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• Why yet another tool..?

• FeynRules
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• Conclusion

For BSM physcis, see N. Christensen’s talk



• In general, a new model is given by a Lagrangian, 
containing all the particles and their mutual 
interactions.

• At some point, one would like to compare the 
model with experiment.

Why yet another tool..?

Needs in general some hard 
calculations:
- cross-sections
- decay rates
- radiative corrections



• Fortunately, several tools are available to do the 
calculations

Why yet another tool..?

- MC generators (MadGraph, CalcHep, CompHEP,                 
AMEGIC++)
- FeynArts,...

New model Existing tools
(Lagrangian, new 
particles,...)

(Programming language, 
files containing the new 
particles and 
interactions,...)



• Mathematica® based package that calculates Feynman 
rules from a Lagrangian.

• No special requirements on the form of the 
Lagrangian.

• Particle types supported so far: scalars, fermions 
(Dirac and Majorana), vectors, spin-2, ghosts.

FeynRules



• The FR model file contains all the information about the 
model:

FeynRules

- Particles & fields
- Parameters (masses, coupling constants,...)
- mixing matrices
- etc.

• Feynman rules are calculated by Mathematica using the 
information from the model-file and the Lagrangian.

• The vertices can be exported into a TeX-file.



• Example of how Feynman rules are calculated:

FeynRules

• After applying standard QFT commutation rules, we get

• Dropping the wave functions we are left with the vertex

Feynman Rules

The Feynman rules are generated using the rules of canonical quantization.
The way this is done in FeynRules is the following. Suppose we are given the
Lagrangian term:

L = gα1···αn∂ · · ·∂ φα1
· · ·φαn (9.1)

where αi represents all the indices and quantum numbers of the field φαi

and ∂ is a derivative acting on one or more of the fields. This Lagrangian
term is multiplied on the right by the creation operators for the fields (where
we take all momenta to be ingoing). The order of the fermionic and ghost
creation operators is the reverse of the order of the fermions and ghosts in the
Lagrangian term. Once this is done, the product is sandwiched between the
vacuum giving:

gα1···αn∂ · · ·∂
〈

0
∣

∣

∣φα1
(x) · · ·φαn(x)a†

φ̄αn
(pn) · · ·a†

φ̄α1

(p1)
∣

∣

∣ 0
〉

(9.2)

The creation operators are then moved to the left using the (anti)commutation
rules of the fields.

[

φαi
(x), a†

φ̄αj
(p)

]

= δαiαj
uαi

(p)e−ipx (9.3)

where uαi
is the wavefunction of φαi

. When they get to the left end, they
annihilate the vacuum.

Once all the creation operators are gone, the vacuum states act on each other
giving one. Any derivatives are now applied and pull down factors of mo-
mentum from the exponentials. Finally, the Exp[−i(p1 + · · · + pn)x] and the
wavefunctions uαi

’s are dropped and the result is multiplied by i giving the
Feynman rule vertex.

We illustrate this procedure on the QED interaction given by:

Lψ̄ψA = −eψ̄γµψAµ = −eψ̄s,fγ
µ
ss′ψs′,fAµ, (9.4)

where e denotes the electromagnetic coupling constant, ψf the lepton field
which may have one of three flavors (e, µ, τ) and A the photon field.

This term is multiplied on the right by a†
ψ̄
a†

ψa†
A and sandwiched between the

vacuum to give:
−e〈0|ψ̄γµψAµa†

ψ̄
a†

ψa†
A|0〉, (9.5)

where a†

ψ̄
, a†

ψ and a†
A denote the creation operators associated to the fields ψ,

ψ̄ and A in the canonical formalism.

We next move the creation operators all the way to the left using the (anti)
commutation relations:
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{

ψs,f(x) , a†

ψ̄s′,f ′

(p)
}

= δss′δff ′us,fe
−ipx (9.6)

{

ψ̄s,f(x) , a†
ψs′,f ′

(p)
}

= δss′δff ′ ūs,fe
−ipx (9.7)

[

Aµ(x) , a†
Aν

(p)
]

= δν
µεµe−ipx (9.8)

which results in:

−eδff ′γµ
ss′ūsf(p1)us′f ′(p2)εµ(p3)e

−i(p1+p2+p3)x (9.9)

Finally, dropping the wave functions, the Exp[−i(p1 + p2 + p3)x] and multi-
plying by i gives the well known QED vertex

−ieδff ′γµ
ss′. (9.10)

Majorana Fermions and Conjugated Fermions

Particular care is needed when dealing with interaction terms involving Majo-
rana fermions or explicit charge conjugation. Feynman rules involving Majo-
rana fermions and explicit charge conjugation are handled using the fermion
flow algorithm of Ref. [26].We show here how Majorana fermions are treated
in the code, charge conjugation is dealt with in a similar way.

