Beyond Minimal Supersymmetric Models From theory to events.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with N. Christensen and C. Duhr.

Theory Seminar @ ITP, Universität Münster December 12, 2011

Outline

- Monte Carlo tools and New Physics investigations at the LHC.
- ${\rm FeynRules}$ Beyond the Standard Model Phenomenology made easy.
- The superspace module of FEYNRULES supersymmetry made easy.
- Phenomenology example: R-parity violating supersymmetry and monotops.
- Conclusions.

Monte Carlo tools and discoveries at the LHC.

One of the goals of the LHC: which New Physics theory is the correct one?

Confront data and theory.

- Establishing of an excess over the SM backgrounds.
 - Difficult task

Introduction •000

- * Use of Monte Carlo generators (backgrounds, signals).
- Confirmation of the excess.
 - Model building activities.
 - ♦ Bottom-up and top-down approach.
 - * Implementation of the new models in the Monte Carlo tools.
- Clarification of the new physics.
 - * Measurement of the parameters.
 - * Use of precision predictions.
 - * Sophistication of the analyses ⇔ new physics and detector knowledge.

Monte Carlo tools play a key role! But how is new physics presently investigated in particle physics? Introduction 0000

A framework for LHC analyzes (1).

Model building Idea * Pen&pencil stage. Leading order, loop calculations, ... * Electroweak, low energy constraints,...

Publications

Phenomenology

- Monte Carlo event generator.
- Matrix element calculation.
- Parton showering / hadronization.
- * Generic detector simulation

Experiment

- Experimental framework.
- * Matrix elements, parton showering, hadronization.
- Realistic detector simulation
- Comparison with data

Publications

Publications

A framework for LHC analyzes (2).

New physics theories.

Introduction 0000

- A lot of different theories
- Based on very different ideas.
- * In evolution (especially regarding the discoveries).

Implementation in Monte Carlo tools.

- A model consists in:
 - particles.
 - parameters.
 - interactions (≡ Feynman rules).
- The Feynman rules have to be derived (from a Lagrangian).
 - * Must be translated in a programming language.
 - * Tedious, time-consuming, error prone.
 - * We need to iterate for each considered model
 - * We need to iterate for each considered MC tool
 - Beware: allowed Lorentz and color structures.
 - * Beware: validation

Redundancies of the work.

Introduction 0000

A framework for LHC analyzes (3).

[Christensen, de Aguino, Degrande, Duhr, BeniF, Herquet, Maltoni, Schumann (EPJC '11)]

Outline

- FEYNRULES Beyond the Standard Model Phenomenology made easy.

The FEYNRULES approach (1).

Starting from physical quantities.

- All the physics is included in the model Lagrangian.
 - ♦ The Lagrangian is absent in the MC implementation.
- * Traceability.
 - Univocal definition of a model.
 - No dependence on the conventions used by the MC tools.
- Flexibility.
 - \diamond A modification of a model \equiv change in the Lagrangian.

- A general environment to implement any Lagrangian-based model.
- To interface several Monte Carlo generators.
- Robustness, easy validation and maintenance.
- Easy integration in experimental software frameworks.
- Allowing for both top-down and bottom-up approaches.

The FEYNRULES approach (2).

The FEYNRULES approach (3).

The FEYNRULES approach (4).

FEYNRULES in a nutshell.

[Christensen, Duhr (CPC '09); Christensen, Duhr, BenjF (in prep)]

• A framework for LHC analyzes based on FEYNRULES to:

- * Develop new models.
- * Implement (and validate) new models in Monte Carlo tools.
- * Facilitate phenomenological investigations of the models.
- * Test the models against data.

Main features

- * FEYNRULES is a MATHEMATICA package.
- * FEYNRULES derives Feynman rules from a Lagrangian.
- * Requirements: locality, Lorentz and gauge invariance.
- Supported fields: scalar, fermion, vector, tensor, ghost, superfield.
- * Interfaces: export the Feynman rules to Monte Carlo generators.

The FEYNRULES scheme.

Latest developments (1).

