FeynRules and UFO

Claude Duhr

in collaboration with A. Alloul, N. Christensen
C. Degrande and B. Fuks

+ many other external collaborators

20
W Durham

University

Outline

® FeynRules in a nutshell.

® FeynRules 2.0: Recent developments:

= Spin 3/2 particles.

= ASperGe - Automatic Spectrum Generation.
= Two-body decays

= NLOCT - NLO counterterms.

FeynRules

in a nutshell

FeynRules 1n a nutshell

FeynRules 1s a Mathematica package that allows to derive
Feynman rules from a Lagrangian.

Current public version 2.x available from

http://feynrules.irmp.ucl.ac.be/

The only requirements on the [Lagrangian are:

= All indices need to be contracted (Lorentz and gauge
Invariance).

= [ocality.
= Supported field types: spin 0, 1/2, 1, 3/2, 2 & ghosts

= Chiral and vector superﬁelds are also supported.

= [ields can be massive or massless, self conjugate or not.

http://feynrules.irmp.ucl.ac.be/

FeynRules 1n a nutshell

® IFeynRules comes with a set of interfaces, that allow to
export the Feynman rules to various matrix element
generators.

® Interfaces coming with current public version
= CalcHep / CompHep
= FeynArts / FormCalc

= GoSam

g Herwig+ +

= MadGraph5_aMC@NLO
= Sherpa
= Whizard / Omega

© C. Degrande

FeynRules 1n a nutshell

® IFeynRules comes with a set of interfaces, that allow to
export the Feynman rules to various matrix element
generators.

® Interfaces coming with current public version
= CalcHep / CompHep

FeynArts / FormCalc

GoSam

Herwig++

MadGraph5_aMC@NLO B

Whizard / Omega e - © C. Degrande

1 3 3 3 1 1

FeynRules 1n a nutshell

® The input requested form the user 1s twoftold.

® The Model File: ® The Lagrangian:

Definitions of particles and
parameters (e.g., a quark) |
— _~GY G gt Dyg — M, q
F[1] == = 4GW Gao™ +147" Dug 199
{ClassName -> q,

SelfConjugate -> False, L =
Indices -> {Index[Colour]}, = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
Mass -> {MQ, 200}, + | gbar.Ga[mu].del[g,mu]

Width > {WQ, 5} } - MQ gbar.q

FeynRules 1n a nutshell

® Once this information has been provided, FeynRules can
be used to compute the Feynman rules for the model:

FeynmanRules| L]

Vertex 1
Particle 1 : Vector , G

Particle 2 : Dirac , qT
Particle 3 : Dirac , g
Vertex:

: H ..
LgSY 132,53 6f2,f3 T6112,13

FeynRules 1n a nutshell

® Idea: Feynman rules can be exported to various matrix
element generators.

® Drawback: Need to develop and maintain a lot of
interfaces for various Monte Carlos.

® UFO (Universal FeynRules Output):

= A model is a Python module that can be linked to
other codes.

= Some generators have restrictions on the type of
vertices they can handle.

= A warning 1s thrown if a model cannot be exported
to a certain code.

The UFO

UFO = Universal FeynRules Output

® Idea: Create Python modules that can be linked to other
codes and contain all the information on a given model.

(") 4)

FeynRules UFO
— —{ MC
Model tile + Vertices Python program)

& J

® By design: No assumptions on MC program specific
information.

= [orentz/color structures, number of particles.

® UFO files can be read by GoSam, Herwig++,
MadGraphb_aMC@NLO, Sherpa.

Additional Features

® Higher-dimensional operators are tully supported!

= Only limitations come from limitations in the matrix

element generators.

® Sextet color algebra tully supported.

® Supersymmetric models can be 1mplemented using super

ﬁeld forma

® [arge data

1S11.

base of implemented models online:

=» MSSM + various extensions.

= Fxtra dimensions.

= SM + effective operators

- ..

FeynRules 2.0

Recent developments

S o 5 /2 [Christensen, de Aquino, Deutschmann, CD, Fuks,
pln Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu]

® Particles of spin 3/2 are tully supported starting from v2.0.
= (Colored or non-colored.

= Majorana or Dirac.

® Currently supported by UFO and CalcHEP interfaces.

® Example:
L=Lsy+ L3/o+ Ls

L3/o = "0, v57, DY, + 2iMW, "W,
L- = z'g—/i!ﬁp [np“ + zva“] v Tat g, + h.c.

S o 5 /2 [Christensen, de Aquino, Deutschmann, CD, Fuks,
pln Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu]

pp — ttatthe LHC (14 TeV)
z L
& =
= -
= -
e W0 E]
S o
3 WwE |
.= — :
-]!
107
=
104 = |
E |
Tl
E|-o- 2205
— z=0.25
106 =~ ¢ 2z=0
— | —_ Standard Model
—L‘:III
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M, [GeV]

= Not more difficult to implement that ‘ordinary’ particles.
= Perfect agreement between CalcHEP and MadGraph 5.

Diagonalisation of Mass Matrices

® In many BSM models the mass matrix 1s not diagonal.

L =D, D' —mPpl s —m2y(6]da + ¢hd1) +A(¢l i)’

® The gauge and mass eigenstates are then related via some

unitary rOtatiOIl,< ¢1) _ U (@1)
P2 b

® Dilemma:

= [agrangian 1s simple 1n terms of the gauge eigenstates.

= MC tools generically require mass eigenstates as input.
® Problem:

= [or small mixing matrices (2x2), diagonalization 1s easy.

= MSSM: 6x6 squark mixing matrix.

AS G [Alloul, D’'Hondt, de Causmaecker,
Per C Fuks, Rausch de Traubenberg]
® ASperGe = Automatic Spectrum Generator

® ASperGe allows to

= [xtract the mass matrix from the Lagrangian.