Let us consider the following fermion chain

λ̄1Γλ2, (9.11)

where λ1 and λ2 denote Majorana fermions, and Γ denotes a chain of Dirac
matrices. We have to distinguish two situations

(1) If λ1 = λ2 = λ, we need to take into account the fact that a Majorana
fermion is a selfconjugate field, i.e.

{λ̄(x), a†

λ̄
(p)} = eiδv̄(p)e−ipx, (9.12)

where δ is the phase carried by the Majorana fermion. Furthermore,
we have to “symmetrize” Eq. (9.11) to take into account relations like
λ̄γµλ = 0 for Majorana fermions. The symmetrization is done by calcu-
lating the reversed fermion flow, defined by

ψ̄1Γψ2 = κiψ̄c
2Γ̃ψc

1, (9.13)

where κi = ±1 and Γ̃ denotes the reversed chain of Dirac matrices. (For
example, if Γ = γµ1γµ2 · · ·γµn then Γ̃ = γµn · · · γµ2γµ1 .) The symmetriza-
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Use canonical quantisation to calculate

where uαi is the wavefunction of φαi . When they get to the left end, they
annihilate the vacuum.

Once all the creation operators are gone, the vacuum states act on each
other giving one. Any derivatives are now applied and pull down factors of
momentum from the exponentials. Finally, the Exp[−i(p1 + · · · + pn)x] and
the wavefunctions uαi ’s are dropped and the result is multiplied by i giving the
Feynman rule vertex.
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Lψ̄ψA = −eψ̄γµψAµ = −eψ̄s,fγµ
ss′ψs′,fAµ, (11)

where e denotes the electromagnetic coupling constant, ψf the lepton field which
may have one of three flavors (e, µ, τ) and A the photon field.

This term is multiplied on the right by a†

ψ̄
a†

ψa†
A and sandwiched between the

vacuum to give:
−e〈0|ψ̄γµψAµa†

ψ̄
a†

ψa†
A|0〉, (12)

where a†

ψ̄
, a†

ψ and a†
A denote the creation operators associated to the fields ψ,

ψ̄ and A in the canonical formalism.
We next move the creation operators all the way to the left using the (anti)

commutation relations:
{

ψs,f (x) , a†

ψ̄s′,f′

(p)
}

= δss′δff ′us,fe−ipx (13)
{

ψ̄s,f (x) , a†
ψs′,f′

(p)
}

= δss′δff ′ ūs,fe−ipx (14)
[

Aµ(x) , a†
Aν

(p)
]

= δν
µεµe−ipx (15)

which results in:

−eδff ′γµ
ss′ ūsf (p1)us′f ′(p2)εµ(p3)e

−i(p1+p2+p3)x (16)

Finally, dropping the wave functions, the Exp[−i(p1 + p2 + p3)x] and mul-
tiplying by i gives the well known QED vertex

−ieδff ′γµ
ss′ . (17)

9.4 Majorana Fermions and Conjugated Fermions

Particular care is needed when dealing with interaction terms involving Majo-
rana fermions or explicit charge conjugation. Feynman rules involving Majorana
fermions and explicit charge conjugation are handled using the fermion flow al-
gorithm of Ref. [26].We show here how Majorana fermions are treated in the
code, charge conjugation is dealt with in a similar way.

Let us consider the following fermion chain

λ̄1Γλ2, (18)

where λ1 and λ2 denote Majorana fermions, and Γ denotes a chain of Dirac
matrices. We have to distinguish two situations
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FeynRules

Lagrangian

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules



• Model file:

FeynRules
• Lagrangian:

- particles 
- parameters 
  (masses, couplings,...)

- Interaction vertices 
(calculated by FeynRules)



• Model file:

FeynRules
• Lagrangian:

- particles 
- parameters 
  (masses, couplings,...)

- Interaction vertices 
(calculated by FeynRules)

Generic model:
Suitable to be translated to any other code. 

See N. Christensen’s talk



• FR includes a set of ‘translation interfaces’ which allow to 
translate the generic model information into any other 
format.

• FR creates all files needed to run the new model just by 
knowing the FR model-file and the Lagrangian.

• Translation interfaces available so far

FeynRules

- FeynArts/FormCalc
- MadGraph/MadEvent (CD, M. Herquet)
- CalcHep/CompHep (CD, N. Christensen)
- Sherpa (CD, S. Schumann)

We would like to 
see many more!



Lagrangian

FeynArts

Translation Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

FeynRules

...MadGraph CalcHep Sherpa



• The philosophy:

FeynRules
- Provide a ‘theorist-friendly’ environment to develop new 
models.