- The UFO [Degrande, Duhr, BeniF, Grellscheid, Mattelaer, Reiter (2011)].
 - * UFO \equiv Universal FEYNRULES output (not tied to any Monte Carlo tool).
 - * Allows for generic color and Lorentz structures.
 - * Used by MadGraph5, GoSam and (in the future by) Herwig++.
 - * FEYNRILLES interface: creates a PYTHON module to be linked.
 - * The module contains all the model information
- ALOHA [de Aguino, Link, Maltoni, Mattelaer, Stelzer (2011)].
 - $ALOHA \equiv Automatic Libraries Of Helicity Amplitudes.$
 - * Exports the UFO; produces the related Helas routines (C++/Python). ⇒ to be used for Feynman diagram computations.
 - * Used by MADGRAPH5 / as a standalone package.

Latest developments (2).

- A superspace module for FEYNRULES [Duhr, BenjF (CPC '11)].
 - * Full support for Weyl fermions and superfields.
 - * Series expansion in terms of component fields.
 - * Automatic derivation of supersymmetry-conserving Lagrangians.
 - * Automatic solution of the equations of motion for the auxiliaries.
 - * Can be used for many calculations in superspace.
- A new FEYNARTS interface [Degrande, Duhr].
 - * Allows for generic Lorentz structures.
 - * Creates both the model dependent and independent FEYNARTS files.
 - * New version of FORMCALC \Rightarrow multifermion interactions.

FEYNRULES-1.6 - status.

- Current public version: 1.6.0.
 - * To be download on http://feynrules.irmp.ucl.ac.be/.
 - * Contains the superspace module.
 - * Contains the **UFO** interface ⇒ MadGraph5, GoSam.
 - Contains the new FEYNARTS interface.
 - * Interfaced to WHIZARD. [Christensen, Duhr, BenjF, Reuter, Speckner (2010)]
 - * Supports color sextets.
 - * Other interfaces: CALCHEP/COMPHEP, MADGRAPH4, SHERPA.
 - * Manual currently being updated [Christensen, Duhr, BenjF (in prep)].
- Current online model database.
 - * http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage/
 - * Standard Model and simple extensions (10).
 - * Supersymmetric models (4).
 - * Extra-dimensional models (4).
 - * Strongly coupled and effective field theories (4).

Outline

- The superspace module of FEYNRULES supersymmetry made easy.

The Minimal Supersymmetric Standard Model (MSSM).

Extension to the Standard Model: symmetry between fermions and bosons.

```
Q|Boson\rangle = |Fermion\rangle, Q|Fermion\rangle = |Boson\rangle, Q|Boson\rangle being a SUSY generator.
```

The MSSM: one single supersymmetric (SUSY) generator Q.

The MSSM: one SUSY partner for each SM particle.

- * Quarks ⇔ squarks; leptons ⇔ sleptons.
- * Gauge/Higgs bosons ⇔ gauginos/higgsinos ⇔ charginos/neutralinos.
- * Gluon ⇔ gluino.
- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).
 - * Gauge coupling unification at high energy.
 - * Dark matter candidate ⇔ lightest SUSY particle stable and neutral. (assuming R-parity conservation).
- No SUSY discovery until now! ⇒ SUSY must be broken.
 - * SUSY masses at a higher scale than Standard Model (SM) masses.
- The MSSM is more and more constrained ⇒ need to go beyond.

Motivation for a superspace module.

- Kinetic terms and gauge interactions for left-handed (s)quarks in the MSSM.
 - Not very nicely expressed in terms of components fields, i. e. scalars, Weyl fermions, vector fields (13 terms):

$$\begin{split} \mathcal{L}_{\mathrm{kin}} \supset D_{\mu} \widetilde{Q}_{i}^{\dagger} D^{\mu} \widetilde{Q}^{i} + \frac{i}{2} (\chi_{Q}^{i} \sigma^{\mu} D_{\mu} \bar{\chi}_{Qi} - D_{\mu} \chi_{Q}^{i} \sigma^{\mu} \bar{\chi}_{Qi}) + F_{Qi}^{\dagger} F_{Q}^{i} \\ + i \sqrt{2} \Big[\frac{1}{6} g^{\prime} \widetilde{Q}^{i} \widetilde{\overline{B}} \cdot \bar{\chi}_{Qi} + g \overline{\widetilde{W}}^{k} \cdot \bar{\chi}_{Qi} \frac{\sigma^{k}}{2} \widetilde{Q}^{i} + g_{s} \overline{\widetilde{G}}^{a} \cdot \bar{\chi}_{Qi} T^{a} \widetilde{Q}^{i} + \mathrm{h. c.} \Big] \\ - g^{\prime} D_{B} \widetilde{Q}_{i}^{\dagger} \widetilde{Q}^{i} - g D_{W^{k}} \widetilde{Q}_{i}^{\dagger} \frac{\sigma^{k}}{2} \widetilde{Q}^{i} - g_{s} D_{G^{a}} \widetilde{Q}_{i}^{\dagger} T^{a} \widetilde{Q}^{i} \end{split}$$

