From Model Building to Events in a Straightforward Way Status of Supersymmetric Models in FEYNRULES.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with N. Christensen, P. de Aquino, C. Duhr, M. Herquet, F. Maltoni and S. Schumann. Based on arXiv:0906.2474 [hep-ph].

Workshop on event generators for the NMSSM @ LPT Orsay November 16, 2009

Outline

Introduction: Monte Carlo generators for the Standard Model and New Physics.

3 Model database & validation procedures.

Summary - outlook 00

Theoretical calculations for the LHC.

- One of the goals of the LHC: which New Physics theory is the correct one? [if any, the LHC might be one ring to rule them all out!]
 - * We need data [which are hopefully coming this (next?) year].
 - * We need theoretical predictions for all models [which is the aim of this talk].
 - ♦ For the Standard Model (SM) backgrounds.
 - ◊ For the Beyond the Standard Model (BSM) signals.

Confront data and theory.

- Theoretical predictions:
 - * Handmade calculations 🙂.
 - ◊ Not practical: factorial growth of the number of diagrams.
 - ◊ Tedious and error prone.
 - * Automated tools 🙂.
 - ♦ Easy to use!
 - $\diamond~$ Can be used to simulate the full collision environment.
 - ◊ There exists a vast zoology of tools.

Monte Carlo tools and discoveries at the LHC (1).

• Matrix element-based event generators.

- * Reliable predictions for shapes.
- * Can be tuned (to some extent) to the data.
- * Can be used to describe the SM backgrounds.
- * Warning: for some distributions, accurate predictions are required.
- Best theoretical predictions.
 - * Accurate theoretical calculations.
 - ♦ Higher order QCD corrections.
 - ♦ Resummation.
 - ◊ Weak corrections.
 - ٥ ...
 - * Mandatory for understanding and control of physics and detector effets.
 - * Reliable estimate of errors.

Monte Carlo tools and discoveries at the LHC (2).

- Establishing of an excess over the SM backgrounds.
 - Difficult task.
 - * Use of Monte Carlo generators.
 - * Warning: for some signals, accurate predictions are required.
- Confirmation of the excess
 - Model building activities.
 - ♦ Bottom-up approach.
 - ◊ Top-down approach.
 - * Implementation of the new models in the Monte Carlo tools.
- Clarification of the new physics. •
 - Measurement of the parameters.
 - * Use of precision predictions.
 - * Sophistication of the analyses \Leftrightarrow new physics and detector knowledge.

Monte Carlo tools play a key role!

From Model Building to Events - Status of FEYNRULES

Benjamin Fuks - NMSSM Workshop @ LPT Orsay - 16.11.2009 - 5

Monte Carlo tools for the Standard Model (1).

- Automatized generation of leading-order matrix elements.
 - * Based on Feynman diagram techniques.
 - ♦ CALCHEP/COMPHEP [Pukhov et al. (1999); Boss et al. (2004)].
 - ♦ MADGRAPH/MADEVENT [Maltoni, Stelzer (2003); Alwall et al. (2007)].
 - ♦ SHERPA [Gleisberg et al. (2004)].
 - ♦ WHIZARD/OMEGA [Moretti et al. (2001); Kilian et al. (2007)].
 - * Generators going beyond the Feynman diagram techniques.
 - ♦ ALPGEN [Mangano et al. (2002)].
 - ♦ COMIX [Gleisberg et al. (2008)].
 - ♦ HELAC [Cafarella et al. (2007)].

Monte Carlo tools for the Standard Model (2).

- Automatization of next-to-leading order calculations.
 - * Real emission including the subtraction terms.
 - ♦ AMEGIC++ (Catani-Seymour) [Gleisberg and Krauss (2008)].
 - ♦ HELAC (Catani-Seymour) [Czakon, Papadopoulos, Worek (2009)].
 - ♦ Independent Catani-Seymour dipoles library [Hasegawa et al. (2008)].
 - ♦ MADDIPOLE (Catani-Seymour) [Frederix, Gehrmann, Greiner (2008)].
 - ♦ MADFKS (Frixione, Kunszt, Signer) [Frederix et al. (2009)].
 - ♦ TEVJET (Catani-Seymour) [Seymour and Tevlin (2008)].

* Loop amplitudes.

