in FlavorExpand->True.

The list of Feynman rules can be quite long and it may sometimes be desirable to extract just one or a few vertices. There
are several options available that limit the number of vertices constructed. We list them here:

• MaxParticles -> n instructs FeynmanRules to only derive those vertices whose number of external legs does not
exceed n. The option Min- Particles works in a similar way.

• MaxCanonicalDimension -> n instructs FeynmanRules to only derive those vertices whose canonical dimension does
not exceed n. The option MinCanon- icalDimension works in a similar way.

• SelectParticles ->{{...}, {...},...} instructs FeynmanRules to only derive the vertices specified in the list. For
example, the command:

FeynmanRules[ LQCD, SelectParticles ->{{G,G,G}, {G,G,G,G}}]

will only derive the three and four-point gluon vertices.

• Contains -> { ... } instructs FeynmanRules to only derive the vertices which involve all the particles indicated in
the list.

• Free -> { ... } instructs FeynmanRules to only derive the vertices which do not involve any of the particles indicated
in the list.

7Since the vertices list may be very long, it may be desirable to end this statement with a semicolon.
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FeynmanRules, by default, checks whether the quantum numbers that have been defined in the model file are conserved
for each vertex. This check can be turned off by setting the option ConservedQuantumNumbers to False. Alternatively, the
argument of this option can be a list containing all the quantum numbers FeynRules should check for conservation.

The Feynman rules thus constructed are stored internally as a list of vertices where each vertex is a list of two elements.
The first element enumerates all the particles that enter the vertex while the second one gives the analytical expression for
the vertex. We illustrate this for the quark-gluon vertex:

{{{G, 1}, {qbar, 2}, {q, 3}}, igs δf2f3 γ
µ1

s2s3
T a1

i2i3
}

Each particle is given by a two-component list, the first element gives the name of the particle while the second element
defines the label given to the indices referring to this particle in the analytical expression.

As the list of vertices computed by FeynRules can be quite long for complicated models, the SelectVertices routine
can be useful. The shared options are MaxParticles, MinParticles, SelectParticles, Contains and Free. It does not,
however, share the options MaxCanonicalDimension and MinCanon- icalDimension. It can be invoked as in:

vertsGluon = SelectVertices[vertsQCD,

SelectParticles->{{G,G,G},{G,G,G,G}}];

It is sometimes convenient to construct the Feynman rules in sections. For example, suppose the QCD Lagrangian is split
into two pieces as in:

LQCD = LGauge + LQuarks + LGhosts;

The Feynman rules can be constructed all at once as in the previous examples, or they can be constructed separately as in:

vertsGluon = FeynmanRules[ LGauge ];

vertsQuark = FeynmanRules[ LQuarks ];

vertsQuark = FeynmanRules[ LGhosts ];

They can later be merged using the function MergeVertices as in:

vertsQCD = MergeVertices[ vertsGluon, vertsQuark, vertsGhosts ];

This will merge the results obtained for vertsGluon, vertsQuark and verts- Ghosts into a single list of vertices. If there
are two contributions to the same vertex, they will be combined into one vertex.

5.4 Writing TEX Output

It is possible to create a TEX file containing the details of the model and including the vertices just obtained. To do this, use
the function WriteTeXOutput as in:

WriteTeXOutput[ vertsGluon, vertsQuark, vertsGhosts options ];
where the argument is a list of the vertices desired in the TEX document. The output file is by default M$ModelName

with “.tex” added, but can be changed to whatever the user wishes using the option Output. If desired, it is also possible to
include the Lagrangian into the TEX file by turning the PrintLagrangian option to True.

There is also a new extended TEXinterface which will be described in Section 7.5.

5.5 Manipulating Parameters

The parameters are also an important part of the model and we include several functions to manipulate them. The numerical
values of any parameter can be obtained with the use of the NumericalValue function used in the following way:

NumericalValue[ Sin[ cabi ]]

where cabi is the Cabbibo angle. This will return the numerical value of the sine of the Cabbibo angle. Any other function
of the parameters can be placed in NumericalValue.

The user may sometimes want to change the value of a subset of external parameters. For this, we include the function
UpdateParameters, which, for example, can be used like:

UpdateParameters[ gs -> 0.118 , ee -> 0.33 ]

where gs and ee are the strong and electromagnetic coupling constants respectively.
It may sometimes be useful to write and read the parameters to and from a file. For this, use WriteParameters and

ReadParameters respectively. By default, they write and read the parameters to and from the file named M$ModelName with
a “.pars” appended, but this can be changed with the options Output and Input as in:
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Table 11: FeynRules Commands
LoadModel[f1.fr, f2.fr, . . . ] Loads and initializes the model defined by

the model files f1.fr, f2.fr,... .
FeynmanRules[L, options] Calculates the Feynman rules associated

with the Lagrangian L. The options are
given in Table 12.

SelectVertices[verts, op-
tions]

Selects a subset of the vertices contained in
verts. The options are given in Table 12.

MergeVertices[v1,v2,. . . ] Merges the vertex lists v1, v2,. . . into one
list.

WriteTeXOutput[v1,v2,. . . ] Writes a TEX file containing the model in-
formation, particles, parameters and the
vertices in the vertex lists v1, v2,. . . . The
name of the TEX file is given by the Output
option, by default it is the model name
with “.tex” appended.

NumericalValue[ f[pars] ] Gives the numerical value of f[pars] where
f is some function and pars is some set of
parameters in the model.

UpdateParameters[p1 → v1,
p2 → v2,. . . ]

Changes the values of the parameters
p1,p2,. . . to v1,v2,. . . .

WriteParameters[options] Writes the internal and external parame-
ters (including masses and widths) to a
text file. The text file is M$ModelName with
“.pars” appended unless otherwise speci-
fied with the Output option.

ReadParameters[options] Reads the external parameters from a
text file. The text file is named as in
WriteParameters and must have the same
format as created by WriteParameters.

Table 11:

WriteParameters[Output -> "parameters.pars"]

ReadParameters[Input -> "parameters.pars"]

WriteParameters writes out the external and internal parameters (including masses and widths) to the specified file. The
function ReadParameters only reads in the external parameters (including the external masses and widths). This gives the
user another way to change the values of external parameters. The user can change the values in the parameter file created
by WriteParameters, and then read it back in using ReadParameters. Any changes made to the internal parameters are
currently ignored.

6 The ToolBox

The FeynRules ToolBox contains a collection of functions that are not directly related to or needed for the calculation of
the Feynman rules, but that turn out to be very useful at different stages of the model building and the implementation
of the model into FeynRules. This set of functions ranges from useful routines to manipulate the vertex lists produced by
FeynmanRules to checking properties of the Lagrangian. Furthermore, the ToolBox is meant to provide the user with an
environment where he/she can develop and store his/her own functions written during the implementation of a model. In
the rest of this section we are going to describe in more detail the contents of the current version of the ToolBox.

6.1 Boolean functions

In general, writing new Mathematica functions for FeynRules requires identifying which symbols correspond to particles,
parameters, etc. . For this reason, the ToolBox contains a set of boolean functions that make this identification. These
boolean functions can be used in pattern matching involved in the writing of new routines by the user. A summary of the
boolean function available is given in Tables 13 and 14 .
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Table 12: FeynmanRules and SelectVertices Options
ScreenOutput If turned to False, the Feynman rules de-

rived will not appear on the screen. The
default is True. Just a FeynmanRules op-
tion.

FlavorExpand Expands over the flavor indices specified by
the list at the right-hand side of the argu-
ment. If turned to True, all flavor indices
are expanded. Just a FeynmanRules op-
tion.

ConservedQuantumNumbers Checks whether the quantum numbers
specified by the list at the right-hand side
of the argument are conserved. If True

(False), all (no) quantum numbers are
checked. The default is True. Just a
FeynmanRules option.

MinParticles Only vertices involving at least the speci-
fied number of external fields are derived.

MaxParticles Only vertices involving at most the speci-
fied number of external fields are derived.

MinCanonicalDimension Only vertices of at least the specified
canonical dimension are derived. Just a
FeynmanRules option.

MaxCanonicalDimension Only vertices of at most the specified
canonical dimension are derived. Just a
FeynmanRules option.