- ⇒ Need to introduce Dirac and Majorana fermions.
- * Naturally expressed in terms of superfields (1 terms):

$$\mathcal{L}_{\rm kin} \supset \left[Q_i^\dagger e^{-2\frac{1}{6}g' \boldsymbol{V_B}} e^{-2g\boldsymbol{V_{W^k}} \frac{\sigma^k}{2}} e^{-2g_s\boldsymbol{V_{G^a}} \frac{T^a}{2}} Q^i \right] \bigg|_{\theta \cdot \theta \bar{\theta} \cdot \bar{\theta}}$$

The module could be a useful tool for model building. (not only a Lagrangian translator).

Superspace basics.

- Superspace: adapted space to write down SUSY transformations naturally.
- Basic objects and their FEYNRULES (hardcoded) implementation.
 - * The Majorana spinor $(\theta, \bar{\theta}) \Rightarrow$ a superspace point $\equiv G(x, \theta, \bar{\theta})$. theta is defined internally as a regular Weyl spinor.
 - * SUSY transformation parameters: Majorana spinors $(\varepsilon_1, \bar{\varepsilon}_1)$, $(\varepsilon_2, \bar{\varepsilon}_2)$, ♦ The epsx are defined internally as a regular Weyl spinor, e.g.:
- The supercharges (Q, \bar{Q}) and the superderivatives (D, \bar{D})

$$\begin{split} Q_{\alpha} &= -i \big(\partial_{\alpha} + i \sigma^{\mu}{}_{\alpha \dot{\alpha}} \bar{\theta}^{\dot{\alpha}} \partial_{\mu} \big) & \text{and} & \bar{Q}_{\dot{\alpha}} &= i \big(\bar{\partial}_{\dot{\alpha}} + i \theta^{\alpha} \sigma^{\mu}{}_{\alpha \dot{\alpha}} \partial_{\mu} \big) \;, \\ D_{\alpha} &= \partial_{\alpha} - i \sigma^{\mu}{}_{\alpha \dot{\alpha}} \bar{\theta}^{\dot{\alpha}} \partial_{\mu} & \text{and} & \bar{D}_{\dot{\alpha}} &= \bar{\partial}_{\dot{\alpha}} - i \theta^{\alpha} \sigma^{\mu}{}_{\alpha \dot{\alpha}} \partial_{\mu} \;. \end{split}$$

[Conventions: BenjF, Rausch de Traubenberg (Ellipses '11)]

$$Q_{lpha}(ext{exp}) ext{ and } ar{Q}_{\dot{lpha}}(ext{exp})$$
QSUSY [exp_, alpha_]
QSUSYBar[exp_, alphadot_]

$$D_{lpha}(ext{exp})$$
 and $ar{D}_{\dot{lpha}}(ext{exp})$

DSUSY [exp_, alpha_]

DSUSYBar[exp_, alphadot_]

These operators can be used on any superspace expressions.

Handling indices: general superfields.

- Definition of a generic superfield.
 - Most general (reducible) expansion in the θ , $\bar{\theta}$ variables.
 - * Can be expressed as,

$$\Phi(x,\theta,\bar{\theta}) = z(x) + \theta \cdot \xi(x) + \bar{\theta} \cdot \bar{\zeta}(x) + \theta \cdot \theta f(x) + \bar{\theta} \cdot \bar{\theta} g(x) + \theta \sigma^{\mu} \bar{\theta} v_{\mu}(x) + \bar{\theta} \cdot \bar{\theta} \theta \cdot \omega(x) + \theta \cdot \theta \bar{\theta} \cdot \bar{\rho}(x) + \theta \cdot \theta \bar{\theta} \cdot \bar{\theta} d(x).$$