= (Qutputs a standalone numerical code taking as input a
SLHA-like parameter file

information, and returns the complete parameter file

[FeynRules J

(MC Model file) (ASperGe)

(MC program } (Parameter file)

AS G [Alloul, D’'Hondt, de Causmaecker,
Per € Fuks, Rausch de Traubenberg]

® Input: Definition of the mixing matrix in the model file
(without specifying the numerical values!):

Mix["AZmix"] ==
MassBasis -> {A, Z},
GaugeBasis -> {B, Wi[3]}, (Au> _ (BM>
MixingMatrix -> UW, W
BlockName -> WEAKMIX
}

® FFeynRules can be used to extract the mass matrix from
the Lagrangian:

ComputeMassMatrix[Lagrangian]

\

AS G [Alloul, D’'Hondt, de Causmaecker,
Per € Fuks, Rausch de Traubenberg]

® [f the mass matrix cannot be diagonalised analytically,
FeynRules can output an ASperGe-code that allows to

WriteASpergGe[Lagrangian]

/7

® Result: A standalone C++ code for the diagonalization!

= No need to return to Mathematica at this point!

JASperGe <infile> <outfile>

N 7

® [Extensively tested:

= MSSM, Left-Right MSSM, Most general
2HDM ,...

[Alwall, CD, Fuks,
TWO"bOdy decay S Mattelaer, Oztiirk, Shen]

® MC programs generically require the total widths of all
particles to be given as numerical inputs.

= Widths are not independent input parameters!
® Most MC programs have the capabﬂity to compute the
widths (on the fly).

= Tedious, and requires to recompute the widths every
time a numerical input parameter has changed.

® In many cases two-body decays are dominant.

= Two-body decays are just ‘squares’ of 3-point vertices!
= All relevant information already at FeynRules level.

= (Can use Mathematica to compute all two-body decays
analytically.

[Alwall, CD, Fuks,
TWO"bOdy decay S Mattelaer, Oztiirk, Shen]

® FeynRules 2.0 can compute all two-body partial decay
widths analytically:

" vertices = FeynmanRules[L J;

decays = ComputeDecays[vertices];

N

® The partial and total wadths can easily evaluated
numerically and inserted into the model file.

x = PartialWidth[{t,W,b}] y = TotWidth[t]

NumericalValue[x] NumericalValue[y] 5

N

[Alwall, CD, Fuks,
TWO"bOdy decay S Mattelaer, Oztiirk, Shen]

® The partial widths can be output in the UFO format, and be
used when generating a process.

Decay_H = Decay(name = 'Decay_H',
particle = P.H,
partial_widths = {
(P.b,Pb__tilde_):'3*MH**2*yb**Q',
(Pta__minus_ ,Pta_ plus_):'MH**2*ytau**2',
(P.c,P.c__tilde_):'8*MH**3*yc**R/,
(Pt,Pt__tilde_):!'8*"MH***yt**2'})

® NB: All possible analytic formulas are output, independently
whether they are kinematically allowed!
= Some channels might be open for some benchmark
scenarios but not for other

= Channels depend on spectrum.

NLOCT - NLO counterterms [Degrande]

® NLO accuracy 1s/will soon be the new standard for MC

simulations.

® Next goal: Bring NLO models to the same level of

automation than at LO!

= UV counterterms.
= ‘R2’ vertices (effective tree-level vertices arising from

(d-4)-dimensional part of numerators).

® The information cannot exclusively be extracted from a tree-
level Lagrangian!

= Requires the evaluation of loop integrals.

® The NLOCT package allows to solve this problem!

NLOCT - NLO counterterms [Degrande]

® Idea of NLOCT:

= Use FeynRules interface to FeynArts to implement the
model into FeynArts.

= Use FeynArts to write the relevant amplitudes and
NLOCT to compute their R2 and UV parts.

o\

f
h + FeynArts +
[FeynRules } N

& J

= The UV and R2 terms are

reimported into FeynRules and
can be output in the UFO format.

(MC p;‘ogram)

NLOCT - NLO counterterms [Degrande]

® Step l: Introduce renormalization constants for all fields and
parameters, and determine renormalization constants for
dependent parameters.

Lren = OnShellRenormalization[L];

® Step 2: Output the model to FeynArts.

WriteFeynArtsOutput[Lren];

® Step 3: Run FeynArts and NLOCT to compute the

counterterms:

WriteCT[“model”, “generic_model”, options];

NLOCT - NLO counterterms [Degrande]

® Step 4: Reimport the counterterms into FeynRules, and
export them together with the tree-level vertices in the UFO

format.

/ \.
Get[“model.nlo”]

WriteUFO[L, UVCounterterms -> UV$vertlist,
R&Vertices -> RR$vertlist]

NLOCT - NLO counterterms [Degrande]

® Step 4: Reimport the counterterms into FeynRules, and
export them together with the tree-level vertices in the UFO

format.

Get[“model.nlo”]

WriteUFO[L, UVCounterterms -> UV$vertlist,
R2Vertices -> RR$vertlist]

® The resultis a UFO file that can immediately be used by
MadGrapgh 5/aMC@NLO to produce events at NLO

accuracy !

® Validation: Reproduces correctly the counterterms and R2
terms ftor the SM.

= Validation of MSSM on-going.

Summary

® FeynRules 2.0 has been released 6 months ago.

® New features:

= Spin 3/2.
= Automatic computation of two-body decays.
= Numeric diagonalisation of mass matrices.

ASperGe

= [xtraction of one-loop counterterms and R2 vertices for
renomalisable models (from 2.1).

NLO
® 'Iry it out!

http://teynrules.armp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be/