- ♦ BLACKHAT (on-shell approach) [Berger et al. (2009)].
- ♦ CUTTOOLS (generalized unitarity approach) [van Hameren *et al.* (2009)].
- ♦ GOLEM (Feynman diagram approach) [Binoth et al. (2008)].
- ♦ ROCKET (generalized unitarity approach) [Ellis *et al.* (2009)].

Monte Carlo tools for the Standard Model (3).

- From matrix elements to real life.
 - * Parton showering & hadronization.
 - ♦ PYTHIA [Sjostrand, Mrenna, Skands (2006, 2008)].
 - ♦ HERWIG [Corcella et al. (2001); Bahr et al. (2008)].
 - * Matching algorithm.
 - ♦ CKKW [Catani, Krauss, Kuhn, Webber (2001)].
 - ♦ MLM [Mangano et al. (2007)].
 - ٥ ...
 - * Matching next-to-leading order with parton showering.
 - \diamond MC@NLO [Frixione, Webber (2002)].
 - \diamond POWHEG [Nason (2004)].

We will soon be able to accurately simulate any SM process. What about BSM?

Summary - outlook 00

Monte Carlo tools for BSM (1).

• New physics theories.

- * There are a lot of different theories.
- * Based on very different ideas.
- * In evolution (regarding the discoveries).
- Implementation in Monte Carlo tools.
 - * A model consists in particles, parameters and vertices (\equiv Feynman rules).
 - ◊ The Feynman rules have to be derived.
 - ♦ Each Feynman rule has to be translated in informatic languages.
 - * Tedious, time-consuming, error prone task.
 - * We need to iterate for each considered model.
 - * We need to iterate for each considered MC tool.

Summary - outlook 00

Monte Carlo tools for BSM (2).

- Validation.
 - * Comparison with existing analytical and numerical results.
 - * Non systematic and partial.
 - ◊ Restricted set of available results.
 - ♦ No dedicated framework.
 - ♦ Warning: conventions.
- Distribution.
 - * Many models remain private.
 - * Exception: popular models such as the MSSM.
 - * Use of many home-made and hacked versions of existing models. \Rightarrow Issues for validation, traceability and maintenance.

An efficient framework is needed:

- * To develop new models.
- * To implement and validate new models in MC tools.
- ^k To test the models against the future data.

First steps towards a full automatization (1).

- Starting from physical quantities.
 - * All the physics is included in the model Lagrangian.
 - ♦ Remark: the Lagrangian is absent in the MC implementation.
 - * Traceability.
 - ♦ Univocal definition of a model.
 - $\diamond~$ No dependance on the conventions used by the MC tools.
 - * Flexibility.
 - $\diamond~$ A modification of a model \equiv change in the Lagrangian.
- The LANHEP package [Semenov (1998)].
 - * In the context of CALCHEP/COMPHEP.
 - * Allows to run several tests on the Lagrangian (reducing errors).
 - * Interfaced to FEYNARTS.

Summary - outlook 00

First steps towards a full automatization (2).

Aims:

- * To go **beyond** this scheme.
- * To create a general environment to implement any Lagrangian-based model.
- * To interface several Monte Carlo generators.
- * Robustness, easy validation and maintenance.
- * Easy integration in experimental software frameworks.
- * Allowing for both top-down and bottom-up approaches.

Outline

2 The FEYNRULES approach.

3 Model database & validation procedures.

Main features of $\rm FEYNRULES$ $_{\rm [Christensen, Duhr (2009)]}.$

- The working environment is MATHEMATICA.
 - * Flexibility for symbolic manipulations.
 - ◊ **Routines** to check a Lagrangian.
 - ٥ ...
 - * Various built-in features.
 - ♦ Matrix diagonalization.
 - ♦ Pattern recognition functions.
 - ٥ ...
 - * New additional functions can easily be added by users.
 - ♦ Model spectrum calculator.
 - ٥ ...
- Interfaces to Monte Carlo codes.
 - * The philosophy, architecture and aim of the codes can be different.
 - * Maximization of probability to have (at least) one (working) MC per model.
 - * FEYNRULES translates models in terms of files readable by the MC tools.

From Model Building to Events - Status of FEYNRULES Benjamin Fuks - NMSSM Workshop @ LPT Orsay - 16.11.2009 - 15

FeynRules

Models & Validation

Summary - outlook

A framework for LHC analyses (1).