SelectParticles Calculates only the vertices specified in the
list at the right-hand side of the argument.

Contains Only the vertices which contain at least the
particles contained in the list at the right-
hand side of the argument are derived.

Free Only the vertices which do not contain any
of the particles contained in the list at the
right-hand side of the argument are de-
rived.

Exclude4Scalars All four-scalar vertices are neglected.

Table 12:

Table 13: Boolean Functions for Particles
FieldQ Returns True for fields.
FermionQ Returns True for fermions.
BosonQ Returns True for bosons.
SelfConjugateQ Returns True for self conjugate fields.
ScalarFieldQ Returns True for scalar fields.
DiracFieldQ Returns True for Dirac fermions.
MajoranaFieldQ Returns True for Majorana fermions.
VectorFieldQ Returns True for vector fields.
Spin2FieldQ Returns True for spin 2 fields.
GhostFieldQ Returns True for ghost fields.

Table 13:
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Table 14: Boolean Functions for Parameters
numQ Returns True for all parameters in the

model, as well as for all numerical val-
ues. Note that the components of
a tensor are considered as parameters,
e.g. numQ[T[a, i, j]] = True, and
numQ[Ga[mu, r, s]] = True.

CnumQ Returns True if a parameter is a complex
parameter.

TensQ Returns True for a tensor.
CompTensQ Returns True for a complex tensor param-

eter.
UnitaryQ Returns True for unitary tensors.
HermitianQ Returns True for hermitian tensors.
OrthogonalQ Returns True for orthogonal tensors.
Additional useful functions
MR$QuantumNumbers A list containing all quantum numbers de-

fined in the model file.
$IndList[ψ] The list of indices declared for the field or

the tensor ψ.

Table 14:

6.2 Manipulating a Lagrangian

The FeynRules ToolBox provides the user with a set of functions that are useful at different stages of the model building and
the implementation into Mathematica.

First, the ExpandIndices function allows the user to restore all the suppressed indices in fermion chains, as well as to
identify which kind of index a given symbol represents (See Section 9 for more detail). ExpandIndices has the same options
as FeynmanRules. In particular, the command

ExpandIndices[ L , FlavorExpand -> True] will return the Lagrangian L expanded over all flavor indices.
There is an additional set of functions which allow the user to filter out given sectors of the Lagrangian, e.g.
GetKineticTerms[ L, options ] where options denotes any of the options of FeynmanRules, returns all kinetic terms

in L (defined as quadratic terms with derivatives). The functions GetMassTerms, GetQuadraticTerms and GetInter-

actionTerms work in a similar way. Finally, it is also possible to filter out only those terms of the Lagrangian which
correspond to a given interaction (e.g. only the three and four-point gluon vertices). This can be achieved using the
SelectFieldContent function as follows

SelectFieldContent[ L , {{G, G, G}, {G, G, G, G}}]
Furthermore, FeynRules has the possibility to calculate the values of the masses that appear in the Lagrangian8, both

in a numeric and symbolic way. This can be accomplished using the GetMassSpectrum function, which has again the same
options as FeynmanRules.

6.3 Checking a Lagrangian

In general, a QFT Lagrangian has to fulfill a set of basic requirements, such as hermiticity, gauge invariance, etc. The
FeynRules ToolBox contains a set of functions which perform several such checks.

Hermiticity of the Lagrangian can be checked using the command
CheckHermiticity[ L, options ] where options denotes any of the options of FeynmanRules. Hermiticity is then checked

by calculating the Feynman rules of L − L†, which of course should all vanish if L is hermitian.
For FeynRules to work properly, all the quadratic pieces should be diagonal. We have three commands to check this:

CheckDiagonalQuadraticTerms, CheckDiagonalKineticTerms and CheckDiagonalMassTerms. An example of how to use
these functions is given here:

CheckDiagonalQuadraticTerms[ L, options ] where options denotes again any of the options of FeynmanRules. Fur-
thermore, it is possible to check whether the kinetic terms are correctly normalized9, using

8Notice that as FeynRules does not currently diagonalize mass matrices, the Lagrangian must be in mass diagonal form in order to use this
feature.

9All kinetic terms must be diagonal to use this function.
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Table 15: Manipulating a Lagrangian
All the functions introduced in this section have the same options as
FeynmanRules.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in the
Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms in
the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms in
the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to the
field content specified in list.

Table 15:

CheckKineticTermNormalisation[ L, options ] Finally, FeynRules can check whether the mass spectrum given in the
model file corresponds to the masses obtained from the Lagrangian10:

CheckMassSpectrum[ L, options ]

The normalization that FeynRules assumes for the kinetic terms and the mass terms is the following:

1. Scalars:

- Real:
1

2
∂µφ∂

µφ− 1

2
m2φ2,

- Complex (including ghost fields):
∂µφ

†∂µφ−m2φ†φ,

2. Spin-1/2 fermions:

- Majorana:
1

2
λ̄i/∂λ− 1

2
mλ̄λ,

- Dirac:
ψ̄i/∂ψ −mψ̄ψ,

3. Vectors:

- Real:

−1

4
FµνF

µν − 1

2
m2AµA

µ,

- Complex:

−1

2
F †
µνF

µν −m2A†
µA

µ,

6.4 Manipulating vertex lists

In Section 5 we already explained how to use the functions SelectVertices and MergeVertices to extract individual vertices
from the list of results obtained by FeynmanRules and to merge different vertex lists into a single one. In this section we
introduce two more functions which can be useful for manipulating the vertex lists.

It can sometimes be useful to apply momentum conservation in order to simplify the expression obtained for a vertex, or
to rewrite it in an equivalent way. The FeynRules ToolBox provides for this reason a function which allows to replace the
momentum of particle number n, by minus the sum of all other particles. This is done as follows

10All mass terms must be diagonal to use this function.
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Table 16: Checking a Lagrangian
All the functions introduced in this section have the same options as
FeynmanRules.

CheckHermiticity[ L, options ]

Checks if the Lagrangian L is hermitian.
CheckDiagonalKineticTerms[ L, options ]

Checks if all the kinetic terms in the LagrangianL are diagonal.
CheckDiagonalMassTerms[ L, options ]

Checks if all the mass terms in the Lagrangian L are diagonal.
CheckDiagonalQuadraticTerms[ L, options ]

Checks if all the quadratic terms in the Lagrangian L are di-
agonal.

CheckKineticTermNormalisation[ L, options ]

Checks if all the kinetic terms in the LagrangianL are correctly
normalized.

CheckMassSpectrum[ L, options ]

Checks if all the mass terms in the Lagrangian L are correctly
normalized and if their value corresponds to the value given in
the model file.

Table 16:

MomentumReplace[ vertex, n ]

where vertex represents a single vertex, i.e. an element of a vertex list.
It is often desirable to simplify an entire set of vertices using momentum conservation. We have created the function

ApplyMomentumConservation for this purpose. For each vertex, it uses MomentumReplace, cycling through each momentum
and comparing the size of each expression. It then keeps the shortest expression for the vertex. It is used as in:

ApplyMomentumConservation[ vertexlist ]

7 Interfaces

Once Feynman rules have been obtained, the user is typically interested in calculating Feynman diagrams. There are many
programs that do this automatically and each has its own model file format. FeynRules was constructed to allow easy
translation to the various formats available via “interfaces”. Translation interfaces have been written for the following
Feynman diagram calculators:

- CalcHEP/CompHEP,

- FeynArts/FormCalc,

- MadGraph/MadEvent,

- Sherpa.

Of course, there are many other Feynman diagram calculators and we invite experts in these other Feynman diagram
calculators to write translation interfaces for their favorite calculators (see Section 8).

These interfaces are invoked with commands like Write__Output[l1,l2,..., options] where __ is replaced with a
particular type of interface name. For example, we have WriteCHOutput, WriteFeynArtsOutput, WriteMGOutput and
WriteSHOutput. l1,l2,.. are the Lagrangian terms whose vertices are desired in the output and options are the op-
tions specific to each interface. The details of the interfaces will appear in a later paper and on the FeynRules website[25].
For now, we discuss some general constraints that apply to all the interfaces.

