ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BSM phenomenology with FeynRules

Claude Duhr

in collaboration with N. Christensen and B. Fuks

SLAC, 16/11/2011

- So far, the LHC has found no signal of Physics Beyond the SM.
- As the MSSM parameter space gets more and more constraint, we have to start thinking about new BSM models.
- Already now, the number of proposed BSM scenarios is huge!
- Even more are to come when an excess of the SM will be observed at the LHC.

Idea				
			Data	
pater 15 November 11				

- Workload is tripled, due to disconnected fields of expertise.
- Error-prone, painful validation at each step.
- Proliferation of private MC's/Pythia tunings:
 - ➡ No clear documentation.
 - ➡ Not traceable.

• We need more than just papers to communicate between theorists and experimentalists!

Outline

- FeynRules in a nutshell.
- Recent developments:
 - ➡ Superfields.
 - ➡ UFO & ALOHA.
- Model database and validation
- Future developments: Towards 'FR@NLO'.

- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- Current public version: 1.6.x, available from http://feynrules.phys.ucl.ac.be
- The only requirements on the Lagrangian are:
 - All indices need to be contracted (Lorentz and gauge invariance)
 - ➡ Locality
 - Supported field types: spin 0, 1/2, 1, 2 & ghosts

• FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.

FeynRules

© C. Degrande

- Interfaces coming with current public version
 - ➡ CalcHep / CompHep
 - ➡ FeynArts / FormCalc
 - ➡ MadGraph 4
 - ➡ Sherpa
 - ➡ Whizard / Omega

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
- Interfaces coming with current public version:
 - ➡ CalcHep / CompHep
 - ➡ FeynArts / FormCalc
 - ➡ MadGraph
 - ➡ Sherpa
 - ➡ Whizard / Omega

© C. Degrande

• The input requested form the user is twofold.

• The Model File: Definitions of particles and parameters (e.g., a quark)

F[1] ==

{ClassName -> q, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass $-> \{MQ, 200\},$

Width

-> {WQ, 5} }

• The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} \, G^{\mu\nu}_a + i\bar{q} \, \gamma^\mu \, D_\mu q - M_q \, \bar{q} \, q$$

I = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I gbar.Ga[mu].del[g,mu] - MQ qbar.q

• Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

 Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

Vertex 1 Particle 1 : Vector, GParticle 2 : Dirac, q^{\dagger} Particle 3 : Dirac, qVertex:

 $i \operatorname{gs} \gamma^{\mu_1}{}_{s_2,s_3} \delta_{f_2,f_3} T^{a_1}{}_{i_2,i_3}$

• Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[L]

• This produces a set of files that can be directly used in the matrix element generator ("plug 'n' play").

interactions.dat

				Δ.
1	qqG	GG	QCD	
	GGG	MGVX1	QCD	
	GGGG	MGVX2	QCD QCD	
7				1

particles.dat

couplings.dat

GG(1) = -GGG(1) = -GMGVX1 = G $MGVX2 = G^2$

q	q~	F	S	ZERO	ZERO	Τ	d	1
G	G	V	С	ZERO	ZERO	0	G	21

- The 'old' FeynRules version already did a good job, but it presented various obstacles...
 - ➡ Lagrangian needs to be entered in component fields.
 - Existing model formats and interfaces did not accommodate higher-dimensional operators.
- These issues have recently been solved!

Recent developments

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

- 'Monte Carlo description':
 - Express superfields in terms of component fields.
 - Express everything in terms of 4-component fermions (beware of the Majoranas!).
 - ➡ Integrate out D and F terms.

• FeynRules 1.6.x allows to define superfields directly:

CSF[1] == { ClassName -> ER, Chirality -> Left, Weyl -> ERw, Scalar -> ERs, QuantumNumbers -> {Y-> 1}, Indices -> {Index[GEN]} }

• The F term does not need to be defined, but is added automatically.

• Once the superfields (and their component fields) have been defined, FeynRules takes care of the rest.

- Once the superfields (and their component fields) have been defined, FeynRules takes care of the rest.
 - Expands the superfields in Grassmann parameters.
 - ➡ Integrates out the Grassmann parameters.
 - ➡ Integrates out the D and F terms.
 - Transforms Weyl fermions into Dirac and Majorana fermions.
 - ➡ Computes the Feynman rules.
- The implementation of a SUSY model is now straightforward!