Summary - outlook 00

A framework for LHC analyses (2).

1 New physics is discovered at the LHC.

2 Model builders propose explanations.

- * Bottom-up approach.
- * Top-down approach.

Implementation phase.

- * Direct implementation in FEYNRULES.
- * Incorporation of the new models inside the experimental softwares.

Confrontation to the data.

6 Refinement of the model.

 \Rightarrow Back to step 3.

Framework where both theorists and experimentalists have their place.

From Model Building to Events - Status of FEYNRULES Benjamin Fuks - NMSSM Workshop @ LPT Orsay - 16.11.2009 - 17

Scope and limitations.

• Supported fields.

- * Scalar fields.
- * Dirac and Majorana fermions [Weyl fermions: in validation].
- * Vector fields.
- * Ghost fields.
- * No spin 3/2.
- * Spin two fields.

• The model must fulfil basic quantum field theory requirements.

- * Lorentz invariance.
- * Gauge invariance.
- * Higher-dimensional operators are supported.
- Interfaces and Monte Carlo tools.
 - * Only scalars, Dirac and Majorana fermions, vector (and ghost) fields.
 - * Higher-dimensional operators are not all supported.

Example: QCD - Parameters

Parameters of the mod	el		
aS == { Description	->	"Strong coupling constant at MZ"	
TeX ParameterType BlockNeme	-> ->	<pre>Subscript[\[Alpha],s], External, external;</pre>	
OrderBlock InteractionOrder	-> ->	3, {QCD, 2}},	
gs == {			
Description TeX CompleyParameter	-> ->	"Strong coupling constant", Subscript[g, s], False	
ParameterType Value	-> ->	Internal, Sort[4 Pi aS].	
InteractionOrder	->	{QCD, 1},	
ParameterName	->	* All the information neede	ed by the MC codes.
		 IEX-form (for the IEX-file Complex/real parameters 	e).
		* External/internal parameters	ters.

From Model Building to Events - Status of FEYNRULES

Benjamin Fuks - NMSSM Workshop @ LPT Orsay - 16.11.2009 - 19

FeynRules

Models & Validation

Summary - outlook 00

Example: QCD - Gauge group and gauge boson

The $SU(3)_C$ gauge gro	oup	
SU3C == {		
Abelian	->	False,
GaugeBoson	->	G,
StructureConstant	->	f,
DTerm	->	dSUN,
Representations	->	{T, Colour},
CouplingConstant	->	gs}

Gluon field definition

/[1] == {	
ClassName	-> G,
SelfConjugate	-> True,
Indices	-> Index[Gluon],
Mass	-> 0,
Width	-> 0,
ParticleName	-> "g",
PDG	-> 21,
PropagatorLabel	-> "G",
PropagatorType	-> C,
PropagatorArrow	-> None}

- * Gauge boson definition.
- * Gauge group definition.
- * Association of a coupling constant.
- * Definition of the structure functions.
- * Definition of the representations.

F

Example: QCD - Quark fields (Dirac fermions)

I he	CILL	ark	tie	lds
	944			

[1] == {		
ClassName	->	q,
ClassMembers	->	{d, u, s, c, b, t},
FlavorIndex	->	Flavour,
SelfConjugate	->	False,
Indices	->	<pre>{Index[Flavour],Index[Colour]},</pre>
WeylComponents	->	{qL,qRbar},
Mass	->	{MQ, MD, MU, MS, MC, MB, MT},
Width	->	{WQ, 0, 0, 0, 0, 0, WT},
ParticleName	->	{"d", "u", "s", "c", "b", "t"},
AntiParticleName	->	{"d~", "u~", "s~", "c~", "b~", "t~"},
PDG	->	$\{1, 2, 3, 4, 5, 6\},\$
PropagatorLabel	->	{"q", "d", "u", "s", "c", "b", "t"},
PropagatorType	->	Straight,
PropagatorArrow	->	Forward} * Classes: implicit sums in the La

- * Classes: implicit sums in the Lagrangian.
- * All the information needed by the MC codes.