The main limitations of these interfaces are that they can only implement vertices, particles, parameters and names that
are allowed by the Feynman diagram calculators that they are being translated to. Thus, if an interaction is not allowed in
the calculator, it will also not be allowed by the interface. Generally, the interface will warn the user when it comes across a
term that is not supported and allow the user to fix it. In some cases, the interface may fix it on the fly and warn the user
what occurred. A user who wishes to use multiple Feynman diagram calculators will want to satisfy the constraints of each.
We encourage satisfying the constraints of as many Feynman diagram calculators as possible to make your model as widely
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Table 17: Handling vertex lists
SelectVertices[ vertexlist, list ] Returns the vertices in vertexlist

which match the particle content
specified in list.

MergeVertices[v1,v2,. . . ] Returns the vertex list obtained
by merging the vertex lists v1,
v2, . . .

MomentumReplace[ vertex, n ] Replaces the momentum of par-
ticle number n in vertex by mi-
nus the sum of all other mo-
menta.

ApplyMomentumConservation[

vertexlist] Applies MomentumReplace in all
possible ways and returns the re-
sults that lead to the simplest
vertex.

Table 17:

useful as possible. In any case, fixing a problematic parameter or particle name, or some other minor constraint violation is
not usually difficult.

Furthermore, the implementer of a new model should realize that each diagram calculator works in a certain gauge. In
particular, there are several that work in Feynman gauge and several others that work in unitary gauge. Since these gauges
involve different particle sets and Lagrangian terms, we have found that it is useful to define a switch that can be used in
if...else statements in the model file. For example, the user might define the variable FeynmanGauge and set it to True

or False depending on which calculation program he/she desires to use. Then, for example, the Lagrangian terms for the
Goldstone bosons could be turned on when FeynmanGauge is turned to True and turned off when it is set to False.

7.1 Special Names

There are several parameters and particles that have special significance in Feynman diagram calculators. Examples of these
are the strong and electromagnetic couplings, the names of the fundamental representation and the structure constants of
the strong gauge group and so on. For this reason, we have chosen to fix the names of these objects at the FeynRules level.
Adherence to these standards will increase the chances of successful translation.

The strong gauge group has special significance in many Feynman diagram calculators. A user who implements the strong
gauge group should adhere to the following rules. The indices for the fundamental and adjoint representations of this gauge
group should be called Colour and Gluon respectively. Furthermore, the names of the QCD gauge boson, coupling constant,
structure constant, totally symmetric term and fundamental representation should be given by G, gs, f, dSU3 and T as in the
following example:

SU3C == {

Abelian -> False,

GaugeBoson -> G,

StructureConstant -> f,

SymmetricTensor -> dSU3,

Representations -> {T, Colour},

CouplingConstant -> gs

}

In addition, the strong coupling constant and its square over 4π should be declared in the parameter section in the following
form:

\[Alpha]S == {

ParameterType -> External,

Value -> 0.118,

ParameterName -> aS,

BlockName -> SMINPUTS,

InteractionOrder -> {QCD, 2},
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Description -> "Strong coupling at the Z pole."

},

gs == {

ParameterType -> Internal,

Value -> Sqrt[4 Pi \[Alpha]S],

ParameterName -> G,

InteractionOrder -> {QCD, 1}

}

Note that αS is given as the external parameter and gS as the internal parameter. The description of αS may be edited,
but it should be remembered that, for the Monte Carlo programs that run the strong coupling constant, the value of αS
should be set at the Z pole. For calculation programs that do not run the strong coupling, on the other hand, it should be
set according to the scale of the interaction. A description may also be added to the parameter gS.

The electromagnetic interaction also has special significance in many Feynman diagram calculators and we outline the
following standard definitions. The electric coupling constant should be called ee, the electric charge should be called Q. The
declaration of the electric charge should follow the following conventions for naming:

\[Alpha]EWM1 == {

ParameterType -> External,

Value -> 127.9,

ParameterName -> aEWM1,

BlockName -> SMINPUTS,

InteractionOrder -> {QED, -2},

Description -> "alpha_EM inverse at the Z pole."

},

\[Alpha]EW == {

ParameterType -> Internal,

Value -> 1/\[Alpha]EWM1,

InteractionOrder -> {QED, 2},

ParameterName -> aEW,

},

ee == {

ParameterType -> Internal,

Value -> Sqrt[4 Pi \[Alpha]EW ],

InteractionOrder -> {QED, 1}

}

As for the strong coupling, the description of α−1
EW may be edited11, but it should be remembered that for calculation

programs that run the electric coupling, it should be set at the Z pole. For programs which do not run it, the electric
coupling should be set at the interaction scale. Again, a description may be added to the definition of \[Alpha]EW and ee.

The Fermi constant and the Z pole mass are very precisely known and are often used in calculators to define coupling
constants and the scale where couplings are run from. They should be included in the SMINPUTS block of the Les Houches
accord and should be defined by at least the following:

Gf == {

ParameterType -> External,

Value -> 1.16639 * 10^(-5),

BlockName -> SMINPUTS,

InteractionOrder -> {QED, 2},

Description -> "Fermi constant"

},

ZM == {

ParameterType -> External,

Value -> 91.188,

BlockName -> SMINPUTS,

Description -> "Z pole mass"

}

Moreover, the weak coupling constant name gw and the hypercharge symbol Y are used by some calculators and the
user is encouraged to use these names where appropriate. The masses and widths of particles should be assigned whenever

11The reason for choosing α
−1

EW
as the external input parameter, and not αEW itself is only to be compliant with the Les Houches Accord.
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Table 18: CalcHEP/CompHEP Interface Options
CHAutoWidths Whether CalcHEP should calculate the

widths on the fly (True) or to use the values
given in the users implementation (False).
True by default. (Always False when Com-
pHEP is set to True.)

CompHEP Whether to write a CalcHEP model file
(False) or a CompHEP model file (True).
False by default.

MaxExpressionLength The length of expressions in the constraints
table. 100 by default. If a longer length is
necessary, the CH interface will warn the
user.

ModelNumber The number to name the model with. 1 by
default (as in prtcls1.mdl).

CHParticleNameLength The maximum length for a particle name.
The default for CalcHEP is 4 while the de-
fault for CompHEP is 3. If you are using
an older version of CalcHEP, you will want
to set this to 3.

Exclude4Scalars In some cases, models can have an abun-
dance of vertices with 4 scalars which slow
the calculation of the Feynman rules down
to an unbearable pace. In this case, these
vertices can be turned off by setting this
option to True. False by default.

Output This option is only available for
WriteCHExtVars and specifies an al-
ternate file to write the external variables
to. The default is varsN.mdl in the current
directory where N refers to the model
number.

Input This option is only available for Read-
CHExtVars and specifies an alternate file
to read the external variables from. The
default is varsN.mdl in the current direc-
tory where N refers to the model number.

Table 18:

possible. If left out, FeynRules will assign the value 1 to each. Finally, particles are also identified by a PDG number. The
user is strongly encouraged to use existing PDG codes in their model wherever possible. If not included, a PDG code will be
automatically assigned by FeynRules beginning at 6000001.

The specific details of each interface will be published soon. They can also be found on the FeynRules website[25].

7.2 CalcHEP/CompHEP Interface

The CalcHEP/CompHEP interface can be invoked with the command: WriteCHOutput[ L1, L2, . . . , options ] where L1,
L2, . . . are the Lagrangians and options are the options which we will address throughout this subsection and can be found
summarized in Table 18.

When invoked, this interface will create the directory M$ModelName with “-CH” appended if it does not already exist.
It will create the files “prtclsN.mdl”, “varsN.mdl”, “funcN.mdl” and “lgrngN.mdl” where “N” is the number of the model. It
is 1 by default but can be set to whatever the user likes with the option ModelNumber. The particle definitions will be written
to “prtclsN.mdl”, the external parameters (including external masses and widths) will be written to “varsN.mdl” and the
internal parameters (including internal masses and widths) to “funcN.mdl”. During the writing of “funcN.mdl”, the length
of the expressions will be checked and if needed the user will be asked to set MaxExpressionLength to a higher value and
rerun the interface. The user should set it according to the largest suggested number (or higher). At this point, it will derive
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the Feynman rules with 4 particles or less and write them to “lgrngN.mdl”. It will simplify the vertex list by renaming the
vertex couplings as x1, x2, x3, etc. and write the definitions of these couplings in “funcN.mdl” along with the other internal
parameters. Since CalcHEP only computes internal variables once per session, this improves the speed of the phase space
integration.