- Can be implemented in FeynRules.
 - * Use of the nc environment (keep the fermion ordering).
 - * All the fermions are carrying lower indices.
 - Metric acting on spin space: Ueps and Deps

$$\psi_{\alpha} = \varepsilon_{\alpha\beta}\psi^{\beta} , \qquad \psi^{\alpha} = \varepsilon^{\alpha\beta}\psi_{\beta} ,$$
$$\bar{\chi}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}}\bar{\chi}^{\dot{\beta}} , \qquad \bar{\chi}^{\dot{\alpha}} = \varepsilon^{\dot{\alpha}\dot{\beta}}\bar{\chi}_{\dot{\beta}} .$$

* Remark: all the components must be declared properly and explicitely.

Chiral superfields.

Definition: the most general expansion in θ , $\bar{\theta}$ satisfying $\bar{D}_{\dot{\alpha}}\Phi(x,\theta,\bar{\theta})=0$.

$$\Phi(x,\theta,\bar{\theta}) = \phi(y) + \sqrt{2}\theta \cdot \psi(y) - \theta \cdot \theta F(y) \qquad \text{with} \qquad y^{\mu} = x^{\mu} - i\theta\sigma^{\mu}\bar{\theta} \ .$$

- * It describes matter multiplets.
- * One scalar field ϕ , one Weyl fermion χ , one auxiliary field F.
- Declaration of the left-handed quark superfield.

```
CSF[1] == {
 ClassName -> QL.
 Chirality -> Left,
 Weyl -> uqLw,
 Scalar -> sqL,
 QuantumNumbers -> {Q->2/3},
 Indices
             -> {Index[Gen], Index[Colour]}
```

- Chiral superfield \Rightarrow the label is CSF[1].
- * The Scalar and Weyl components must be declared properly.
- The auxiliary field are automatically generated (not explicitly present).

Using some superspace basic objects.

- Transformation laws for a chiral superfield and its components:
 - * In terms of superfields: $\delta_{\varepsilon}\Phi(x,\theta,\bar{\theta})=i(\varepsilon\cdot Q+\bar{Q}\cdot\bar{\varepsilon})\Phi(x,\theta,\bar{\theta})$.
 - * This depends on the supercharges QSUSY and QSUSYBar.
 - * The function DeltaSUSY is a better option...

The components of DeltaPHI read:

$$\delta_{\varepsilon}\phi = \sqrt{2}\varepsilon \cdot \psi \ , \quad \delta_{\varepsilon}\psi = -i\sqrt{2}\sigma^{\mu}\bar{\varepsilon}\partial_{\mu}\phi - \sqrt{2}F\varepsilon \ , \quad \delta_{\varepsilon}F = \ -i\sqrt{2}\partial_{\mu}\psi\sigma^{\mu}\bar{\varepsilon} \ .$$

```
In[7]:= DeltaPHI = DeltaSUSY[UR, eps1];
  In[8]:= ScalarComponent[Tonc[DeltaPHI]]
Out[8]= \sqrt{2} UQRw<sub>spt1</sub>.eps1<sub>spt1</sub>
In[10]:= Expand[ThetaComponent[Tonc[DeltaPHI]] / Sqrt[2]]
Out[10]= -\sqrt{2} FTerm2 eps1<sub>alpha$1783</sub> - i\sqrt{2} \partial_{mu$1}[SQR] eps1^{\dagger}_{sp$1dot} (\sigma^{mu$1})_{alpha$1783, sp$1dot}
|n||2||= Expand(Theta2Component(Tonc(DeltaPHI))/(-1)|
Out[12]= -i\sqrt{2} \partial_{mu$1}[UQRW_{sp$1}].eps1^{\dagger}_{sp$1dot}(\sigma^{mu$1})_{--$1}
```

- Tonc breaks dot products and restore the nc structure (fermion ordering).
- * This is mandatory in order to have xxxComponent to work properly.

Matter Lagrangians.