Summary - outlook

Example: QCD - Quark fields (Weyl fermions)

The quark fields

W[1] == {	
ClassName	-> qL,
Chirality	-> Left,
SelfConjugate	-> False,
Indices	-> {Index[Flavour], Index[Colour]},
FlavorIndex	-> Flavour,
ClassMembers	-> {dL,uL,sL,cL,bL,tL},
Unphysical	-> True},
W[2] == {	
ClassName	-> qR,
Chirality	-> Left,
SelfConjugate	-> False,
Indices	-> {Index[Flavour], Index[Colour]},
FlavorIndex	-> Flavour,
ClassMembers	-> {dR,uR,sR,cR,bR,tR},
Unphysical	-> True}

FEYNRULES

Summary - outlook 00

Example: QCD - Lagrangian

QCD Lagrangian:

The QCD Lagrangian

```
LQCD = -1/4 * FS[G, mu, nu, a] * FS[G, mu, nu, a] +
```

I*qbar.Ga[mu].DC[q, mu] -

```
MQ[f] * qbar[s,f,c].q[s,f,c] ;
```

LQCDW = -1/4 * FS[G, mu, nu, a] * FS[G, mu, nu, a] +

I qR.Si[mu].DC[qRbar, mu] + I qLbar.Sibar[mu].DC[qL, mu] -

MQ[f] * (qR[s,f,c].qL[s,f,c] + qRbar[s,f,c].qLbar[s,f,c]);

* Implicit summations \Rightarrow easy debugging.

Summary - outlook

Example: QCD - Results

Results - let us do (some) phenomenology!

```
FeynmanRules[LQCD, FlavorExpand->False]
FeynmanRules[WeylToDirac[LQCDW], FlavorExpand->False]
```

```
Vertex 1
Particle 1 : Vector , G
Particle 2 : Dirac , q†
Particle 3 : Dirac , q
Vertex:
```

```
i g_s \gamma^{\mu_1}_{s_2,s_3} \delta_{f_2,f_3} T^a_{m_2,m_3}
```

WriteFeynArtsOutput[LQCD] WriteCHOutput[LQCD] WriteMGOutput[LQCD] WriteSHOutput[LQCD] WriteWOOutput[LQCD]

Outline

2 The FEYNRULES approach.

3 Model database & validation procedures.

Validation procedure - the four-star system (LH 2009).

- Any model can be put on the FEYNRULES website.
- First star [DOC]:
 - * Documentation: description, references, ...
 - * Complete model or theory fragment.
 - * Consistency of the input parameters.

• Second star [THEO]:

- * Basic sanity checks: hermiticity, signs, ...
- * Comparison with literature.
- * Use of FeynArts/FormCalc possible.
- Third star [1MC]:
 - * The MC is producing reliable results for basic processes.
 - * Reproduction of the SM results for sectors independent on new physics.
 - * Gauge invariance, behaviour at high energy.
 - * Numerical tables for cross sections (future references).
- Fourth star [nMC]:
 - * Reproduce the [1MC] step for more than one MC generator.
 - * Comparison tables for future references.

Validation procedure & models - outlook.

• Joint development with LANHEP.

- * Joint validation procedure.
- * Joint model database.
- * Validation and distribution of private models.
- Implementation of new Lagrangians (with benchmark points).
 - * Systematization of the BSM investigations at the LHC.
 - * Implementations in FEYNRULES lead to several ready-to-go solutions.
 - ♦ CALCHEP/COMPHEP.
 - ♦ MadGraph/MadEvent.
 - ♦ Sherpa.
 - ♦ Whizard.

FEYNRULES 0000000000

Models & Validation

Summary - outlook 00

Example: validation of the Standard Model.