Although CalcHEP and CompHEP can calculate diagrams in both Feynman and unitary gauge, they are much, much
faster in Feynman gauge and it is highly recommended to implement a new model in Feynman gauge. However, if a user
decides to implement the model in unitary gauge, he/she should remember that according to the way CalcHEP/CompHEP
were written, the ghosts of the massless nonabelian gauge bosons must still be implemented. (In particular, the gluonic
ghosts must be implemented in either gauge for this interface.)

One major constraint of the CalcHEP/CompHEP system is that the color structure is implicit. For many vertices (e.g.
quark-quark-gluon), this is not a problem. However, for more complicated vertices, there may be an ambiguity. For this
reason, the writers of CalcHEP/CompHEP chose to split them up using auxiliary fields. Although this can be done for very
general vertices, it is not yet fully supported in FeynRules. Currently, only the gluon 4-point vertex and squark-squark-gluon-
gluon vertices are automatically split up in this way. We hope to support more general vertices in the future.

The model files are ready to be used and can be directly copied to the CalcHEP/CompHEP models directories. Care
should be taken not to overwrite model files that are already present. Furthermore, CalcHEP/CompHEP only load the
models whose model numbers are in a consecutive set beginning with 1. Therefore, for example, if the models directory
contains models 1, 2, 3 and 7, the user should number his/her new model 4. Alternatively, in CalcHEP, the user can import
the model from the CalcHEP interface by specifying the directory where it is stored under “IMPORT OF MODELS” in the
CalcHEP graphical user interface.

The default format for this interface is the CalcHEP format. A user can direct this interface to write the files in the
CompHEP format by use of the CompHEP option. The user who writes CompHEP model files should note one subtlety. If the
model is written to the CompHEP directory and if the user edits the model inside CompHEP and tries to save it, CompHEP
will complain about any C math library functions in the model. Nevertheless, it does understand them. We have found that
if the model works in CalcHEP, it will work in CompHEP and give the same results.

CalcHEP has the ability to calculate the widths of the particles on the fly. By default, this interface will write model files
configured for automatic widths. This can be turned off by setting the option CHAutoWidths to False. This option is set to
False if CompHEP is set to True.

CalcHEP and CompHEP are sensitive to the length of the expressions in the constraints file (funcN.mdl). As the CH
interface runs, it will check the length of the expressions and determine whether the constraints table is wide enough. If it is
not, it will warn the user and suggest extending it to a greater width. This can be done with the option MaxExpressionLength.
Once the interface finishes, the user can rerun it with the option set appropriately.

Some models have so many 4 scalar vertices that it takes a very long time for FeynRules to calculate all of the Feynman
rules. In some cases, these 4 scalar vertices may not be important to the physics being studied. In these cases, these 4 scalar
vertices can be turned off by setting the option Exclude4Scalars to True. It is False by default.

This interface also contains a set of functions that read and write the external parameters from and to the CH variable files
(varsN.mdl). After loading the model into FeynRules, the external parameters can be updated by running ReadCHExtVars[

options ]. This function accepts all the options of the CH interface plus the option Input which instructs FeynRules where
to find the CH variable file. The default is “varsN.mdl” in the current working directory. If reading a CompHEP variable
file, then the option CompHEP should be set to true. After reading in the values of the variables in the CH file, it will update
the values in FeynRules accordingly.

The current values of the external parameters in FeynRules can also be written to a CH external variable file (varsN.mdl)
using WriteCHExtVars[ options ]. This can be done to bypass writing out the entire model if only the model parameters
are changed.

7.3 FeynArts Interface

The FeynArts interface can be invoked with the command:
WriteFeynArtsOutput[ L1, L2, . . . , options ] where L1, L2, . . . are the Lagrangians and options are the options which

we will address throughout this subsection and can be found summarized in Table 19. This will create a FeynArts model file
named M$ModelName with the extension “.mod” appended by default. Another filename may be specified with the Output

option. This file may be copied directly to the FeynArts model directory and used in FeynArts. The FeynArts model file
created in this way will contain the following information:

- A copy of the index declarations in the FeynRules file.

- A copy of M$ClassDeclarations in the FeynRules model file, but with the new non-FeynArts definitions removed.

- Some additional functions used by FeynArts.
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Table 19: FeynArts Interface Options
All FeynmanRules options can be specified in this interface.
Output The name of the FeynArts model file writ-

ten. The default is M$ModelName with
the extension “.mod” appended.

CouplingRename Whether to rename vertices with a
new name and store the definitions in
M$FACouplings. The default is True.

Table 19:

- The list M$CouplingMatrices, which contains all the interaction vertices written in FeynArts language.

- The list M$FACouplings containing a replacement list of the vertex couplings in terms of the parameters defined in the
FeynRules model file.

- The list M$ExtParams containing a replacement list of the external parameters and their values.

- The list M$IntParams containing a replacement list of the internal parameters and their values (in terms of other
parameters).

- The lists M$Masses and M$Widths containing replacement lists for the masses and widths of the particles.

The amplitudes that FeynArts creates are typically used in FormCalc which algebraically simplifies and manipulates the
amplitude. These manipulations can be made more efficient by replacing long analytic expressions for vertices with symbols.
Therefore the FeynArts interface replaces the analytic expression for the vertices with a symbol, such as gc3, for the 3rd
vertex coupling. The definitions of these couplings are stored in the replacement list M$FACouplings. So, for example, the
list might contain gc3 -> ee/sW. This list may be applied to the results by the user at any time. Although, this renaming
of vertices is typically desirable, there may be times the user wishes to turn it off. They can do so by setting the option
CouplingRename to False.

The values of the parameters from the model are stored in the replacement lists M$ExtParams, M$IntParams, M$Masses
and M$Widths and may also be applied to the resulting expressions at any time.

The interactions supported by the FeynArts interface are those which are supported by the general model file Lorentz.gen12

and include only renormalizable vertices. Therefore, the FeynArts interface only computes the vertices with 4 or less particles
and the max canonical dimension set to 4. The interface then scans the resulting vertices and writes those vertices to the file
that are supported by Lorentz.gen.

Although FeynArts can handle vertices in any gauge, FormCalc is tuned to Feynman gauge. Therefore, the model file
should be written in Feynman gauge if the use of FormCalc is desired.

FeynArts was written to take advantage of the fact that similar particles have similar vertices. For this reason, the
particles were grouped into classes of particles with similar properties where vertices involving these particles would only
have minor differences. This allows FeynArts to generate fewer diagrams and FormCalc to algebraically simplify fewer terms.
Then at the end of the calculation, the specific couplings, masses and widths of each particle can be inserted. The result of
this is a more efficient and faster calculation.

FeynRules was designed to support this feature and so particles are grouped in classes and the Lagrangian can be written
in terms of classes. However, to take advantage of this feature, the user must write the FeynRules model file in a classy way.
That is, the user must put the particles with similar properties in the same class and they must write all the Lagrangian
terms in terms of classes with the flavors unexpanded. If the user does this (and we strongly encourage it) then the FeynArts
model file will be written in this classy way as well. If, on the other hand, the user writes any Lagrangian term in a flavor
expanded way, the class structure will be broken. This does not make the model file unusable, it simply makes it less efficient
in FeynArts. Notwithstanding the strength of the class system, we recognize that models will sometimes be written in terms
of class members. For this reason, the FeynArts interface was written to handle this situation. If the FeynArts interface
comes across a member specific vertex, it will stop the Feynman rules calculation, redefine the classes so that each particle
is in its own class and start the calculation over. In this case, the user will completely lose the strength of the class system,
but will still be able to use their model in FeynArts/FormCalc. The new class definitions can be obtained with the function
NewFeynArtsClasses[].

12Those couplings correspond to the default generic couplings used by FeynArts.
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Table 20: MadGraph Interface Options
Output The name of the directory where the Mad-

Graph model files should be written. The
default is M$ModelName with the extension
“ MG” appended.