Higher-dimensional operators

- Even though FeynRules 1.4.x could already compute the Feynman rules for higher-dimensional operators, they were 'useless', in the sense that they could be exported to almost no Monte Carlo code.
- Reason: Most Monte Carlo codes have internal limitations for the vertices:
 - ➡ hardcoded library of color and/or Lorentz structures.
 - Upper limit on the number of particles enter in a vertex (usually 4).
- To overcome this problem, a joint effort between the FeynRules team and the MC developers was needed!

The Universal FeynRules Output

UFO = Universal FeynRules Output

- Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.
- The UFO is a self-contained Python code, and not tied to a specific matrix element generator.
- The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes.
- By design, the UFO does not make any assumptions on Lorentz/color structures, or the number of particles.
- GoSam and MadGraph 5 use the UFO as the default model format.

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

FFV1 = Lorentz(name = 'FFV1', spins = [2, 2, 3], structure = 'Gamma(3,2,1)')

```
This File is Automatically generated by ALOHA
С
             The process calculated in this file is:
С
           Gamma(3,2,1)
С
С
           SUBROUTINE FFV1_0(F1,F2,V3,COUP,VERTEX)
           IMPLICIT NONE
           DOUBLE COMPLEX F1(*)
           DOUBLE COMPLEX F2(*)
           DOUBLE COMPLEX V3(*)
           DOUBLE COMPLEX COUP
           DOUBLE COMPLEX VERTEX
           VERTEX = COUP*((F2(1)*((F1(3)*((0,-1)*V3(1)+(0,1)*V3(4))))))
         (F1(4)^{(0,1)}V3(2)+V3(3))))+(F2(2)^{(F1(3)}(0,1))))+(F2(2)^{(F1(3)}(0,1))))
          *V3(2)-V3(3)) + (F1(4)*((0,-1)*V3(1)+(0,-1)*V3(4)))) 
         +((F_{2}(3))+((F_{1}(1))+((0,-1))+V_{3}(1)+(0,-1))+(F_{1}(2))+(F_{1}(2))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F
         $ *( (0, -1)*V3(2)-V3(3))))+(F2(4)*( (F1(1)*( (0, -1)*V3(2)
         (+V3(3))+(F1(2)*((0,-1)*V3(1)+(0,1)*V3(4)))))))
```

END

• Example: $\mathcal{L} = g_1 \Phi \bar{Q}_L \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$

• Example:
$$\mathcal{L} = g_1 \Phi \bar{Q}_L \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$$

• FeynRules input:

L = g1 Phi[i] QLbar[s1, i, f, c1].tR [s2, f, c2] Si[mu,nu,s1,s2] T[a,c1,c2] FS[G[mu,nu,a]]

• Example:
$$\mathcal{L} = g_1 \Phi \bar{Q}_L \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$$

• FeynRules input:

L = g1 Phi[i] QLbar[s1, i, f, c1].tR [s2, f, c2] Si[mu,nu,s1,s2] T[a,c1,c2] FS[G[mu,nu,a]]

• Run the interface:

WriteUFO[LSM+L]

• Example:
$$\mathcal{L} = g_1 \Phi \bar{Q}_L \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$$

• FeynRules input:

L = g1 Phi[i] QLbar[s1, i, f, c1].tR [s2, f, c2] Si[mu,nu,s1,s2] T[a,c1,c2] FS[G[mu,nu,a]]

• Run the interface:

WriteUFO[LSM+L]

• Run MadGraph 5 (no user intervention needed!)

mg5>import model dim6

mg5>generate gg>tt~H

mg5>output

mg5>import model dim6

mg5>generate gg>tt~H

mg5>output

INFO: Generating Helas calls for process: $gg > tt^{-}h$ INFO: Processing color information for process: $gg > tt^{-}h$ Export UFO model to MG4 format ALOHA: aloha creates FFV8 routines ALOHA: aloha creates FFVV8 routines ALOHA: aloha creates FFVS2 routines ALOHA: aloha creates FFVS2 routines

The model database

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Mathematical neil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Model	Contact
Higgs effective theory	C. Duhr
4th generation model	C. Duhr
Standard model + :o Scalars	C. Duhr
Hidden Abelian Higgs Model	C. Duhr
Hill Model	P. de Aquino, C. Duhr
The general 2HDM	C. Duhr, M. Herquet
Triplet diquarks	J. Alwall, C. Duhr
Sextet diquarks	J. Alwall, C. Duhr
Monotops	B. Fuks
Type III See-Saw Model	C. Biggio, F. Bonnet
DY SM extension	N. Christensen

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Model	Contact
Mimimal Higgsless Model (3-Site Model)	N. Christensen
Minimal UED	P. de Aquino
Large Extra Dimensions	P. de Aquino
Compact HEIDI	C. Speckner