CALCH	Iep, Co	омрНе	p, Mai	GRAP	н/Маі	DEVENT	г, Sher	PA and	WHIZA	rd resu	ts
	CalcHER	ColoHER	ColoHER	CompHED	MadGraph	MadGraph	Charpa	Mainard	Mainard	Mai mand	
Process	Stock	Reynman	Unitary	Revonan	Stock	Unitary	Unitary	Stock	Heynman	Unitary	
ag->ag	116490	116.490	116490	116 490	116 680	116 120	116490	115031	116 585	116 642	Discreency
uu->aa	199.95	199.95	199.95	199.94	200.21	199.77	199,963	199.693	199.693	199.693	bracipency.
tF->aa	64.595	64.595	64.595	64.592	64.467	64.537	64.5856	64.623	64.5601	64.5601	
e*e*->#*#	0.37194	0.37195	0.37195	0.37194	0.37202	0.37148	0.372011	0.372034	0.372028	0.372028	
e*e*->e*e*	734.15	734.15	734.15	734.16	733,96	734.47	734,314	734,622	734,609	734,609	
e+e>v.v.v.	49.143	49.145	49.145	49.145	results	results	49.1361	49.1139	49.1184	49.1184	
tE->uu	16.018	16.018	16.018	16.018	16.012	16.022	16.0204	16.0214	16.0214	16.0214	
uu->ss	9.7634	9.7634	9.7634	9.7631	9.7631	9.7692	9.76376	9.76348	9.76346	9.76348	
ud->cs	0.3531	0.35311	0.35311	0.35312	0.35274	0.35318	0.353149	0.353212	0.353215	0.353215	
us->cd	0.0010187	0.0010187	0.0010187	0.0010187	0.0010186	0.0010182	0.00101879	0.00101897	0.00101898	0.00101898	
W+W>t€	44.534	44.535	44.535	44.534	44.647	44.485	44.5503	44.4991	44.4992	44.4992	
tE->ZZ	1.2534	1.2534	1.2534	1.2534	1.254	1.2559	1.25321	1.25431	1.25432	1.25432	
tE->Zy	1.3119	1.3119	1.3119	1.312	1.3139	1.3113	1.31197	1.31261	1.31202	1.31202	
tE->yy	0.088486	0.088486	0.088486	0.088485	0.088527	0.088462	0.0884835	0.0884519	0.0884983	0.0884983	
$uu \rightarrow W^+W^-$	1.7736	1.7737	1.7737	1.7737	1.7698	1.776	1.77424	1.77412	1.77413	1.77413	
uu->ZZ	0.19345	0.19347	0.19347	0.19346	0.19357	0.19318	0.193462	0.192923	0.192927	0.192927	
uu->Zy	0.33811	0.33812	0.33812	0.33811	0.3381	0.3384	0.334504	0.338125	0.338124	0.338124	Discrpency!
uu->yy	0.18322	0.18322	0.18322	0.18323	0.18332	0.18329	0.183224	0.183377	0.183373	0.183373	
$z^+ z^- \rightarrow W^+ W^-$	5.3681	5.3684	5.3684	5.3686	5.3517	5.3637	5.36799	5.36556	5.3656	5.3656	
$\tau^+ \tau^> ZZ$	0.31816	0.31817	0.31817	0.31816	0.31852	0.31805	0.318256	0.31799	0.317993	0.317993	
$\tau^+ \tau^> Z\gamma$	2.0057	2.0057	2.0057	2.0057	2.0083	2.0044	1.98453	1.99948	2.00799	2.00799	Discrpency!
2+2->28	2.7791	2.7791	2.7791	2.779	2.7773	2.7756	2.77911	2.77248	2.77711	2.77711	
ZZ->ZZ	1.9606	1.9606	1.9606	1.9606	1.9565	1.9555	1.96071	1.96046	1.96046	1.96046	
$W^+W^- \rightarrow \chi \chi$	20.825	20.825	20.825	20.824	20.827	20.804	20.8182	20.8527	20.8171	20.8171	
W+W>ZZ	272.62	272.63	272.63	272.62	272.36	272.11	272.694	272.422	272.425	272.425	
W*W>W*W-	1318.1	1318.2	1318.2	1318.2	1317.2	1318.8	1318.45	1320.05	1320.03	1320.03	
hh->hh	1.8569	1.857	1.857	1.857		1.8567	1.85587	1.86179	1.86179	1.86179	
ZZ→hh	6.3027	6.3029	6.3029	6.3029	6.311	6.3137	6.30265	6.29227	6.31003	6.31003	
$hh \rightarrow W^+W^-$	94.47	94.473	94.473	94.473	94.815	94.833	94.5793	94.5073	94.5077	94.5077	

Supersymmetric models and their validation (1).

- The MSSM [Duhr, BenjF (in prep)].
 - * Publicly available: http://feynrules.phys.ucl.ac.be/view/Main/MSSM .
 - * References: analytical results, stock versions of CALCHEP, MADGRAPH.
 - * Validation: FeynArts + CalcHep, MadGraph.
 - * **On-going**: SHERPA, WHIZARD.
- The NMSSM [Braam, BenjF, Reuter (in prep)].
 - * Started at Les Houches 2009.
 - * **Private** (expected to be out in early 2010).
 - * Validation: analytical results, stock version of WHIZARD (cf. Felix's talk).
 - * Validation: CALCHEP, MADGRAPH.
 - * **On-going**: FEYNARTS, SHERPA, WHIZARD.
- The MSSM with *R*-parity violation. [Duhr, BenjF; Andrea, BenjF (in prep)].
 - * **Private** (expected to be out mid 2010).
 - * On-going validation.