DecomposeGluonVertex If False, the four-gluon vertex is not de-
composed into three-point vertices. The
default value is True.

Table 20:

7.4 MadGraph/MadEvent Interface

The MadGraph interface can be invoked with the command:
WriteMGOutput[L1, L2,. . . , options] where L1, L2,. . . denote the Lagrangians which should be used and options denotes

the options for this interface. The option Output sets the output directory for the MadGraph model files. The default is
M$ModelName with _MG appended. It creates this directory in the current working directory and writes all the model files to
it.

When this interface is run, it begins by calculating the Feynman rules, using the function FeynmanRules. After wards,
it scans the vertices and checks whether they are supported by MadGraph/MadEvent13. Any vertex which is not supported
is ignored and not written to the model files. In this case, a warning will also be printed to screen informing the user.
MadGraph/MadEvent currently only supports unitary gauge and does not support ghost fields at all. For this reason, the
model file and Lagrangian should be written accordingly. The supported vertices are then written out.

In general, MadGraph/MadEvent supports only renormalizable interactions. There is however a limited set of higher-
dimensional interactions implemented, in particular the five-dimensional operators describing the coupling of the Higgs
boson to the gluons in the large top-mass limit, which are useful to model Higgs production via gluon fusion. These operators
correspond to

−1

4
ChhF

a
µνF

µν
a − 1

4
CaaF

a
µν F̃

µν
a , (8)

where h and a denote two scalar and pseudo-scalar fields, and Ci are effective coupling constants. In order to have Mad-
Graph/MadEvent recognize these new couplings, the user has to define the interaction order of Ci to be {HIG, 1}. The
introduction of the higher-dimensional operators in Eq. (8) contains a five-point vertex describing the four-gluon vertex to
which an additional scalar is added. As MadGraph/MadEvent can only handle four-point vertices, we have to decompose
this vertex into smaller building blocks involving auxiliary non propagating particles. In order to avoid double counting, we
need to decompose the four-gluon vertex as well, which can be done by introducing an auxiliary tensor particle. Although
this decomposition is strictly speaking only necessary if the higher-dimensional term in Eq. (8) is present, we follow this
approach by default and we always decompose the four-gluon vertex into three-point interactions. This feature can however
be turned of by putting the option DecomposeGluonVertex to False in the interface to MadGraph/MadEvent.

After the interface is run, a set of Fortran files is generated. It is now sufficient to copy this directory into the Models

directory of MadGraph/MadEvent, form where it can be called in exactly the same way as any other model. Let us note
that the FeynRules-generated models contain a test program called ’testprog’ that can be run to test that it is working. This
can be run with the command:

make testprog

./testprog

If successful, the output will be a listing of the numerical values of all the couplings and masses in the model. The model
can now be used in MadGraph/MadEvent in the usual way.

7.5 TeX Interface

The TeX interface can be invoked with the command: WriteLaTeXOutput[ L1, L2, . . . , V1, V2, . . . , options ] where L1, L2,
. . . are the Lagrangians, V1, V2, . . . are vertex lists (as output by FeynmanRules) and options are the options which we will
address throughout this subsection and can be found summarized in Table 21.

This interface can be invoked in several ways. It can be invoked with no arguments, as in WriteLaTeXOutput[] in which
case it will write the TEXfiles but will not include any Lagrangians or vertices. It can be invoked with just lagrangians as in

13See the FeynRules website[25] to see which structures are currently supported.
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Table 21: TeX Interface Options
Overwrite This option determines whether the TEX

files will be overwritten. If it is set to True,
all files will be overwritten. If it is set to
false, all files which already exist will not
be overwritten. They will be skipped. All
files which do not exist will be written. If
set to Automatic, the user will be asked if
they want the file to be overwritten. This
will occur for each file which already exists.
The default is Automatic.

Paper This option determines what kind of paper
to use. Choices are ”letter”, ”legal” and
”a4”. The default is ”letter”.

Compile This option tells the TEX interface
whether it should try to compile the out-
put. If set to True, it attempts to run latex,
dvips, ps2pdf and finally acroread. False
by default.

Table 21:

WriteLaTeXOutput[ L1, L2, . . . ], it can be invoked with just vertex lists as in WriteLaTeXOutput[ V1, V2, . . . ], it can be
invoked with just options as in WriteLaTeXOutput[ options ], or it can be invoked with any combination of Lagrangians,
vertex lists and options.

The Lagrangians and vertex lists can be entered in two ways. Suppose L1 is one of the Lagrangians that is desired. It
can be entered as is, as in WriteLaTeXOutput[ L1, . . . ]. It can also be entered with a name, such as \Subscript[L,Gauge].
In this case, it would be entered as a list as in WriteLaTeXOutput[ {\Subscript[L,Gauge],L1}, . . . ]. Vertex lists are
similar and can be entered directly or with a name as in WriteLaTeXOutput[ . . . , {\Subscript[V,Gauge],V1}, . . . ]. If
entered, these names will be used for the section names. If they are not used, names will be generated as L1, L2, etc. for the
Lagrangians and V1, V2, etc. for the vertex lists.

The files that this interface generates are split among the sections. The main file will be named M$ModelName with a
“.tex” appended. This file instructs LATEXto include the other files. Those files are as follows:

• title.tex: Contains the title.

• abstract.tex: Contains the abstract.

• introduction.tex: Contains the introduction.

• symmetries.tex: Contains information about the gauge symmetries and indices.

• fields.tex: Contains information about the fields.

• lagrangians.tex: Contains the Lagrangians.

• parameters.tex: Contains information about the parameters.

• vertices.tex: Contains the vertices.

• bibliography.tex: Contains the bibliography.

After being written by the interface, the user can modify these files in any way he/she wishes. The next time the interface
runs, it will first check whether the files exist. If they do not, it will generate them in the usual way. If they do exist, the
interface will ask the user whether they should be overwritten or not. In this way, the user can make changes to files and not
have them overwritten. On the other hand, if the user wishes to have all of the files overwritten, he/she can set the option
Overwrite to True. In this case, the interface overwrites each file. However, if the user would like none of the files to be
overwritten, he/she can set the option Overwrite to False. In this case, the interface skips any files that already exist. The
default is for the interface to ask the user what to do for each file which already exists.
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Table 22: PartList Details
PartList[[j]] Definition of the jth class.
PartList[[j,1,1]] Class definition.
PartList[[j,1,2]] Class name.
PartList[[j,2,k]] Definition of the kth class member.
PartList[[j,2,k,1]] Particle name.
PartList[[j,2,k,2]] Antiparticle name.
PartList[[j,2,k,3]] Spin symbol for particle. Possibilities are

S (scalar), F (fermion), V (vector boson),
U (ghost) and T (spin 2 boson).

PartList[[j,2,k,4]] Type of line to use for the propagator in
a Feynman diagram. Possibilities are S
(straight), D (scalar dashed), W (wavy),
GhostDash and C (curly).

PartList[[j,2,k,5]] Mass name of particle. ZERO if massless.
PartList[[j,2,k,6]] Width name of particle. ZERO if width-

less.
PartList[[j,2,k,7]] Color representation of particle. Possibil-

ities are S (singlet), T (fundamental) and
O (octet).

PartList[[j,2,k,8]] Propagator label.
PartList[[j,2,k,9]] PDG number of particle.
PartList[[j,2,k,10]] Full name of particle.
PartList[[j,2,k,11]] TEX name for particle.
PartList[[j,2,k,12]] TEX name for antiparticle.
PartList[[j,2,k,13]] If this particle is a Goldstone boson, then

this gives the gauge boson that eats it. If
not, it contains NoGS.

Table 22:

The paper in common use depends on the country a person lives in. For this reason, the option Paper was created. It
defaults to “letter” but can be set to “a4” or “legal” as in Paper -> "a4".

Finally, if the option Compile is set to True, the TEX interface will attempt to compile the output. It will currently
attempt to run latex on it, then dvips, and then ps2pdf. It will finally attempt to open the generated pdf file in acroread.
The default is False.

