
FeynRules Tutorial

Claude Duhr
IPPP/Durham

January 13, 2010

1 Introduction

The main topic of this tutorial is FeynRules, a Mathematica package that allows to derive Feynman
rules from a Lagrangian and to implement them into various HEP tools in an automated way. In
particular, during this tutorial we will

• implement a simple model of Dark Matter into FeynRules and derive its Feynman rules.

• export the model to MicrOmegas to compute the DM relic density.

• export the model to MadGraph to study its LHC phenomenology.

2 The Model

The model we will consider consists in the Standard Model (SM) augmented by a single singlet scalar
field S. For S to be a viable Dark Matter (DM) candidate it must be stable, or in other words there
must be a symmetry (“R-parity”) that prevents S from decaying. We choose here the minimal scenario
and we postulate a Z2 symmetry such that S is Z2-odd whereas all SM particles are Z2-even. the
Lagrangian for this model then takes the very simple form,

L = LSM + LDM , (1)

where LSMdenotes the SM Lagrangian, and the Dark Matter sector is,

LDM =
1

2
∂µS ∂µS − 1

2

(

m2
S + λSH v2

)

S2 + λSS4 + λSHS2 Φ†Φ , (2)

where v denotes the vev of the SM Higgs field

Φ =

(

φ±,
H + iφ0 + v√

2

)T

(3)

and mS denotes the mass of the scalar S. mS , λS and λSH are free parameters of the model. Here we
choose for the sake of the example mS = 70 GeV and λS = λSH = 0.02.

1

3 The FeynRules implementation

The next step is to implement the model (i.e., the Lagrangian) into FeynRules. Since our model
consists in the simple addition of a new particle that leaves the SM sector of the model unchanged, we
do not need to change anything to LSM and we can concentrate solely on LDM .

Implementing a new model in FeynRules consists in three steps:

1. Define the new particle.

2. Define the new parameters.

3. Enter the Lagrangian into Mathematica.

.

3.1 Defining new particles and parameters: the FeynRules model file

New particles and parameters are defined in the so-called model-file, a text-file that contains lists of all
the particles and parameters, together with their properties (e.g., mass of a particles, numerical value
of a parameter).

• Go to the directory ~/FeynRules1.4.3/Models/YETI10,

cd ~/FeynRules1.4.3/Models/yeti10

In this directory you find a text file called SM.fr, which contains all the particle and parameter
definitions for the SM. This file does not need to be changed, but we need to create an additional
file where we define in a similar way the new particle S and the new parameters mS , λS and λSH .

• Preparing the new model file: Next, open a new text file called ScalarDM.fr in the working
directory. We start be including some information on our new model. The name of the new model
can be entered via the M$ModelName variable,

M$ModelName = "Scalar_Dark_Matter";

Note that this variable also sets the name of all output file produced by FeynRules. You can
include some more information about the model for future via the M$Information variable,

M$Information = {

Authors -> {"C. Duhr"},

Version -> "1.0",

Date -> "13. 01. 2010",

Institutions -> {"Durham / IPPP"},

Emails -> {"claude.duhr@durham.ac.uk"}};

• Defining a new particle: New particles are included in a list called M$ClassesDescription.
In our case, this list only contains the new scalar particle,

2

M$ClassesDescription = {

S[4] == {

ClassName -> sc,

SelfConjugate -> True,

Mass -> {Msc, 70},

ParticleName -> "~sc"}

}

This defines a new scalar (S) with name sc1. The number in square brackets is just a counter that
numbers the scalar particles in the model (in this case it is 4, since the SM already contains three
scalars: the higgs boson and the two pseudo-Goldstone bosons). The scalar is furthermore real
(SelfConjugate -> True) and has a mass of 70 GeV (Mass -> {Msc, 70}). Note that in this
way we already defined the parameter mS that appears in the Lagrangian. A comment is in order
about the option ParticleName. The ClassName of the particle refers to the name used inside
Mathematica. The ParticleName on the other hand however refers to the name (a string) to
be used later on in MicrOmegas and MadGraph. The reason for this is that Micromegas

requires the names of all Z2-odd particles to start with a ~.

• Defining new parameters: We already defined the mass mS when we defined the new particle,
but we still need to define the two new coupling constants λS and λSH by including them into the
list M$Parameters as shown:

M$Parameters = {

lS == {

Value -> 0.02,

InteractionOrder -> {QED, 2},

Description -> "DM scalar couplings"},

lSH == {

Value -> 0.02,

InteractionOrder -> {QED, 2},

Description -> "DM - Higgs coupling"}

}

Description can be any string, and only serves as a documentation. InteractionOrder is an
additional option required by MadGraph. For now it suffices to now that this defines λS and
λSH as “quartic couplings of electroweak strength”.

• Finally, save the text file as ScalarDM.fr in the current working directory.

3.2 Running FeynRules

• Loading FeynRules: Open an empty Mathematica notebook, and load the FeynRules

package via the command:

1Note that we cannot call the new particle S, because the symbol S is already used to refer to scalars in general in

FeynRules.