Supersymmetric models and their validation (2).

• The MSSM with Dirac gauginos.

[Bruneliere, Das, Duhr, Fox, BenjF, Henderson, Kribs, Martin, Roy, ...].

- * Started at Les Houches 2009.
- * Still private (available in early 2010).
- * References: analytical results, stock versions of CALCHEP, MADGRAPH.
- * On-going validation.
- Other supersymmetric models.
 - * Larger time-scale.
 - * Contact us if you want to implement a new model (or do it yourself).

The (almost) most general MSSM - model

- A general version of the MSSM (any usual limit easily taken).
 - * Sfermion sector.
 - $\diamond~6\times 6$ and 3×3 CP and flavour violating mixing matrices.

$$\stackrel{\diamond}{=} e.g. \left(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{u}_4, \tilde{u}_5, \tilde{u}_6 \right)^T = R^{\tilde{u}} \left(\tilde{u}_L, \tilde{c}_L, \tilde{t}_L, \tilde{u}_R, \tilde{c}_R, \tilde{t}_R \right)^T, \\ \left(\tilde{d}_1, \tilde{d}_2, \tilde{d}_3, \tilde{d}_4, \tilde{d}_5, \tilde{d}_6 \right)^T = R^{\tilde{d}} \left(\tilde{d}_L, \tilde{s}_L, \tilde{b}_L, \tilde{d}_R, \tilde{s}_R, \tilde{b}_R \right)^T.$$

* Higgs sector.

- $\diamond~$ Only 2 \times 2 mixing considered for the moment.
- ♦ To be generalized in version 1.2.0.

$$\left(\tilde{h}_1,\tilde{h}_2,\tilde{h}_3\right)^{\mathsf{T}}=\mathsf{R}^h\!\left(\sqrt{2}\Re\{\mathsf{H}_1^0\},\sqrt{2}\Re\{\mathsf{H}_2^0\},\mathsf{A}_{\mathrm{tree}}^0\right)^{\mathsf{T}}$$

* Gaugino/higgsino sector.

- ◊ Written in the mass basis (contrary to the rest of the Lagrangian).
- ♦ Is changed, in version 1.1.4 (present development version).

• 105 free parameters.

- * The **SLHA-FR format** (SLHA2-like format).
- * C++ translator SLHA1/2 \Leftrightarrow SLHA-FR (v1.2.0 is coming).

The (almost) most general MSSM - validation [Duhr, BenjF].

- Handmade vs. automated implementation.
 - * 2522 vertices, without the four-scalar interactions.
 - * More that 10000 vertices, with the four-scalar interactions !!!
- FEYNARTS/FORMCALC.
 - ✓ All 2 → 2 SUSY hadroproduction processes checked with litterature. [Bozzi, BenjF, Herrmann, Klasen (2007); BenjF, Herrmann, Klasen (2009; in prep.)].
- MADGRAPH/MADEVENT (in the cMSSM limit):
 - * MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
 - ✓ 320 decay widths.
 - ✓ 626 2 → 2 SUSY processes.
 - ✓ 2708 2 → 3 SUSY processes.
 - TO DO: check the general MSSM.
 - ♦ With XSUSY [BenjF, Herrmann (in prep.)]
 - $\diamond~$ With the stock version of $\rm WHIZARD~[Herrmann].$
- CALCHEP/COMPHEP (in the cMSSM):
 - **X** 626 $2 \rightarrow 2$ SUSY processes \Rightarrow Bugs found in the stock version!

The signs and absolute values of all the vertices have been checked.

FEYNRULES 00000000000

The (almost) most general MSSM - validation [Duhr, BenjF].