- Lagrangian associated to the chiral superfield content of the theory.
 - * Contains gauge interactions and kinetic terms for chiral superfields.
 - * Is entirely fixed by SUSY and gauge invariance
 - * Example for $SU(3)_c \times SU(2)_t \times U(1)_Y$.

$$\mathcal{L} = \left. \left[\Phi^{\dagger}(x, \theta, \bar{\theta}) e^{-2y_{\Phi}g' \mathbf{V}_{B}} e^{-2g\mathbf{V}_{\mathbf{W}}} e^{-2g_{s}\mathbf{V}_{G}} \Phi(x, \theta, \bar{\theta}) \right] \right|_{\theta \cdot \theta \bar{\theta} \cdot \bar{\theta}}$$

(Non-abelian vector superfields contains group representation matrices.)

Automatic extraction of the matter Lagrangian of a model:

```
CSFKineticTerms[]
CSFKineticTerms[UR] + CSFKineticTerms[QL]
```

Superfields: vector superfields (1).

- We apply the constraint $\Phi = \Phi^{\dagger}$ on a general superfield.
- In the Wess-Zumino gauge, we have:

$$\Phi_{W.Z.}(x,\theta,\bar{\theta}) = \theta \sigma^{\mu} \bar{\theta} v_{\mu} + i \theta \cdot \theta \bar{\theta} \cdot \bar{\lambda} - i \bar{\theta} \cdot \bar{\theta} \theta \cdot \lambda + \frac{1}{2} \theta \cdot \theta \; \bar{\theta} \cdot \bar{\theta} D \; .$$

- * This describes gauge supermultiplets: one Majorana fermion $(\lambda, \bar{\lambda})$, one (massless) gauge boson v, one auxiliary field D.
- Declaration of the SU(3)_c vector superfield.

```
VSF[1] == {
 ClassName -> GSF,
 GaugeBoson
              -> G.
 Gaugino
              -> gow,
              -> {Index[Gluon]}
 Indices
```

- * Vector superfield ⇒ the label is VSF[1].
- * The Gaugino and GaugeBoson components must be declared properly.
- * The auxiliary field are automatically generated (not explicitly present).
- Vector superfields can be associated to a gauge group.

Superfields: vector superfields (2).

Some properties of vector superfields in the Wess-Zumino gauge:

$$\Phi_{W.Z.}^2 = \frac{1}{2} \theta \cdot \theta \bar{\theta} \cdot \bar{\theta} v^{\mu} v_{\mu}, \quad \Phi_{W.Z.}^3 = 0.$$

```
In[7]:= GrassmannExpand[GSF[aa] GSF[bb]]
Out[7]= \frac{1}{2} \sigma_{\text{sp$1}} . \sigma_{\text{sp$1}} \overline{\sigma}_{\text{sp$1dot}} . \overline{\sigma}_{\text{sp$1dot}} G_{\text{mu$1,aa}} G_{\text{mu$1,bb}}
 In[8]: GrassmannExpand[GSF[aa] GSF[bb] GSF[cc]]
Out[8]= 0
```

The superfield strength tensor is built from associated spinorial superfields:

$$W_{\alpha} = -\frac{1}{4}\bar{D}\cdot\bar{D} \ e^{2gV}D_{\alpha}e^{-2gV}, \quad \overline{W}_{\dot{\alpha}} = -\frac{1}{4}D\cdot D \ e^{-2gV}\bar{D}_{\dot{\alpha}}e^{2gV}.$$

```
W_{\alpha}, (W_{\alpha})_{ii}, W_{\alpha}^{a}, \overline{W}_{\dot{\alpha}}, \overline{W}_{\dot{\alpha}}^{a}, (\overline{W}_{\dot{\alpha}})_{ii}
  SuperfieldStrengthL[ SF, lower spin index ]
  SuperfieldStrengthL[ SF, spin index, gauge index/indices ]
  SuperfieldStrengthR[ SF, lower spin index ]
  SuperfieldStrengthR[ SF, spin index, gauge index/indices ]
```

Vector Lagrangians.

- Vector superfield interactions: squared superfield strength tensors.
 - Non-abelian groups (abelian limit easy to obtain).

$$\begin{split} \mathcal{L} &= \frac{1}{16g^2\tau_{\mathcal{R}}} \text{Tr}(W^\alpha W_\alpha)_{|_{\theta\theta}} + \frac{1}{16g^2\tau_{\mathcal{R}}} \text{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}\bar{\theta}}} \\ &= -\frac{1}{4}F_{\mu\nu}^{a}\,F_{a}^{\mu\nu} + i\,\bar{\lambda}_{a}\,\bar{\sigma}^{\mu}\,D_{\mu}\lambda^{a} + \frac{1}{2}D_{a}D^{a} \end{split}$$

- ⇒ Interactions between gauge-bosons and gauginos.
- Automatic extraction of the vector Lagrangian of a model:
 - (* all vector superfields *) VSFKineticTerms[]
 - (* one vector superfield *) VSFKineticTerms[GSF]

Full supersymmetric Lagrangians (1).