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser (

- Image: Second sec
- Mathematical neil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories
(4)

Model	Contact
Mimimal Higgsless Model (3-Site Model)	N. Christensen
Chiral perturbation theory	C. Degrande
Strongly Interacting Light Higgs	C. Degrande
Technicolor	M. Järvinen, T. Hapola, E. Del Nobile, C. Pica

Validation of new models

- FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecedented level!
- A given model can be output to more than one matrix element generator, and their results can be compared
 - Different conventions
 - Different gauges
 - ➡ Different ways of handling large cancellations.
- This procedure can easily be automatized!

Web validation

000		Claude Duhr's Models		0
(1) - C × (1) (1) (1) (1)	/127.0.0.1:8080/author		😭 🔻 🚷 👔 👔 ipad delete app wait	٩)
CP3 FYMA Webmail FeynRules MadGraph Hotmail	SPIRES LEO IPPP IP3 We	ebmail		
Claude Duhr's Models +				
	(Janda Duhula Mad	ala	
		laude Dunr's Mod	eis	
	Remove	Standard Model		
		New Model		
Fastio				

		127.0.0.1.9090/author/arvit/adal	() (etitch ufe	
		127.0.0.1:8080/author/newModel		
FYMA Webmail Feyn	Rules MadGraph Hotmail	SPIRES LEO IPPP IP3 Webmail		_
New Model	+			
		New Model		
		Claude Duhr		
M	odel Files	Restriction Files	Parameter Files	
	Durchsuchen)	(Add) a restriction file	(Add) a parameter file	
Add an	other model file			
	Lagrangian :	Test Process : ,	\rightarrow ,	
		Exclude 4 Scalar Vertices		
		FeynRules Version		
		⊖Current ⊙Development		
		(Heles d Medel)		
		Upload Model		

000	Standard Model : Validation	\Box
() · C) 🗙 🍙 🐚 http://127.0.0.1:8080/author/newValidatik 😭 🔻 🚷 Google	۹)
CP3 FYMA Webmai	ail FeynRules MadGraph Hotmail SPIRES LEO IPPP IP3 Webmail	
Standard M	Model : Validation +	च

Standard Model Claude Duhr

Validation Name :

R. File	P. File	СН	FA	HW	MG4	MG5	SH	WO1	WO2
\odot		~~	✔?	v ?	~~	✔?	v ?	~~	~~
Massless.rst		~~	✔?	v ?	~~	✔?	✔?	~~	~~
O DiagonalCKM.rst		~~	v ?	v ?	~~	✔?	v ?	~~	~~

2→2 Processes

Field Type				Indices		Charges			
Field Type	Require	Require Not	Index	Require	Require Not	Charge	Require Require Not		
Scalar :	0 🛟	0 🛟	Colour :	0 🛟	0 🛟	LeptonNumber :	0 \$ 0 \$		
Fermion :	0 \$	0 🛟	Gluon :	0 🗘	0 🛟	Q :	0 \$ 0 \$		
Vector :	0 ‡	0 🛟				GhostNumber :	0 \$ 0 \$		
Spin 2 :	0 \$	0 ‡							
			G	enerate Processe	25				

]	Fest_ Standa Cla	Val_9 ard Mo ude Duhr	SM odel				
	СН	FA ✔ ?	HW ✔ ?	MG4	MG5 ✔ ?	SH	WO1	WO2		
 J	field Typ	pe	ire	I	ndices	Require	(Charges	Require	
Type	Requi	ire No	Γ Co	Index	Require	Not	Charge LeptonNurr	Requir	Not	
Fermion	2	0	Gh	lon	0	0	O	0	0	
Vector	2	0	On	uon	Ū	v	≺ GhostNumł	ber 0	0	
Spin 2	0	0							-	
 ✓ CalcH	EP (Feynn	nan gauge)		🗹 Mae	dGraph4	2	Whizard1 (Fey	ynman gauge)		
✓ CalcH	EP (unitary	y gauge)		🗆 Mad	Graph5	2	Whizard1 (uni	itary gauge)		
🖂 FeynAr	ts			🗆 Sher	pa	\mathbf{A}	Whizard2 (Fey	ynman gauge)		
🗌 Herwig			Che	eck All	Che	eck None	Whizard2 (uni	itary gauge)		
				Stoc	k Model	s				
			SM_M	IG (MG	:u)		s	SM_CH (C	(H:f)	
	1	~	param	n card.da	t.part	6	1 🗸	SM.t	tgz	