3

$FeynRulesPath = SetDirectory["~/FeynRules1.4.3"];

<<FeynRules‘

SetDirectory[$FeynRulesPath <> "/Models/YETI10"];

• Loading the model files: Once the FeynRules package is loaded, we have to read in the model
files with the particle and parameter definitions:

LoadModel["SM.fr", "ScalarDM.fr"];

• Implementing a Lagrangian: We are now ready to enter the Lagrangian of the Model. The
SM part of the Lagrangian is already contained in SM.fr and is stored in the variables LGauge,
LFermions, LHiggs and LGhost.

Let us now turn to the new sector described by the Lagrangian in Eq. (2). The Lagrangian can
be entered into Mathematica in the following way:

Textbook expression Mathematica expression
LDM = LDM :=

1
2
∂µS ∂µS 1/2 del[Sc, mu] del[Sc,mu]

− 1
2

(

m2
S + λSH v2

)

S2 -1/2 (Msc^2 + lSH v^2) Sc^2

+λSS4 +lS Sc^4

+λSHS2 Φ†Φ +lSH Sc^2 Phibar.Phi

Phi and Phibar are predefined in the SM model file and denote the Higgs doublet of Eq. (3).

• Running FeynRules: We are now ready to run FeynRules. First we can perform some
basic sanity checks on the Lagrangian we just implemented, e.g., checking the hermiticity of the
Lagrangian. This can be done using the CheckHermiticity command as shown,

CheckHermiticity[LDM];

After the Lagrangian passed this check, we may have a look at the interaction vertices involving
the new particle by using the FeynmanRules command:

FeynmanRules[LDM];

3.3 Running the interfaces

We have now achieved a complete FeynRules implementation of our model, and we can now output the
model to various matrix element generators to study the phenomenology of the model. In this tutorial
we want to use MicrOmegas to compute the DM relic density as well as MadGraph to compute the
DM production cross section in a specific channel at the LHC.

Since MicrOmegas is based on CalcHep, we can implement our model into MicrOmegas by ask-
ing FeynRules to write a CalcHep output by means of the corresponding interface. Since CalcHep

work in Feynman gauge, we first switch to this particular gauge via,

4

FeynmanGauge = True;

This command tells FeynRules to include all the ghost and pseudo-Goldstone vertices when computing
the interaction vertices. The computation of the vertices and the writing of the CalcHep model files
is done via the command

WriteCHOutput[LGauge, LFermions, LHiggs, LYukawa, LGhost, LDM];

FeynRules now computes all the interaction vertices associated with the Lagrangians and produces
a set of output files, saved in the directory Scalar_Dark_Matter-CH, that can be directly read into
CalcHep and MicrOmegas.

Similarly, the input files for MadGraph can be generated via the command:

FeynmanGauge = False;

WriteMGOutput[LGauge, LFermions, LHiggs, LYukawa, LDM];

where we turned the switch to Feynman gauge off because MadGraph only works in unitary gauge.
The output files for MadGraph are saved in the directory Scalar_Dark_Matter_MG.

4 MicrOmegas

Since the new scalar S we introduced is the only Z2-odd particle in our model, it is necessarily stable
and hence a candidate for Dark Matter. The CalcHep implementation of our model obtained by
FeynRules can be used together with MicrOmegas to compute in an automated way the relic density
of our DM candidate. The corresponding steps will be described in the following.

• Go to the MicrOmegas home directory:

cd ~/micromegas_2.2.CPC.i

• Creating a new project: We first need to create a new working directory for our model. This
is done via the shell command

./newProject scalarDM

This creates a directory scalarDM in the MicrOmegas home directory that contains all the
routines needed to compute the relic density for a given model. The information on the model
itself (particles, vertices, etc.) is however not yet included.

• Adding a new model: Go in to the working directory we just created,

cd scalarDM

To add a new model it is enough to copy the CalcHep files written by FeynRules into the
subdirectory work/models,

cp -r ~/FeynRules1.4.3/Models/YETI10/Scalar_Dark_Matter-CH/* work/models/

5

The model is now ready to be used just like all other built-in models.

• Running MicrOmegas: To run MicrOmegas we need to create an input file for the parameters
of the model. Open a new text file input.par in your text editor. You can specify in this file the
numerical values for the parameters of the DM sector, e.g.,

Msc 70

lS 0.02

lSH 0.02

If you leave this file empty, then the default values given in the model file will be used.

Next, we need to compile the MicrOmegas executable,

gmake main=main.c

and we can finally run MicrOmegas via the command

./main input.par

MicrOmegas will now compute the DM annihilation rate for DMDM → X , where DM can be
any Z2-odd particle. By convention, MicrOmegas assumes that the names of all Z2-odd particles
start by ~. In our case, there is only one such particle, ~sc, and so the code will compute the
annihilation rate for ~sc ~sc -> X.

• Play with it! You can now play with the new model, analyze the output, change the input
parameters in input.par, etc.

5 MadGraph

MadGraph is a program that allows to generate the tree-level matrix element for a given process, and
is hence suitable to study the collider phenomenology of a model. In this tutorial we are interested in
the DM production at the LHC, and we will in particular compute the LHC cross section for the process
p p → Z S S.