Complete Lagrangian for a model.

$$\begin{split} \mathcal{L} &= \left. \Phi^{\dagger} e^{-2g\mathsf{V}} \Phi_{|_{\theta^2 \bar{\theta}^2}} + \frac{1}{16g^2 \tau_{\mathcal{R}}} \mathsf{Tr}(\mathsf{W}^{\alpha} \mathsf{W}_{\alpha})_{|_{\theta^2}} + \frac{1}{16g^2 \tau_{\mathcal{R}}} \mathsf{Tr}(\bar{\mathsf{W}}_{\dot{\alpha}} \bar{\mathsf{W}}^{\dot{\alpha}})_{|_{\bar{\theta}^2}} \\ &+ \left. \mathsf{W}(\Phi)_{|_{\theta^2}} + \mathsf{W}^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^2}} + \mathcal{L}_{\mathrm{soft}} \right. \end{split}$$

- * Chiral superfield kinetic terms: automatic.
- * Vector superfield kinetic terms: automatic.
- * Superpotential: model dependent.
- * Soft SUSY-breaking Lagrangian: model dependent (and often not related to the superspace).

```
Theta2Thetabar2Component[ CSFKineticTerms[] ] +
Theta2Component[ VSFKineticTerms[] + SuperPot ] +
Thetabar2Component[ VSFKineticTerms[] + HC[SuperPot] ] +
LSoft
```

LSoft and SuperPot are the only pieces provided by the user.

Full supersymmetric Lagrangians (2).

- Solution of the equation of motions.
 - Get rid of the auxiliary D-fields and F-fields through their eqs. of motion.

```
lagr = SolveEqMotionD[ lagr ] ;
lagr = SolveEqMotionF[ lagr ] ;
```

- Back to four-component fermions.
 - Usual FEYNRULES routine (cf. MC code requirements).

```
lagr = WeylToDirac[ lagr ] ;
```

- Phenomenology example: R-parity violating supersymmetry and monotops.

R-parity violating supersymmetry - the monotop case (1).

The model

- * MSSM chiral superfield content: H_u , H_d , Q, L, E_R , D_R and U_R .
- * MSSM vector superfield content: V_B , V_W , V_G . \Rightarrow MSSM gauge interactions: $SU(3)_c \times SU(2)_L \times U(1)_Y$.
- * Superpotential:

$$W = -y_e L \cdot H_d E_R - y_d Q \cdot H_d D_R + y_u Q \cdot H_u U_R + \mu H_d \cdot H_u + \frac{1}{2} \lambda U_R D_R D_R .$$

- Contains an ϵ in color space.
- ♦ Not included in any automated MC generator, but MADGRAPH5.

Use of the chain FeynRules \rightarrow UFO \rightarrow MadGraph \rightarrow events.

R-parity violating supersymmetry - the monotop case (2).

• Implementation in the superspace module of FEYNRULES. [Duhr, BenjF (CPC '11)]

```
yu[ff1,ff2] UR[ff1,cc] (QL[1,ff2,cc] HU[2] - QL[2,ff2,cc] HU[1]) -
yd[ff1,ff2] DR[ff1,cc] (QL[1,ff2,cc] HD[2] - QL[2,ff2,cc] HD[1]) -
ve[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
MUH (HU[1] HD[2] - HU[2] HD[1]) + 1/2 LUDD[ff1,ff2,ff3] *
  Eps[cc1,cc2,cc3] UR[ff1, cc1] DR[ff2,cc2] DR[ff3,cc3];
```

- * SUSY-breaking Lagrangian not relevant here (but included in the model).
- Computing the Lagrangian automatically.

```
lagr =
 Theta2Thetabar2Component[ CSFKineticTerms[] ] +
 Theta2Component[ VSFKineticTerms[] + SuperPot ] +
 Thetabar2Component[ VSFKineticTerms[] + HC[SuperPot] ] +
 LSoft
```

R-parity violating supersymmetry - the monotop case (3).