- Fill the gap between model building and collider simulation.

- Exploit the strength of the different Feynman diagram 
calculators on the market, and avoid separate implementations 
of the same model into different programs.

Use Mathematica based program.

Automatic way to go from the Lagrangian to Monte Carlo simulation.

Provide translation interfaces to more than one program.



Example: QCD

• Four step implementation:

- Step 1: Define your parameters
- Step II: Define your gauge group
- Step III: Define your particles
- Step IV: Write your lagrangian

} Model file

The Lagrangian we consider is the following:

LQCD = −
1

4
Ga

µνGµν
a + q̄f (i /D − mf)qf − η̄a∂µDµηa, (6)

where Ga
µν denotes the gluon field strength tensor, ηa the ghost field associated

to the gluon, and f runs over all six quark flavor (u, d, s, c, b, t).

4.1 Model Information

Each model file should begin with the model information, which acts as an
electronic signature of the model file. Although this information is optional,
it can be useful to keep track of modifications made to the file, as well as the
references used to fix all the conventions in the Lagrangian, especially if the
user of the model file is different form the author of the file. In our case this
information could be entered as follows:

M$Model_Name = "QCD";

M$Information = {
Authors -> {"N. Christensen", "C. Duhr"},
Institutions -> {"Michigan State University",

"Universite catholique de Louvain (CP3)"},
Emails -> {"neil@pa.msu.edu",

"claude.duhr@uclouvain.be"},
Date -> "June 6, 2008"

};

4.2 Indices

Apart from the model information, the frontmatter of each model file must
contain the declaration of all types of indices used inside the model. In QCD,
we have three different fields appearing in the Lagrangian,

1. the gluon field Ga
µ, carrying two indices, a Lorentz index µ ranging from

1 to 4 and an adjoint color index a ranging from 1 to 8.

2. the quark field qs,f,i, carrying three indices, a spin index s ranging from
1 to 4, a flavor index ranging from 1 to 6 and a fundamental color index
i ranging from 1 to 3.

3. the ghost field ηa, carrying an adjoint color index a.

In Section 2 we mentioned that the Lorentz and spin indices are hard coded
into FeynRules and need therefore not to be declared. This leaves us with three
indices to be declared at the beginning of the model file in the following way:

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[Gluon] ] = Range[8];
IndexRange[ Index[Flavor] ] = Range[6];

27
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Example: QCD
• Step 1: Define your parameters: 



Additional information 
needed by Monte Carlo 
programs to do the 
numerical integration.

Example: QCD
• Step 1: Define your parameters: 



Example: QCD
• Step II: Define your gauge group: 
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Example: QCD
• Step II: Define your gauge group: 

- This automatically defines the 
gluon field strength tensor:

- To be added in the future:
Automatic definition of the 
covariant derivative.



Example: QCD
• Step III: Define your particles: 
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- Grouping particles allows to 
write very compact terms in 
the Lagrangian.

Example: QCD
• Step III: Define your particles: 
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Example: QCD
• Step IV: Write your Lagrangian: 

- Not every class flavor must 
be written explicitly.

- It is enough to write the 
‘quark class’.



Example: QCD
• Computation of the Feynman rules:



Feynman rules
• Computation of the Feynman rules:



Translation interfaces
• Once a model is implemented into FeynRules, it can be used with any 

Feynman diagram calculator for which a translation interface is 
available.

Creates a FeynArts model.

Creates a MadGraph model.

Creates a CalcHEP/CompHEP 
model.

Creates a Sherpa model. 
(coming soon)



Translation interfaces

• Let’s try a simple example : gg      gg

MadGraph: 116600pb
Stock:        116510pb

CalcHEP: 116490pb
Stock:      116490pb

CompHEP: 116490pb
Stock:        116490pb



Translation interfaces
• Standard model: 29 key-processes tested against the stock version 

in MadGraph/MadEvent and CalcHEP/CompHEP.



Conclusion
• FeynRules is a Mathematica®-based package to extract Feynman 

rules from a lagrangian.

- FeynArts/FormCalc
- MadGraph/MadEvent
- CalcHep/CompHep
- Sherpa
- ...

• The code can be downloaded from 
http://feynrules.ucl.ac.be

• The output of FeynRules is completely generic and can be easily 
interfaced to other available codes.