Standard Model : Test_Val_SM											∋
(<) - (C) (X) (A) (http://127.0.0.1:8080/author/validation?v () (Google											5
CP3 FYMA Webmail FeynRules MadGraph Hotmail SPIRES LEO IPPP IP3 Webmail											
Standard Model : Test_Val_SM +											-
ve , ve~ \rightarrow Z , Z 730.0	182.5 0.49452	0.49452 0.49384	0.494604	0.494622	0.494547	0.494668	0.49351	0.4945	•	0.17%	6
ve , ve~ \rightarrow W+ , W- 639.0	159.75 1.0603	1.0603 1.0604	1.06053	1.0604	1.06035	1.06073	1.0665	1.0603	•	0.51%	
ve, ve~ \rightarrow G, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve , vm~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	П
ve , vm~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	C
ve , vm~ $\rightarrow~Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	L
ve , vt~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	Ш
ve , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve , vt~ \rightarrow Z , Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , e+ \rightarrow A , W+ 319.0	79.75 2.2219	1.9846 1.9809	1.98496	1.98478	1.98454	1.98491	1.9756	1.9845	×	10.56%	
ve , e+ \rightarrow Z , W+ 684.0	171.0 0.71578	0.54663 0.54717	0.54657	0.546756	0.54641	0.546869	0.54864	0.54661	×	26.53%	
ve , m+ \rightarrow A , W+ 320.0	80.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , m+ \rightarrow Z , W+ 684.0	171.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve, tt+ \rightarrow A, W+ 326.0	81.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve, tt+ \rightarrow Z, W+ 691.0	172.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, A 200.0$	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, Z$ 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow Z, Z$ 730.0	182.5 0.49452	0.49452 0.49384	0.494505	0.494545	0.494559	0.494447	0.49351	0.4945	٠	0.17%	
vm , $vm \rightarrow W+$, $W-$ 639.0	159.75 1.0603	1.0603 1.0604	1.0604	1.06033	1.06027	1.06006	1.0665	1.0603	•	0.52%	
vm , $vm \rightarrow G$, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	×.	0%	
vm , $vt \rightarrow A$, A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
vm , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0%	Ų
vm , $vt \rightarrow Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	ľ.	0%	*
Um ut W/I W 630.0	150.75 0.0	00 00	0.0	0.0	0.0	0.0		0.0	~		1 T

1

A look into the future...

Towards NLO

- We are slowly getting to the point that we have automated tools for NLO computations:
 - ➡ Blackhat
 - ➡ GoSam
 - ➡ Helac-NLO
 - ➡ MadLoops
 - ➡ Rocket
- Most of these codes only do SM processes so far.
- Reason: Beyond LO, we do not only need tree-level
 Feynman rules, but also counterterms, etc.
- Future releases of FeynRules will allow to compute also these quantities!

Extraction of counterterms

• The (not public) development version of FeynRules already allows to extract counterterm Feynman rules.

 $\texttt{ExtractCounterterms[l[s,f],{aS,1}]}$ $\texttt{I}_{sf} \rightarrow \textit{I}_{sf} + \frac{\alpha_s}{4\pi} \left[(\delta Z_{II}^{L(1)})_{ff'} (P_L)_{ss'} + (\delta Z_{II}^{R(1)})_{ff'} (P_R)_{ss'} \right] \textit{I}_{s'f'}$

ExtractCounterterms[ydo,{{aS,2},{aEW,1}}] $\blacktriangleright y_d \rightarrow y_d + \frac{\alpha_s}{2\pi} \delta y_d^{(1,0)} + \frac{\alpha}{2\pi} \delta y_d^{(0,1)} + \frac{\alpha_s^2}{4\pi^2} \delta y_d^{(2,0)} + \frac{\alpha_s \alpha}{4\pi^2} \delta y_d^{(1,1)} + \frac{\alpha_s^2 \alpha}{8\pi^3} \delta y_d^{(2,1)}$

- At the moment, the values of the counterterms for the independent parameters and the fields must still be given by hand.
- Once this is done, GoSam and MadLoops will allow to generate events for any BSM model at NLO.

Conclusion

- FeynRules provides a streamlined way to go from model building to experiment.
- The current version of FeynRules comes with a lot of new features:
 - ➡ Superfields
 - ➡ UFO & ALOHA
 - ► Support of color sextets.
 - → Spin 3/2 (will be public soon)
- To download the package and/or model files, have a look at http://feynrules.phys.ucl.ac.be