8 Implementing an Interface

The philosophy of FeynRules is to allow the model to be written in a general enough way to allow translation into any
Feynman diagram generator. For this reason, when FeynRules loads a model it stores the information in a generic way that
can be used to write model files for any Feynman diagram calculator. This translation is done by interfaces. A handful of
interfaces are already written, but we would like to see many more. For this reason, we include details about how the model
information is stored and how to write an interface to your favorite Feynman diagram calculator. We also include a template
interface as described later in this section.

The information about the model is primarily stored in five lists: PartList, MassList, WidthList, EParamList and
IParamList. To write an interface, the user creates a set of Mathematica functions that take the information in these lists
and write them to files with the appropriate format for their diagram calculator. In this section, we describe each of these
lists and conclude with a description for how to use these lists to make an interface.

8.1 The Particle List

The particle list is called PartList and contains a list of all the particles of the model with their properties. Each element
of PartList is a list which describes one particle class. Table 22 summarizes the elements of this list. We will describe the
elements of this list with an example. Here is one element of PartList for the charged +2/3 quarks in the SM:

{ {F[3],uq} , {
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{"u", "u~", F, S, ZERO, ZERO, T, "u", 2,

"u-quark", "u", "u~", NoGS},

{"c", "c~", F, S, MC, ZERO, T, "c" ,4 ,

"c-quark’’, "c", "c~", NoGS},

{"t", "t~", F, S, MT, WT, T, "t", 6,

"t-quark", "t", "\bar{t}", NoGS},

}

}

The first component of this list contains the class name as a two component list. The first component is the class type and
number (F[3] in this example) while the second component is the class name (uq in this example). The second component
of this class list is a list of the class members. There are three charged +2/3 quarks, so there are three elements of this list.
Each element is a list of the properties of a class member. In the following we give a small description of the contents of this
list.

(1) The first element of the class member list refers to the particle names as given by the ParticleName option. In this
case, they are "u", "c" and "t".

(2) The second element gives the antiparticle name as given by the AntiPart- icleName option. In this case, they are
"u~", "c~" and "t~".

(3) The third element specifies the spin of the particle and is determined by the symbol used in the class declaration. In
this case they are all fermions and so this element is an F.

(4) The fourth element refers to the type of line to use for the propagator as given by the PropagatorType option. For
this quark, this is an S for straight line.

(5) The fifth element gives the name of the mass for the particle. The u-quark is massless while the c-quark and t-quark
masses are given by the names MC and MT respectively.

(6) The sixth element is the width symbol of the particle.

(7) The seventh element gives the color representation of the particle. In this case, the particles are labeled T for triplet or
fundamental.

(8) The eighth element is the PropagatorLabel.

(9) The ninth element is the PDG number of the particle, in this case 2, 4, and 6.

(10) The tenth element is a string giving the full name of the particle as given by the FullName option.

(11,12) The eleventh and twelfth element are the TEX names for the particle and antiparticle respectively.

(13) The thirteenth element determines what gauge boson eats this particle if it is a Goldstone boson. In this case, the
quark is not a Goldstone boson, so it is NoGS.

8.2 The Mass and Width Lists

The mass and width lists are called MassList and WidthList respectively. They contain a list of the masses and widths of
the particles. Each is a two component list. The first component is the word “Mass” for the mass list and “Width” for the
width list. The second component is a list of the masses or widths of each particle in the model. Table 23 summarizes the
elements of these lists. As an example, consider the mass and width of the top quark. We begin with the mass which is given
in this list as:

{ {6} , MT , 174.3 }

The first element gives 6 as the PDG number of the top quark, MT gives the name of the top quark mass and 174.3 gives
the numerical value of the top quark mass.

On the other hand, its width is given by:

{ {6} , WT , 1.50834 }

The first element gives 6 as the PDG number of the top quark, WT gives the name of the top quark width and 1.50834 gives
the numerical value of the top quark width.
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Table 23: MassList and WidthList Details
MassList[[1]] Mass.
MassList[[2,j,1]] PDG number of particle.
MassList[[2,j,2]] Mass name for particle.
MassList[[2,j,3]] Value of mass for particle. If the mass is

defined as an internal parameter, then the
word Internal is found here.

WidthList[[1]] Width.
WidthList[[2,j,1]] PDG number of particle.
WidthList[[2,j,2]] Width name for particle.
WidthList[[2,j,3]] Value of width for particle. If the width is

defined as an internal parameter, then the
word Internal is found here.

Table 23:

8.3 The External Parameter List

The external parameters are stored in a list called EParamList. It contains a list of the external parameters and properties.
Its components are summarized in Table 24. We describe it with an example. Here is the SMINPUTS block from the SM:

{SMINPUTS, {

{{1}, {aEWM1, QED, 2, 127.9, False,

"Inverse of the electroweak coupling constant"}},

{{2}, {Gf, QED, 2, 0.000011663900000000002, False,

"Fermi constant"}},

{{3}, {aS, QCD, 2, 0.118, False,

"Strong coupling constant at the Z pole."}},

{{4}, {ZM, 91.188, False, "Z mass"}}

}}

The first element gives the name of the block, SMINPUTS in this case. The second element is a list of the parameters in the
block. There are four parameters in this block. For each parameter, the first element is the number of the parameter in the
block, 1, 2, 3 and 4 in this example. The second element is a list of the properties of the parameter. The elements of this list
are as follows:

(1) The first element of the properties list is the name of the parameter, we have aEWM1, Gf, aS and ZM.

(2,3) For the parameters where the InteractionOrder option was specified, the second and third elements contain this
information. Thus, aEWM1 and Gf are 2nd order in the QED coupling, aS is 2nd order in the QCD coupling and ZM does
not have this information specified so these two elements are removed.

(-3) The third to last element is the numerical value of the parameter. aEWM1 has value 127.9, aS has value 0.118 and so
on.

(-2) The second to last element specifies whether the parameter is complex. These are all real.

(-1) The last element is the name of the parameter as given by the Description option, for example "Z mass" for the
parameter ZM.

8.4 The Internal Parameter List

The internal parameters are stored in a list called IParamList. It contains a list of the internal parameters and properties.
Its components are summarized in Table 25. We explain with an example. Here is one line of IParamList from the SM. It
specifies αEW :

{aEW, aEWM1^(-1), QED, 2, False, "Electroweak coupling constant"}

The elements of this list are:

(1) The first element is the name of the parameter, aEW.
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Table 24: EParamList Details
EParamList[[j]] A list containing one block of external pa-

rameters.
EParamList[[j,1]] The name of this block.
EParamList[[j,2]] A list of parameters in this block.
EParamList[[j,2,k]] The kth external parameter in the jth

block.
EParamList[[j,2,k,1]] The LH block number for this parameter.
EParamList[[j,2,k,2]] A list of the properties of this external pa-

rameter.
EParamList[[j,2,k,2,1]] The name of the parameter.
EParamList[[j,2,k,2,2]] If the option InteractionOrder was de-

fined for this parameter, then this element
gives the symbol for the interaction order
(e.g. QED or QCD). Otherwise, this ele-
ment is removed.

EParamList[[j,2,k,2,3]] If the option InteractionOrder was de-
fined for this parameter, then this element
gives the order of the symbol defined in the
last element. Otherwise, this element is re-
moved.

EParamList[[j,2,k,2,-3]] The numerical value of this parameter.
EParamList[[j,2,k,2,-2]] Whether the parameter is complex (True)

or not (False).
EParamList[[j,2,k,2,-1]] A string giving a description of the param-

eter.

Table 24:

Table 25: IParamList Details
IParamList[[j]] The jth internal parameter.
IParamList[[j,1]] The name of the parameter.
IParamList[[j,2]] If the option InteractionOrder was de-

fined for this parameter, then this element
gives the symbol for the interaction order
(e.g. QED or QCD). Otherwise, this ele-
ment is removed.

IParamList[[j,3]] If the option InteractionOrder was de-
fined for this parameter, then this element
gives the order of the symbol defined in the
last element. Otherwise, this element is re-
moved.

IParamList[[j,-3]] The definition of this parameter in terms
of the other parameters.

IParamList[[j,-2]] Whether the parameter is complex (True)
or not (False).

IParamList[[j,-1]] A string giving a description of the param-
eter.