Solution of the equation of motions.

```
lagr = SolveEqMotionD[ lagr ] ;
lagr = SolveEqMotionF[ lagr ] ;
```

Back to four-component fermions.

```
lagr = WeylToDirac[ lagr ] ;
```

Generating an UFO model [Degrande, Duhr, BeniF, Grellscheid, Mattelaer, Reiter (2011)].

```
lagr = WriteUFO[ lagr, Exclude4Scalars->True ] ;
```

- Phenomenology with MADGRAPH5 [Alwall, Herquet, Maltoni, Mattelaer, Stelzer (JHEP '11)].
 - Analysis of the RPV production of monotops.

Monotop production at the LHC [Andrea, BenjF, Maltoni (PRD '11)].

- Final state signature: One top quark in association with missing energy.
 - Hadronic top decays.
 - \Rightarrow Final state: one b-iet, two light iets, missing energy.
- Monotop production in the Standard Model.
 - * Loop- and CKM-suppressed.
- Observing monotops at the LHC
 ⇔ Beyond the Standard Model physics.
- R-parity violating SUSY Benchmark: low mass region.
- Sources of background.
 - * $Z \rightarrow \nu \bar{\nu} + 3$ iets.
 - ►Irreducible background.
 - * QCD multijet.
 - ► Misreconstructed jet → fake missing energy.
 - * W + jets, $t\bar{t}$ and diboson.
 - ► Missing energy: leptonic W decay with nonreconstructed lepton.
 - * Single top.
 - ►Non- or misreconstructed leptons.

Background rejection (1).

- A proper analysis requires:
 - * Parton showering.
 - * Hadronization
 - * A proper detector simulation.
 - * Data-driven methods for background estimation.
- We rely on existing experimental studies.

[Disclaimer: this is a prospective study].

- * CMS: CFRN-PH-FP-2011-065
- * ATLAS: PLB 701 (2011) 186.
- First set of selection cuts.
 - * Large missing transverse momentum ($p_{\tau} > 150 \text{ GeV}$).
 - * $p_T(jet) > 50$ GeV for three high quality jets.
 - * $H_{\tau}(iet) > 300 \text{ GeV}.$
 - \Rightarrow comparable amount of QCD, $t\bar{t}$, Z and W events.
 - ⇒ diboson and single top highly reduced.

Background rejection (2).

- Second set of selection cuts: exploiting the presence of a top quark.
 - Exactly three jets.
 - * Lepton veto.
 - * One b-tagged jet.
 - * Three-jet invariant mass compatible with the top mass.
 - * Two non-b-jet invariant mass compatible with the W mass.
 - ⇒ all instrumental backgrounds are expected to be highly suppressed.
 - \Rightarrow the only considered source of background consists in $Z(\to \nu \bar{\nu}) + 3$ jets.

- This is a prospective study.
- Promising results ⇒ motivation for a more complete study.
 - ▶Parton showering & hadronization.
 - ▶ Detector simulation.

Some distributions with MADANALYSIS 5 [Conte, BenjF, Serret (in prep)].

- Our selection cuts.
 - ► Exactly 3 parton-level jets.
 - ► $p_T > 50$ GeV; $|\eta| < 2.5$.
 - $ightharpoonup \Delta R(\text{jet,jet}) > 0.5.$
- Additional cuts.
 - ►MET > 150 GeV.
 - $▶ m_{ii} \in [65, 95] \text{ GeV}.$
 - $▶ m_{bii} \in [150, 190] \text{ GeV}.$

Results.

Excellent (parton-level) background rejection

Phenomenology 0000000

Outline

- Conclusions.

Conclusions.

- FEYNRULES provides a platform to:
 - Develop new models.
 - Investigate their phenomenology.
 - \Rightarrow Example of the RPV monotop.
- The LHC is now running.
 - New physics is discovered at the LHC.
 - Model builders propose explanations.
 - Bottom-up approach.
 - Top-down approach.
 - Implementation phase.
 - Direct implementation in FEYNRULES.
 - Incorporation of the new models inside the experimental softwares.
 - Confrontation to the data.
 - Refinement of the model.
 - \Rightarrow Back to step 3.