Some MADGRAPH/MADEVENT and CALCHEP results

Process	MG-FR	MG-ST	CH-FR	CH-ST	Comparison
b,b~>mu+,mu-	7.01173×10^{-3}	7.00622×10^{-3}	7.0113×10^{-3}	7.0114×10^{-3}	$\delta = 0.0786383$ %
b,b~>e+,e-	7.01047×10^{-3}	7.00913×10^{-3}	7.0113×10^{-3}	7.0114×10^{-3}	δ = 0.0323792 %
b,b~>tau+,tau-	7.23656×10^{-3}	7.2231×10^{-3}	7.2351×10^{-3}	7.2352×10^{-3}	$\delta = 0.186166$ %
b,b~>ve,ve~	8.38141×10^{-3}	8.38607×10^{-3}	8.3842×10^{-3}	8.3843×10^{-3}	$\delta = 0.0556675$ %
b,b~>vm,vm~	8.3868×10^{-3}	8.38046×10^{-3}	8.3842×10^{-3}	8.3843×10^{-3}	$\delta = 0.0756488$ %
b,b~>vt,vt~	8.38227×10^{-3}	8.38318×10^{-3}	8.3842×10^{-3}	8.3843×10^{-3}	δ = 0.0242298 %
b,b~>u,u~	2.19296	2.19098	2.1931	2.1931	δ = 0.0966848 %
b,b~>t,t~	4.74685×10^{1}	4.74541×10^{1}	4.7307×10^{1}	4.7308×10^{1}	$\delta = 0.340907$ %
b,b~>d,d~	2.19374	2.19428	2.1944	2.1944	$\delta = 0.0301166$ %
b,b~>b,b~	2.34515×10^{4}	2.34471×10^{4}	2.3448×10^{4}	2.3448×10^{4}	$\delta = 0.0188769$ %
b,b~>W+,W-	1.33248	1.33234	1.3331	1.3331	$\delta = 0.0573475$ %
b,b~>Z,Z	1.39592×10^{-1}	1.39525×10^{-1}	1.3982×10^{-1}	1.3982×10^{-1}	$\delta = 0.210885$ %
b,b~>Z,a	2.8492×10^{-2}	2.85038×10^{-2}	2.8503×10^{-2}	2.8504×10^{-2}	δ = 0.0420335 %
b,b~>g,g	5.55219×10^{1}	5.54535×10^{1}	5.5504×10^{1}	5.5504×10^{1}	$\delta = 0.12333$ %
b,b~>sd1,sd1~	3.40163×10^{-1}	3.40348×10^{-1}	$3.401 imes 10^{-1}$	3.4009×10^{-1}	$\delta = 0.0759557$ %
b,b~>sd2,sd2~	2.58964×10^{-1}	2.59026×10^{-1}	2.5914×10^{-1}	2.5915×10^{-1}	δ = 0.0716753 %
b,b~>sd1,sd2~	6.07283×10^{-1}	6.07465×10^{-1}	6.0701×10^{-1}	6.0701×10^{-1}	δ = 0.0749837 %
b,b~>su1,su1~	2.88616×10^{-1}	2.89041×10^{-1}	2.8884×10^{-1}	2.8625×10^{-1}	δ = 0.97026 %
b,b~>su6,su6~	5.91346×10^{-3}	5.91497×10^{-3}	5.9124×10^{-3}	5.2701×10^{-3}	δ = 11.5309 %
b,b~>su1,su6~	1.15552×10^{-2}	1.15752×10^{-2}	1.1567×10^{-2}	8.7247×10^{-3}	δ = 28.0835 %
b,b~>n1,n1	1.73348×10^{-4}	1.73503×10^{-4}	1.7329×10^{-4}	1.7329×10^{-4}	δ = 0.12272 %
b,b~>n1,n2	7.25698×10^{-4}	7.25803×10^{-4}	7.2617×10^{-4}	7.2618×10^{-4}	δ = 0.0664021 %
b,b~>n1,n3	4.87872×10^{-4}	4.89162×10^{-4}	4.8893×10^{-4}	4.8893×10^{-4}	$\delta = 0.26393$ %
b,b~>n1,n4	2.90254×10^{-4}	2.89831×10^{-4}	2.8994×10^{-4}	2.8994×10^{-4}	$\delta = 0.146048$ %
b,b~>n2,n2	5.74033×10^{-3}	5.74407×10^{-3}	5.7423×10^{-3}	5.7424×10^{-3}	δ = 0.0651865 %
b, b~>n2, n3	2.73662×10^{-3}	2.73514×10^{-3}	2.7398×10^{-3}	2.7399×10^{-3}	δ = 0.173711 %
b,b~>n2,n4	2.0141×10^{-3}	2.01493×10^{-3}	2.0149×10^{-3}	2.015×10^{-3}	$\delta = 0.0448974$ %
b,b~>n3,n3	4.54157×10^{-5}	4.54171×10^{-5}	4.5409×10^{-5}	4.5409×10^{-5}	$\delta = 0.0178662$ %
b,b~>n3,n4	1.08667×10^{-2}	1.08477×10^{-2}	1.0845×10^{-2}	1.0845×10^{-2}	δ = 0.199685 %
b, b~>n4, n4	2.16226×10^{-4}	2.15906×10^{-4}	2.1573×10-4	2.1574×10^{-4}	$\delta = 0.229686$ %

