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FeynRules in a nutshell
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!

• FeynRules is a Mathematica package that allows to derive 
Feynman rules from a Lagrangian.	


• Current public version 2.x available from

!

• The only requirements on the Lagrangian are:	


➡ All indices need to be contracted (Lorentz and gauge 
invariance).

➡ Locality.

➡ Supported field types: spin 0, 1/2, 1, 3/2, 2 & ghosts

➡ Chiral and vector superfields are also supported.	


➡ Fields can be massive or massless, self conjugate or not.

http://feynrules.irmp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be/
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Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.	


• Interfaces coming with current public version 	


➡ CalcHep / CompHep	


➡ FeynArts / FormCalc

➡ GoSam	


➡ Herwig++

➡ MadGraph5_aMC@NLO

➡ Sherpa	


➡ Whizard / Omega	
 © C. Degrande

FeynRules in a nutshell
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For each tool, the right input
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!
!• The input requested form the user is twofold.	


F[1]  ==  !
   {ClassName     ->   q,!
    SelfConjugate ->  False,!
    Indices            ->  {Index[Colour]},!
    Mass               ->  {MQ,  200},!
    Width              ->  {WQ, 5}   }

L = !
-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]  !
+ I qbar.Ga[mu].del[q,mu] !
- MQ qbar.q

• The Model File:	

Definitions of particles and 
parameters (e.g., a quark)	


• The Lagrangian:	


L = �1
4
Ga

µ� Gµ�
a + iq̄ �µ Dµq �Mq q̄ q

FeynRules in a nutshell
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• Once this information has been provided, FeynRules can 
be used to compute the Feynman rules for the model:	


!
FeynmanRules[ L ]

FeynRules in a nutshell
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• Idea: Feynman rules can be exported to various matrix 
element generators.	


• Drawback: Need to develop and maintain a lot of 
interfaces for various Monte Carlos.	


!
➡ A model is a Python module that can be linked to 

other codes.	

➡ Some generators have restrictions on the type of 

vertices they can handle.	


➡ A warning is thrown if a model cannot be exported 
to a certain code.

FeynRules in a nutshell

• UFO (Universal FeynRules Output):	

!
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The UFO

UFO = Universal FeynRules Output	

!• Idea: Create Python modules that can be linked to other 

codes and contain all the information on a given model.	

!

• By design: No assumptions on MC program specific 
information.	


!
!

• UFO files can be read by GoSam, Herwig++, 
MadGraph5_aMC@NLO, Sherpa.	


FeynRules	

Model file + Vertices

MC programUFO	

Python

➡ Lorentz/color structures, number of particles.



Additional Features
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!
!

• Higher-dimensional operators are fully supported!

• Sextet color algebra fully supported.

• Supersymmetric models can be implemented using super 
field formalism.

!

➡ Only limitations come from limitations in the matrix 
element generators.

• Large database of implemented models online:
➡ MSSM + various extensions.	


➡ Extra dimensions.	


➡ SM + effective operators	


➡ …
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! FeynRules 2.0
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! Recent developments



Spin 3/2
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!
!

➡ Colored or non-colored.	


➡ Majorana or Dirac.

• Particles of spin 3/2 are fully supported starting from v2.0.

• Currently supported by UFO and CalcHEP interfaces.

• Example:

L = LSM + L3/2 + L5

N.D. Christensen et al.: Simulating spin- 3
2

particles at colliders 7
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Fig. 2. Energy dependence of the projected partial wave am-
plitude

�

�J2

1�1, 12� 1
2

�

� defined in Eq. (20) for the gg ! G̃G̃ process

and for di↵erent choices of the gluino mass. The solid lines are
calculated by MadGraph 5 and use the full amplitude. For
the mg̃ = 1000 GeV case, we also show the analytical results
in the

p
s � m

3/2,mg̃ limit of Ref. [79] (dashed) as well as the
s2 dependence resulting from the t- and u-channel diagram
contributions only (dotted).

We note that, in the
p
s � m

3/2 limit, goldstino-gravitino
equivalence allows us to replace the spin- 3

2

gravitino by the

spin- 1
2

goldstino (which we denote by �),  µ ⇠ p

2/3 @µ�/m
3/2.

We have verified that we obtain results similar to those of Fig-
ure 2 in this case.

4.1.2 Gluino pair-production

We now turn to the analysis of the t, u-channel gravitino con-
tributions to gluino pair-production when the final state arises
from gluon scattering [81,82].

In Figure 3, we present the di↵erent contributions to the
total cross section for gluino pair-production pp ! g̃g̃ at the
LHC, running at a center-of-mass energy of 8 TeV. In the upper
panel of the figure, we fix the squark masses to 1 TeV and
investigate the dependence of the cross section on the gravitino
mass, for several choices of the gluino mass. The solid lines refer
to the contribution from gluon scattering while the dashed lines
are related to the quark-antiquark one. The gravitino diagrams
contribute significantly only when the gravitino is very light
with respect to the gluino mass. In other words, when m

3/2 .
6 · 10�14 GeV, 3 · 10�13 GeV, and 7 · 10�13 GeV for a gluino
of 500 GeV, 1000 GeV and 1500 GeV, respectively.

In the lower panel of Figure 3, we analyze the dependence
of the total cross section on the gluino mass for squark masses
of 1 TeV and various values of the gravitino mass. This illus-
trates the scaling of the cross section in 1/m4

3/2 in the parame-
ter space regions where gravitino diagrams dominate the cross
section.