• Go to the MadGraph home directory,

cd ~/MG_ME_V4.4.32

• Adding a new model: All models are saved in the subdirectory Models, and so we need to copy
our FeynRules-generated model to this directory,

cp -r ~/FeynRules1.4.3/Models/YETI10/Scalar_Dark_Matter_MG Models/

It is possible to test the sanity of the model by executing the sequence of commands

cd Models/Scalar_Dark_Matter_MG

make testprog

./testprog

6

If the model is correct, then the numerical values of all the parameters and couplings in the model
should be printed on the screen.

• Running MadGraph: To obtain the cross section for our process with MadGraph, we first
need to create a new working directory. Go back to the MadGraph home directory, and make a
copy of the directory Template,

cp -r Template scalarDM

The process is entered via the proc_card.dat, stored in the Cards/ subdirectory of scalarDM.
Note however that the name of the new particle has slightly changed! MadGraph does not
allow a particle name to start with a ~ (which was mandatory for MicrOmegas). FeynRules

corrected for this by renaming the particle into hsc. The process is then entered as follows in the
proc_card.dat:

Begin PROCESS # This is TAG. Do not modify this line

p,p>Z,hsc,hsc @1 # First Process

QCD=99 # Max QCD couplings

QED=99 # Max QED couplings

end_coup # End the couplings input

done # this tells MG there are no more procs

By default, MadGraph always assumes SM processes, so we need to change the model information
in the proc_card.dat as shown:

Begin MODEL # This is TAG. Do not modify this line

Scalar_Dark_Matter_MG

End MODEL # This is TAG. Do not modify this line

We are now in principle ready to run the code. However, for simplicity, let us change the definition
of the proton so that it only contains up and down quarks.

Begin MULTIPARTICLES # This is TAG. Do not modify this line

P uu~dd~g

Once the proc_card.dat is ready, we can generate the matrix element for our process by running

./bin/newprocess

in the scalarDM directory. MadGraph now generates a Fortran code for the tree-level matrix
element that can be evaluated numerically in a fast and stable way. You can also have a look at
the Feynman diagrams that contribute to the process by opening the file index.html in a browser
and clicking on Process Information. Furthermore, the matrix element can also be integrated
over phase space running the command

7

./bin/generate_events 0

This may take some time depending on the machine. Since we are only interested in the cross
section, you can speed up this step by lowering the number of events requested in the run_card.dat
in the directory Cards,

10 = nevents ! Number of unweighted events requested

At the end, the result of the integration can be accessed in index.html by clicking on Results

and Event Database.

• Advanced: Decaying the Z boson: The Z boson we just produced must of course decay into
something. We can for example ask MadGraph to generate the cross section for the same process
but where the Z boson decays into an electron-positron pair, p p → Z S S → e+ e− S S by asking
int he proc_card.dat for the process p,p>hsc,hsc,(Z>e,e~).

• Advanced: Applying final state cuts: By default MadGraph applies a set of standard cuts
on the final states, e.g.,

|pT,leptons| > 10 GeV, |ηleptons| < 2.5, ET,leptons > 0 GeV.

The values for the cuts are set in the run_card.dat (in the subdirectory Cards) via,

10 = ptl ! minimum pt for the charged leptons

0 = el ! minimum E for the charged leptons

2.5 = etal ! max rap for the charged leptons

You can change the values for the cuts and observe how the cross section changes.

• Advanced: From events to plots: MadGraph does not only generate the number for the
cross section, but also (unweighted) events from which distributions can be obtained. The number
of events is set in the run_card.dat via

10000 = nevents ! Number of unweighted events requested

and the generated events are stored in Events/XX_unweighted_events.lhe.tgz, where XX is the
name you gave to the run. The events can be used to make plots. You can go to the Mad-

Graph homepage, http://madgraph.phys.ucl.ac.be and click on Tools and then on Plotting

Interface (MadAnalysis). You can upload your events here and retrieve a set of plots for basic
distributions.

6 Advanced: DM pair production via gluon fusion at the LHC

In the previous section we generated the LHC cross section for the production of a pair of DM particles
in association with a Z boson. It is also possible to produce directly a pair of DM particles without a

8

mt → ∞

g

g

H

g

g

H

Figure 1: The effective coupling of gluons to the Higgs boson.

vector boson, via a process of the form p p → H∗ → S S. At the LHC, however, the main production
channel for a Higgs boson is not q q̄ annihilation, but gluon fusion, i.e., a pair of gluon effectively coupling
to a Higgs boson via a top quark loop (See Fig. 1). In the large top mass limit, this effective coupling
can be described by the higher-dimensional operator

LGF = −1

4
AH H Ga

µν Gµν
a , (4)

where AH denotes the effective coupling of the gluons to the Higgs boson,

AH =
−g2

s

4π(3πv)

[

1 +
7

30

(

mH

2mt

)2

+
2

21

(

mH

2mt

)4

+
26

525

(

mH

2mt

)6

+ O
(

mH

2mt

)8
]

. (5)

You can use FeynRules to augment our model by this operator and to implement it in MadGraph

to compute the cross section for p p → H∗ → S S.

9