Table 25:

41



(2) The second element is the formula giving its values in terms of other parameters. In this case, it is the inverse of the
external parameter aEWM1.

(3,4) If the InteractionOrder option was specified, the third and fourth elements contain this information. This parameter
is 2nd order in the QED coupling.

(-2) The second to last element specifies whether this element is complex. It is real.

(-1) The last element gives the name of the parameter as specified in the option FullName.

8.5 Writing a Translation Interface

A translation interface cycles through the information in the lists just described and writes the relevant information to files in
the appropriate format. Each Feynman diagram calculator has its own subtleties that make the job slightly more challenging
than this, but that is the basic idea. We suggest the following minimal set of functions for the interface (where Template
should be changed to the name of your format):

• WriteTemplateOutput[L1, L2, . . . , options ] : This should be the main function a user calls to write a model in the
Template format. It should call the other functions to write each component of the model file. options can be whatever
the interface writer deems appropriate.

• WriteTemplateParticles[ options ] : This function should write the particles to the file in the Template format and
be used inside Write- TemplateOutput.

• WriteTemplateExtParams[ options ] : This should write the external parameters to the file in the Template format. It
should be used both inside WriteTemplateOutput and by the user to implement a new set of numerical values without
rewriting the entire model.

• ReadTemplateExtParams[ options ] : This should read the external parameters from the file in the Template format
and update the parameters in FeynRules accordingly. This function will not be used inside WriteTemplateOutput.

• WriteTemplateIntParams[ options ] : This function should write the internal parameters to file in the Template
format. It should be called inside WriteTemplateOutput.

• WriteTemplateVertices[L1, L2, . . . , options ] : This function should be called from WriteTemplateOutput and
should write the vertices to file in the Template format.

In addition to the lists outlined earlier in this section, an interface writer will usually need the list ParamRules which
contains a replacement list that takes the parameter symbols to the parameter names, as well as the function PartName,
which takes as an input the Mathematica name of a particle and return the corresponding particle name. This is usually
necessary since the parameter and particle symbols can be any Mathematica symbol and may not be compatible with the
Feynman diagram program. The parameter and particle names are intended to be plain characters and should be appropriate
for any program.

We have created a template interface in FeynRules. The interface writer can look at it for guidance and start from scratch,
or they can copy it directly to a new name and modify it to fit their needs. It can be found in the Subroutines directory of
FeynRules and is called “TemplateInterface.m”.

9 Code Details

9.1 Model File Format

As we have mentioned, the FeynRules model file format is an extension of the FeynArts format. The particles are grouped
in classes as in FeynArts in a list variable called M$ClassesDeclaration. The benefits of using classes in FeynRules are that
more compact expressions for the particle definitions, the Lagrangian and the vertices can be accomplished. The user who
implements a model can group together the particles with the same quantum numbers into “classes” and then write down the
Lagrangian for the entire class of particles at once rather than for each member individually. This can save time and reduce
errors. Furthermore, the vertices can be generated in a compact form. One vertex can represent the vertices involving all the
members of a class by including flavor indices which span the class members. It also allows a straight forward translation
to FeynArts. These particle classes have been extended with several options not available in FeynArts. These options allow
the specification of particle properties which are not used in FeynArts but are necessary for translation to other Feynman
diagram calculators. An example is the PDG number of a particle.
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We also introduce several new variables to the FeynRules model file while removing one. Since the model is defined in
terms of a Lagrangian in FeynRules, there is no need for the vertices list M$CouplingMatrices. The vertices are derived
from the Lagrangian and stored in an internal list for later use. On the other hand, the FeynArts model file did not have
variables for storing definitions of parameters or gauge groups. For this reason, the lists M$Parameters and M$GaugeGroups

were defined. In analogy to the parameters, it turned out convenient to allow the user to define parameter and gauge group
“classes” with properties. For parameters, this includes the ability to collect parameters that act on different members of a
particle class into one class of parameters with a flavor index. An example of this is the CKM matrix.

By using the concept of classes for the definitions of the particles, gauge groups and parameters in the model file, a
unified approach to initialization of the model was allowed. When a model is loaded, these definition lists are read in. After
reading the model file into memory, FeynRules goes through each list one class definition at a time. For each class definition,
FeynRules first saturates the options with their default values (where none were specified by the user). It then stores the
information in a set of global variables that can be used later (e.g. by interface writers). These lists are as follows:

- PartList : This is a list of the physical14 particle classes, their members and their properties.

- MassList : This is a list of the masses of the particles and their properties.

- WidthList : This is a list of the widths of the particles and their properties.

- EParamList : This is a list of the external parameters and their properties.

- IParamList : This is a list of the internal parameters and their properties.

Further details of the contents of these lists can be found in Section 8. Together with the Feynman rules, this information is
sufficient to write a model file for a Feynman diagram calculator.

9.2 Index Restoration

In order to derive the Feynman rules, all the indices need to be restored and appropriately contracted. We do this by first
restoring all the indices, according to the index ordering defined in the model file. FeynRules next contracts the indices of
the same type between nearest neighbor indices. It does this first on the nonfield terms (parameters and gamma matrices).

For example, consider the quark, W boson vertex from the SM. It contains the CKM matrix defined on page 12. Its
Lagrangian term looks like:

uqbar.Ga[mu].ProjM.CKM.dq W[mu]

where we have removed the overall constants. We begin by restoring the indices for the gamma matrices and CKM matrix
according to the definitions, giving:

uqbar.Ga[Index[Lorentz,mu],Index[Spin,s1],Index[Spin,s2]].

ProjM[Index[Spin,s3],Index[Spin,s4]].

CKM[Index[Generation,a1],Index[Generation,a2]].dq

W[Index[Lorentz,mu]]

Notice that if a tensor represents a matrix, then the last two indices refer to the matrix indices, e.g. γµsr is represented by
Ga[mu,s,r], and not Ga[s,mu,r]. FeynRules then cycles through each index type and contracts nearest neighbors. The left
and right most indices are contracted to the fields at the corresponding end of the chain. Since the indices are of different
type, there is no ambiguity. This gives:

TensDot[Ga[mu], ProjM][Index[Spin,s1],Index[Spin,s4]]

CKM[Index[Generation,a1],Index[Generation,a2]]

uqbar[Index[Spin, s1], Index[Generation, a1]].

dq[Index[Spin, s4], Index[Generation, a2]]

W[Index[Lorentz,mu]]

Two comments are in order about this last expression:

1. As all the tensors are now contracted to the fields at the end of the chain, the resulting matrix elements can now be
treated as numbers and moved outside the chain built by the Dot product.

2. In order to avoid a proliferation of interconnected indices in matrix products, the resulting matrix products are wrapped
inside the TensDot function. For example, instead of writing Ga[mu,s1,s2]ProjM[s2,s4], FeynRules replaced this
with TensDot[Ga[mu],ProjM][s1,s4].

This takes care of all the indices which are contracted with one or more tensors. Finally, the indices left over on the fields
which do not connect to tensors are contracted with each other in pairs.

14By physical we mean the classes for which the option Unphysical was not set to True. Typically, this means that they are the mass eigenstates.
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9.3 Feynman Rules

The Feynman rules are generated using the rules of canonical quantization. The way this is done in FeynRules is the following.
Suppose we are given the Lagrangian term:

L = gα1···αn
∂ · · · ∂ φα1

· · ·φαn
(9)

where αi represents all the indices and quantum numbers of the field φαi
and ∂ is a derivative acting on one or more of the

fields. This Lagrangian term is multiplied on the right by the creation operators for the fields (where we take all momenta
to be ingoing). The order of the fermionic and ghost creation operators is the reverse of the order of the fermions and ghosts
in the Lagrangian term. Once this is done, the product is sandwiched between the vacuum giving:

gα1···αn
∂ · · · ∂

〈

0
∣

∣

∣
φα1

(x) · · · φαn
(x)a†

φ̄αn

(pn) · · · a†φ̄α1

(p1)
∣

∣

∣
0
〉

(10)

The creation operators are then moved to the left using the (anti)commutation rules of the fields.

