BSM with FEYNRULES Towards NLO: status and plans

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with N.D. Christensen and C. Duhr.

ERC Miniworkshop @ CERN January 27, 2012

Outline

- 1 Status of FeynRules.
- 2 FEYNRULES at NLO Status and plans.
- 3 Summary.

Implementation of BSM theories in Monte Carlo tools.

- A model consists in:
 - * Particles.
 - * Parameters.
 - * Interactions (≡ Feynman rules).
- The Feynman rules have to be derived (from a Lagrangian).
 - ► Translated in a programming language.
 - ⇒ Tedious, time-consuming, error prone.
 - ▶ Iterations for each model.
 - ► Iterations for each MC tool.
 - Beware: Lorentz and color structures.
 - Beware: validation.

Redundancies of the work.

A framework for LHC analyzes.

[Christensen, de Aquino, Degrande, Duhr, BenjF, Herquet, Maltoni, Schumann (EPJC '11)]

FEYNRULES in a nutshell.

[Christensen, Duhr (CPC '09); Christensen, Duhr, BenjF (in prep)]

● A framework for LHC analyzes based on FeynRules to:

- * Develop new models.
- * Implement (and validate) new models in Monte Carlo tools.
- * Facilitate phenomenological investigations of the models.
- * Test the models against data.

Main features

- * FeynRules is a Mathematica package.
- * FEYNRULES derives Feynman rules from a Lagrangian.
- * Requirements: locality, Lorentz and gauge invariance.
- * Supported fields: scalar, fermion, vector, tensor, ghost, superfield.
- * Interfaces: export the Feynman rules to Monte Carlo generators. CALCHEP, FEYNARTS, MADGRAPH, SHERPA, WHIZARD
- * Universal FeynRules output: MadGraph5 and GoSam.

FEYNRULES-1.6 - status.

- Current public version: 1.6.0.
 - * To be download on http://feynrules.irmp.ucl.ac.be/.
 - * Contains the superspace module. [Duhr, BenjF (CPC '11)]
 - * Contains the UFO interface ⇒ MadGraph5, GoSam.
 [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (2011)]
 - * Supports color sextets.
 - * Contains the new FEYNARTS interface.
 - * Interfaced to WHIZARD. [Christensen, Duhr, BenjF, Reuter, Speckner (2010)]
 - * Other interfaces: CALCHEP/COMPHEP, MADGRAPH4, SHERPA.
 - * Manual currently being updated [Christensen, Duhr, BenjF (in prep)].
- Current online model database.
 - * http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage/ .
 - * Standard Model and simple extensions (10).
 - * Supersymmetric models (4).
 - * Extra-dimensional models (4).
 - * Strongly coupled and effective field theories (4).

Outline.

- 1 Status of FeynRules
- 2 FEYNRULES at NLO Status and plans.
- 3 Summary

NLO calculations with MADGRAPH - AMC@NLO

- Real emission.
 - * Must include the appropriate subtraction terms.
 - ⇒ MADFKS [Frederix, Frixione, Maltoni, Stelzer (JHEP '09)].
 - * The tree-level Feynman rules are the only required components.

 \odot No particular problem for BSM \Rightarrow problem solved. \odot (Use of FEYNRULES, its interfaces to MC tools)

- One-loop virtual amplitudes.
 - Several algorithms have been proposed in the last few years.
 - ⇒ MADLOOP [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau (JHEP '11)].
 - ⇒ based on OPP reduction [Ossola, Papadopolous, Pittau (NPB '07)].
 - * Requirements:
 - ♦ Tree-level Feynman rules.
 - IIV renormalization counterterms.
 - ♦ Rational R₂ terms.

The two latter must be included by hand.

NI O calculations in the context of FEYNRULES.

- **Counterterms and** *R*₂ **terms**.
 - * Mon-automatic steps.
 - * * Can be derived from the tree-level Lagrangian.
 - All the information is already there at the FeynRules-level.

- Automatic renormalization in the MS-scheme with FEYNRULES
 - Automated extraction of the renormalized Lagrangian
 - Modification of the FeynArts interface to include counterterms
 ✓.
 - **3** Calculation of the renormalization constants with FORMCALC.
 - ►Self-energies: 80% done.
 - ► Vertices X
 - Re-injection in FeynRules X.
- Automatic R_2 terms X.
- The UFO at NLO: basically there [UFO people + Hirschi]

Automatic renormalization with FEYNRULES.

- Expansion of the renormalization constants (works with full Lagrangians).
 - * The type of the interactions in the loops can be specified.
 - * The loop-level can be specified.

ExtractCounterterms[l[s,f],{aS,1}]

$$\blacktriangleright I_{sf} \rightarrow I_{sf} + \frac{\alpha_s}{4\pi} \left[(\delta Z_{II}^{L(1)})_{ff'} (P_L)_{ss'} + (\delta Z_{II}^{R(1)})_{ff'} (P_R)_{ss'} \right] I_{s'f'}$$

ExtractCounterterms[ydo,{{aS,2},{aEW,1}}]

$$\blacktriangleright y_d \to y_d + \frac{\alpha_s}{2\pi} \delta y_d^{(1,0)} + \frac{\alpha}{2\pi} \delta y_d^{(0,1)} + \frac{\alpha_s^2}{4\pi^2} \delta y_d^{(2,0)} + \frac{\alpha_s \alpha}{4\pi^2} \delta y_d^{(1,1)} + \frac{\alpha_s^2 \alpha}{8\pi^3} \delta y_d^{(2,1)}$$

- Treatment of the internal parameters.
 - * Automatic computation of the relations among renormalization constants.
 - * Only the ren. cnsts of the external parameters will have to be computed.

 g_s and α_s at first order in QCD.

$$g_s = 2\sqrt{\pi\alpha_s}$$
 \Rightarrow $\delta g_s^{(1)} = \frac{\sqrt{\alpha_s}}{2\sqrt{\pi}}\delta\alpha_s^{(1)}$

Outline.

- 1 Status of FEYNRULES
- 2 FEYNRULES at NLO Status and plans
- 3 Summary.

Conclusions.

- FEYNRULES provides a platform to:
 - * Develop new models.
 - * Investigate their phenomenology.
- FeynRules and leading order tools.
 - * Many interfaces exist.
 - * Any model (renormalizable or not) can be exported to at least one MC.
 - * MC event generation at LO: the problem is solved (up to spin-3/2 fields).
- NLO challenges.
 - * Achievement of the UFO @ NLO format.
 - ►Easter '12.
 - * Automatic renormalization.
 - ►Summer '12.
 - * Automatic R2 terms.
 - ►Summer '12 ?
- Full merging to the NLO tools.