From Model Building to Events - Status of FEYNRULES

Benjamin Fuks - NMSSM Workshop @ LPT Orsay - 16.11.2009 - 33

The (almost) most general MSSM - to do list [Duhr, BenjF].

- From an almost most general model to the most general one.
 - * Generalization of the Higgs sector.
- MADGRAPH/MADEVENT and CALCHEP/COMPHEP.
 - * Check with $\rm XSUSY$ and $\rm WHIZARD~$ for the general model case.
- Sherpa:
 - * Ongoing validation: one issue related to Majorana particles remaining. [+ possible hidden stuff].
- WHIZARD:
 - * Starting validation (the FR-interface must be validated at the same time).
- We have automatically generated model files for several tools.
 - * Calchep/Comphep.
 - * FeynArts/FormCalc.
 - * MadGraph/MadEvent.
 - * SHERPA (?).
 - * WHIZARD (?).
 - * Can be used for phenomenology.
 - * Stock versions are working too.

The Next-to-Minimal Supersymmetric Standard Model

• Implementation in FEYNRULES (not yet public).

- * General mixings.
 - ♦ The general NMSSM has been implemented.
 - ◊ Extended neutralino sector.
 - ♦ Extended Higgs sector.
- * 105 + 10 free parameters.
 - ♦ The **SLHA-FR format** (SLHA2-like format).
 - ♦ C++ translator SLHA1/2 \Leftrightarrow SLHA-FR (seems to work).
- MADGRAPH and CALCHEP model files.
 - * Validation against the stock version of WHIZARD.
 - * See Felix's talk.

• We have automatically generated model files for several tools.

- * CALCHEP/COMPHEP.
- * FEYNARTS/FORMCALC.
- * MADGRAPH/MADEVENT.
- * SHERPA (?).
- * WHIZARD (?).
- * Can be used for phenomenology.
- * Stock versions (if existing) are working too.

Outline

Introduction: Monte Carlo generators for the Standard Model and New Physics.

2 The FEYNRULES approach.

3 Model database & validation procedures.

From model building to events using FEYNRULES

- A powerful prospecting chain:
 - * Model implementation: FEYNRULES.
 - * Events: CALCHEP, MADGRAPH, SHERPA, WHIZARD, ...
 - * Parton showering and hadronization: PYTHIA, HERWIG, ...
 - * Detector effects: Delphes, PGS, CMSSW, Athena...
 - * The phenomenology of 'any' model can easily be investigated.

Remark: CALCHEP: LANHEP or SARAH can be used (instead of FEYNRULES).

• Experimental softwares

- * Contain matrix-element generators.
- * FEYNRULES is supported by the MC people (if an interface exists).
- * No software modifications required to include FEYNRULES models. [One single copy paste is the only thing to do!]
- Implementation and validation of new models.
 - * Is any important/interesting model not integrated in MC tools?
 - * Is any important validation criteria missing?

Summary: the philosophy of FEYNRULES

- * Flexible theorist-friendly environment to develop new models. Mathematica-based.
- * Filling the gap between model building and collider phenomenology.
 1) Lagrangian → FEYNRULES → model files for your favourite MC codes.
 2) Monte Carlo code → phenomenology.

FEYNRULES is not tied to any generator.

* Avoid separate implementations of a model on different programs. FEYNRULES does it for you!

Exploit the strengths of the different programs!

- * Traceability, portability and documentation. Test of a model against data: all model information in the FEYNRULES files.
- * The validation of models is not neglected! Different generators, gauges, etc...