[

φαi
(x), a†

φ̄αj

(p)

]

= δαiαj
uαi

(p)e−ipx (11)

where uαi
is the wavefunction of φαi

. When they get to the left end, they annihilate the vacuum.
Once all the creation operators are gone, the vacuum states act on each other giving one. Any derivatives are now applied

and pull down factors of momentum from the exponentials. Finally, the Exp[−i(p1 + · · ·+ pn)x] and the wavefunctions uαi
’s

are dropped and the result is multiplied by i giving the Feynman rule vertex.
We illustrate this procedure on the QED interaction given by:

Lψ̄ψA = −eψ̄γµψAµ = −eψ̄s,fγµss′ψs′,fAµ, (12)

where e denotes the electromagnetic coupling constant, ψf the lepton field which may have one of three flavors (e, µ, τ) and
A the photon field.

This term is multiplied on the right by a†
ψ̄
a†ψa

†
A and sandwiched between the vacuum to give:

−e〈0|ψ̄γµψAµa†ψ̄a
†
ψa

†
A|0〉, (13)

where a†
ψ̄
, a†ψ and a†A denote the creation operators associated to the fields ψ, ψ̄ and A in the canonical formalism.

We next move the creation operators all the way to the left using the (anti) commutation relations:

{

ψs,f (x) , a
†

ψ̄s′,f′

(p)
}

= δss′δff ′us,fe
−ipx (14)

{

ψ̄s,f (x) , a
†
ψs′,f′

(p)
}

= δss′δff ′ ūs,fe
−ipx (15)

[

Aµ(x) , a
†
Aν

(p)
]

= δνµǫµe
−ipx (16)

which results in:
−eδff ′γµss′ ūsf (p1)us′f ′(p2)ǫµ(p3)e

−i(p1+p2+p3)x (17)

Finally, dropping the wave functions, the Exp[−i(p1 + p2 + p3)x] and multiplying by i gives the well known QED vertex

−ieδff ′γµss′ . (18)

9.4 Majorana Fermions and Conjugated Fermions

Particular care is needed when dealing with interaction terms involving Majorana fermions or explicit charge conjugation.
Feynman rules involving Majorana fermions and explicit charge conjugation are handled using the fermion flow algorithm of
Ref. [26].We show here how Majorana fermions are treated in the code, charge conjugation is dealt with in a similar way.

Let us consider the following fermion chain
λ̄1Γλ2, (19)

where λ1 and λ2 denote Majorana fermions, and Γ denotes a chain of Dirac matrices. We have to distinguish two situations
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Figure 2: The two fermion flows contributing to a vertex containing an explicit charge conjugation: a) the vertex (X , ψ̄c1,
ψ2), b) the vertex (X , ψ̄c2, ψ1).

1. If λ1 = λ2 = λ, we need to take into account the fact that a Majorana fermion is a self conjugate field, i.e.

{λ̄(x), a†
λ̄
(p)} = eiδv̄(p)e−ipx, (20)

where δ is the phase carried by the Majorana fermion. Furthermore, we have to “symmetrize” Eq. (19) to take into
account relations like λ̄γµλ = 0 for Majorana fermions. The symmetrization is done by calculating the reversed fermion
flow, defined by

ψ̄1Γψ2 = κiψ̄c2Γ̃ψ
c
1, (21)

where κi = ±1 and Γ̃ denotes the reversed chain of Dirac matrices. (For example, if Γ = γµ1γµ2 · · · γµn then Γ̃ =
γµn · · · γµ2γµ1 .) The symmetrization is then performed via

λ̄Γλ =
1

2
λ̄Γλ+

1

2
κiλ̄Γ̃λ, (22)

where we used the fact that λc = eiδλ. Applying the symmetrization formula implies for example

λ̄γµP−λ =
1

2
λ̄γµP−λ− 1

2
λ̄γµP+λ = −λ̄γµγ5λ. (23)

2. If λ1 6= λ2, we do not need to symmetrize the expression, but we need to be careful to use the same fermion flow for all
contributions to the vertex:

aλ̄1Γiλ2 + bλ̄2Γjλ1 = aλ̄1Γiλ2 + κjb e
i(δ2−δ1)λ̄1Γ̃jλ2. (24)

In this last expression we have the same ordering for the chain (λ1, λ2), and so we can consistently extract the corre-
sponding vertex.

Similar transformations are applied if the fermion chain contains explicit charge conjugated fields. These transformations
allow us to define the fermion flow consistently for each fermion chain. The convention followed in FeynRules for the fermion
flow of the vertex (X , ψ̄1, ψ2), where X denotes either a scalar or a vector field, is that ψ2 is considered ingoing and ψ1

outgoing. As an illustration we show in Fig. 2 the two fermion flows contributing to a fermion number violating vertex, and
how the two flows are represented in the FeynRules output15.

The same rule holds true for interactions involving Majorana fermions. The two fermion flows of the vertex (X , λ1, λ2)
are shown in Fig. 3. Notice that in this context the “bar” on the Majorana fermion serves only to define the direction of the
fermion flow, and does not refer to an antiparticle, i.e. the vertex corresponding to the fermion flow where λ2 is ingoing and
λ1 is outgoing is written in the FeynRules output as (X , λ̄1, λ2), whereas the reversed flow where λ1 is ingoing and λ2 is
outgoing is written as (X , λ̄2, λ1).

9.5 Implemented models and validation

In order to validate our code, we implemented several models into FeynRules, and compared the Feynman rules obtained by
our code with the interaction vertices given in the literature. We furthermore implemented these models into Monte Carlo
programs using the corresponding FeynRules interfaces, and checked that for each of them the cross-section we obtain agrees
with the stock version of the Monte Carlo program. A more detailed paper discussing the different Monte Carlo interfaces
and their validation will be published in the near future, so we will be brief on this in the current paper.

15All Feynman diagrams were drawn using Jaxodraw [27].
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Figure 3: The two fermion flows contributing to a vertex containing two Majorana fermions: a) the vertex (X , λ̄1, λ2), b)
the vertex (X , λ̄2, λ1).

All the models described in this section can be downloaded from the FeynRules web site. These models represent “base
models”, which can serve as a starting point when writing a new model. Indeed, in many cases it is not necessary to write a
new model file from scratch where the new model is an extension of an already existing model implementation (e.g. MSSM
and NMSSM). In the rest of this section we give a short review of the models already implemented, as well as the checks we
did for their validation.

We implemented the complete Standard Model (SM), and checked the Feynman rules that we obtained to those given
in the literature, both in unitary and in Feynman gauge. We found complete agreement for all vertices. We furthermore
implemented the SM in FeynArts using the corresponding FeynRules interface and checked that all the couplings given in
M$CouplingMatrices agree with the ones given in the default FeynArts model file for the SM. Finally, we checked that our
SM implementation agrees with the cross-sections obtained by the default MadGraph/MadEvent and CalcHEP/CompHEP
implementation on a selection of 22 processes, both in unitary and in Feynman gauge16.

We also implemented the Three-Site Model[28] a minimal Higgsless model. We checked our implementation against the
existing CalcHEP implementation[29] on 189 key processes in both Feynman and unitary gauge and on both CalcHEP and
CompHEP.

Finally, implementations of the the MSSM and a model of minimal extra dimension where performed by B. Fuks and
P. Aquino. The authors of the model files checked that the vertices obtained by FeynRules agree with the known textbook
expressions. The validation of these models using the Monte Carlo and FeynArts/FormCalc interfaces is currently ongoing.

10 Conclusions

In this paper we presented FeynRules, a Mathematica package to extract Feynman rules from a Lagrangian, and which allows
to implement new physics models into several Feynman diagram calculators in an automated way. We explained how to write
a model file, the key ingredient to implement a BSM model into FeynRules. The model file, together with the Lagrangian
describing the model, can then be used to compute the interaction vertices. The model information as well as the vertices
computed by FeynRules are stored inside Mathematica in a generic way, which gives the possibility to write out model files
in any format of choice. This enables us to write translation interfaces which transform the generic model information into
the specific format of a given Feynman diagram calculator. Such interfaces are currently available for CalcHEP/CompHEP,
FeynArts/FormCalc, MadGraph/MadEvent and Sherpa, but we hope that we can extend this list in the future, in order to
cope with the challenge given by the LHC.
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