Framework where both theorists and experimentalists have their place.

Conclusions

Outline

6 One simple example: QCD

Example: QCD - Parameters

```
Parameters of the model
aS == {
   Description -> "Strong coupling constant at MZ"
   TeX
                   -> Subscript[\[Alpha],s],
   ParameterType -> External,
   BlockName -> SMINPUTS,
   OrderBlock -> 3,
   InteractionOrder -> {QCD, 2}},
gs == {
   Description -> "Strong coupling constant",
                   -> Subscript[g, s],
   TeX
   ComplexParameter -> False,
   ParameterType -> Internal,
   Value -> Sqrt[4 Pi aS],
   InteractionOrder -> {QCD, 1},
   ParameterName -> "G"}
```

- All the information needed by the MC codes.
- * TEX-form (for the TEX-file).
- Complex/real parameters.
- External/internal parameters.

Example: QCD - Gauge group and gauge boson

The $SU(3)_C$ gauge group SU3C == { Abelian -> False. GaugeBoson -> G, StructureConstant -> f, DTerm -> dSUN, Representations -> {T, Colour}, CouplingConstant -> gs}

Gluon field definition

```
V[1] == {
 ClassName -> G.
 SelfConjugate -> True,
 Indices -> Index[Gluon].
 Mass
               -> O.
 Width -> 0,
 ParticleName -> "g",
               -> 21.
 PDG
 PropagatorLabel -> "G",
 PropagatorType -> C,
 PropagatorArrow -> None}
```

- Gauge boson definition.
- Gauge group definition.
- * Association of a coupling constant.
- Definition of the structure functions.
- * Definition of the representations.

Example: QCD - Quark fields.

```
The quark fields
F[1] == {
 ClassName -> q,
  ClassMembers
                  -> \{d, u, s, c, b, t\},
  FlavorIndex
                 -> Flavour.
  SelfConjugate
                 -> False,
  Indices
                 -> {Index[Flavour], Index[Colour]},
  Mass
                  -> {MQ, MD, MU, MS, MC, MB, MT},
  Width
                  \rightarrow {WQ, 0, 0, 0, 0, 0, WT},
                  -> {"d", "u", "s", "c", "b", "t"},
  ParticleName
  AntiParticleName -> {"d~", "u~", "s~", "c~", "b~", "t~"}.
                  -> {1, 2, 3, 4, 5, 6},
  PDG
  PropagatorLabel -> {"q", "d", "u", "s", "c", "b", "t"}.
  PropagatorType
                  -> Straight,
  PropagatorArrow -> Forward}
```

- Classes: implicit sums in the Lagrangian.
- * All the information needed by the MC codes.
- Weyl fermions are similar.

Example: QCD - Lagrangian

QCD Lagrangian:

$$\mathcal{L}_{\mathrm{QCD}} = -\frac{1}{4} \textit{G}_{\mu\nu}^{a} \textit{G}^{a\mu\nu} + \sum_{f} \bigg[\bar{q}_{f} \big(i \partial \!\!\!/ + g_{s} \mathcal{G}^{a} \textit{T}^{a} - m_{f} \big) q_{f} \bigg]. \label{eq:QCD_QCD}$$

```
The QCD Lagrangian
 LQCD = -1/4 * FS[G, mu, nu, a] * FS[G, mu, nu, a] +
   I*qbar.Ga[mu].DC[q, mu] -
```

MQ[f] * qbar[s,f,c].q[s,f,c];

Implicit summations \Rightarrow easy debugging.

Example: QCD - Results

```
Results - let us be ready for (some) phenomenology!
FeynmanRules[LQCD, FlavorExpand->False]
    Vertex 1
    Particle 1: Vector, G
    Particle 2 : Dirac , q†
    Particle 3 : Dirac , q
    Vertex:
       ig_s \gamma_{s_2,s_3}^{\mu_1} \delta_{f_2,f_3} T_{m_2,m_2}^a
    WriteUF0[LQCD]
    WriteFeynArtsOutput[LQCD]
    WriteCHOutput[LQCD]
    WriteMGOutput[LQCD]
    WriteSHOutput[LQCD]
    WriieWOOutput[LQCD]
```