• Available interfaces:

http://europa
http://europa




Backups



Getting Feynman rules

Particle content:
   - Spin 2 graviton, KK-scalars
   - Fermions
   - Scalars
   - Gauge bosons
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MADPH-98-1092
FERMILAB-PUB-98/364

hep-ph/9811350

Kaluza-Klein States from Large Extra Dimensions

Tao Han(a), Joseph D. Lykken(b) and Ren-Jie Zhang(a)

(a)Department of Physics, University of Wisconsin, Madison, WI 53706
(b)Theory Group, Fermi National Accelerator Laboratory, Batavia, IL 60510

Abstract

We consider the novel Kaluza-Klein (KK) scenario where gravity propa-
gates in the 4 + n dimensional bulk of spacetime, while gauge and matter
fields are confined to the 3 + 1 dimensional world-volume of a brane configu-
ration. For simplicity we assume compactification of the extra n dimensions
on a torus with a common scale R, and identify the massive KK states in the
four-dimensional spacetime. For a given KK level !n there are one spin-2 state,
(n − 1) spin-1 states and n(n − 1)/2 spin-0 states, all mass-degenerate. We
construct the effective interactions between these KK states and ordinary mat-
ter fields (fermions, gauge bosons and scalars). We find that the spin-1 states
decouple and that the spin-0 states only couple through the dilaton mode. We
then derive the interacting Lagrangian for the KK states and Standard Model
fields, and present the complete Feynman rules. We discuss some low energy
phenomenology for these new interactions for the case when 1/R is small com-
pared to the electroweak scale, and the ultraviolet cutoff of the effective KK
theory is on the order of 1 TeV.

Published in Phys. Rev. D59, 105006 (1999).

[hep-ph/9811350]



• Lagrangian coupling the fermions to the graviton and the KK-
scalar:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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• Very complicated structure as far as Feynman rules are 
concerned, but we are only a few steps away from the Feynman 
rules...

Getting Feynman rules



• Step 1: Add all the parameters in the lagrangian to the model file:
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The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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Getting Feynman rules



• Step II: Add all the particles in the lagrangian to the model file:

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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Getting Feynman rules



• Step III: The lagrangian

where the ξ-dependent terms correspond to adding a gauge-fixing term −(∂µAµ −
Γµν

νAµ)2/2ξ, with Γµν
ν = ηνρΓµ

νρ the Christoffel symbol (affine connection). The
Lagrangian for a level-$n KK state coupled to the gauge bosons is

κ−1L#n
V(κ) = −

1

8
(h̃#nηµν − 4h̃µν,#n)F ρ

µ Fνρ +
1

4
(h̃#nηµν − 2h̃µν,#n)m2

AAµAν

+
h̃#n

2ξ

(
∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
)
−

h̃µν,#n

ξ
∂µ∂ρAρAν

+
ω

2
m2

Aφ̃#nAµAµ −
ω

ξ
∂µφ̃#n∂νAνAµ . (38)

The corresponding Feynman rules for three-point KK-AA vertices as well as the
contact interactions of KK-AAA and KK-AAAA are given in Appendix A.2.

2.2.3 Coupling to Fermions

To describe a fermion in the gravitation theory, one needs to use the vierbein formal-
ism. The fermion Lagrangian is

LF = eψ(iγµDµ − mψ)ψ , (39)

where e = det(e a
µ ), e a

µ e b
ν ηab = gµν , γµ = eµ

aγ
a, and a, b are Lorentz indices. The

covariant derivative on the fermion field is defined by

Dµψ = (Dµ +
1

2
ωab

µ σab)ψ , (40)

where σab = 1
4 [γa, γb]. In the absence of a spin-3/2 field, the spin connection ωab

µ can
be solved in terms of the vierbein,

ωµab =
1

2
(∂µebν −∂νebµ)e ν

a −
1

2
(∂µeaν −∂νeaµ)e ν

b −
1

2
e ρ

a e σ
b (∂ρecσ −∂σecρ)e

c
µ . (41)

We find the conserved energy-momentum tensor

T F
µν = −ηµν(ψiγρDρψ − mψψψ) +

1

2
ψiγµDνψ +

1

2
ψiγνDµψ

+
ηµν

2
∂ρ(ψiγρψ) −

1

4
∂µ(ψiγνψ) −

1

4
∂ν(ψiγµψ) , (42)

where we have used the linearized vierbein

e a
µ = δ a

µ +
κ

2
(h a

µ + δ a
µ φ) . (43)

The Lagrangian for a level-$n KK state coupled to fermions is

κ−1L#n
F(κ) =

1

2

[
(h̃#nηµν − h̃µν,#n)ψiγµDνψ − mψh̃#nψψ +

1

2
ψiγµ(∂µh̃#n − ∂ν h̃#n

µν)ψ

]

+
3ω

2
φ̃#nψiγµDµψ − 2ωmψφ̃#nψψ +

3ω

4
∂µφ̃#nψiγµψ . (44)

The Feynman rules for KK-ψψ vertices as well as contact interactions of KK-ψψ with
additional gauge bosons are listed in Appendix A.2.
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