4.2 Top-quark excitation

Among the large number of new physics theories, those con-
structed upon the idea of compositeness of the Standard Model
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Fig. 3. Total cross sections for gluino pair-production at the
LHC, running at a center-of-mass energy of 8 TeV, presented
as a function of the gravitino mass (upper panel) and of the
gluino mass (lower panel). Squark masses are fixed to 1 TeV.

quarks and leptons usually predict the existence of both spin-
1

2

and spin- 3
2

states [12–22]. Since the top quark, by its large
mass, is expected to play an important role in many new
physics models, we only focus, in the following, on the de-
scription of an excited spin- 3

2

top sector.
The dynamics of such a top quark excitation, represented

by a four-component Rarita-Schwinger field  µ of mass M , is
described by supplementing to the Standard Model Lagrangian
L

SM

the gauge-covariant version of the Lagrangian of Eq. (109),

L = L
SM

+ ✏µ⌫⇢� ̄µ�5��D⌫ ⇢ + 2iM  ̄µ�
µ⌫ ⌫ , (22)

the spacetime derivative having been replaced by the gauge
covariant derivative

Dµ ⌫ = @µ ⌫ � igsTa ⌫g
a
µ . (23)

In this expression, we introduce the QCD coupling constant
(gs) and the fundamental representation matrices of SU(3)
(Ta). We also denote the gluon field by gaµ, as in Section 4.1.
Mixing of the spin- 3

2

top excitation in general occurs through
dimension-five operators suppressed by a new physics energy
scale ⇤. Although there are several ways to describe such a mix-
ing, we assume it, for the sake of the example, agnostic of the
left-handedness or right-handedness of the spin- 1

2

top quark t

L3/2 =

L5 =
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Fig. 4. Total cross section for the production of an excited top
quark pair at the LHC, for a center-of-mass energy of 7 TeV
(red crosses and green circles) and 8 TeV (blue crosses and red
circles), as a function of the excited top mass Mt⇤ . We com-
pare predictions obtained by means of MadGraph 5 (crosses)
and CalcHep (circles) to the analytical formulas presented in
Ref. [21] (lines).

and embed the relevant interactions within the Lagrangian

L
5

= i
gs
⇤
 ̄⇢

h

⌘⇢µ + z�⇢�µ
i

�⌫Tat g
a
µ⌫ + h.c. , (24)

We leave, in the following, the o↵-shell parameter z free6.

4.2.1 Top-quark excitation pair-production

In order to validate our implementation in the simulation chain
mentioned in Section 3, we first focus on the pair production
of spin- 3

2

top excitations at the LHC, vetoing diagrams in-
volving a top quark. We compare in Figure 4 predictions de-
rived from the analytical formulas presented in Ref. [21] to
results obtained by means of the MadGraph 5 and CalcHep
event generators. The relevant model files have been produced
by implementing the Lagrangians of Eqs. (22) and (24) into
FeynRules and exporting the associated Feynman rules to a
UFO library to be used with MadGraph 5 and to a CalcHep
model. We consider the LHC collider running at a center-of-
mass energy of 7 TeV and 8 TeV and convolve the associ-
ated squared matrix element with the leading order fit of the
CTEQ6 parton densities [83] after setting both unphysical fac-
torization and renormalization scales to the mass of the top
excitation Mt⇤ . All calculations fully agree, and the usual be-
havior of a cross section smoothly falling with an increasing
top- 3

2

mass is observed. From these results, it is found that
spin- 3

2

excitations of the top quark with masses Mt⇤ . 1 TeV
could have been copiously pair-produced at both past LHC
runs. Additionally, we have compared the symbolic calcula-
tions performed by CalcHEP to the explicit analytic formulas
given in Ref. [21] and found perfect agreement.

4.2.2 Top-quark pair-production

Next, mixing e↵ects of spin- 1
2

and spin- 3
2

top states are inves-
tigated in the framework of the production of a (spin- 1

2

) top-
antitop quark pair at the LHC, running at a center-of-mass

6 This parameter gets its name as it only a↵ects processes
with an o↵-shell spin- 3

2

field.
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Fig. 5. Invariant-mass spectrum of a top-antitop pair as would
be produced at the LHC, running at a center-of-mass energy
of 14 TeV, for an excited top mass of Mt⇤ = 300 GeV (red
dashed-dotted line), 500 GeV (blue dashed line) and 800 GeV
(green dotted line) and in the context of the Standard Model
(plain purple line). The dashed lines were obtained from Mad-
Graph 5 while the circles, boxes and triangles were obtained
from CalcHEP.

energy of 14 TeV. In the presence of new physics as described
by the Lagrangians of Eqs. (22) and (24), two additional t-
channel and u-channel diagrams lead to the production of a
top-antitop final state via the exchange of a spin- 3

2

top part-
ner from a gluon-gluon initial state. Fixing first the o↵-shell
parameter to z = 0 and the new physics scale to ⇤ = 7Mt⇤ ,
we study the variation of the di↵erential cross section d�/dMt¯t

with the mass of the spin- 3
2

excitation Mt⇤ in Figure 5. Gen-
erating events with the MadGraph 5 program after fixing
both unphysical scales to the top mass Mt = 173 GeV, dif-
ferential distributions are then extracted with the MadAnal-
ysis 5 package [84] and compared to those generated using the
CalcHEP package and its internal histogramming routine. We
recover earlier results [20] and show excesses with respect to
the pure Standard Model case at large top-antitop invariant
masses. For the three scenarios with a respective excited top
mass of 300 GeV, 500 GeV and 800 GeV, respectively, new
physics e↵ects appear once the e↵ective scale ⇤ threshold is
crossed, i.e., where the theory becomes unreliable and unitar-
ity is violated. A proper treatment would require, e.g., the
introduction of form factors as in Ref. [15]. This however goes
beyond the scope of this work devoted to an illustration of
the implementation of spin- 3

2

fields in automated high-energy
physics tools.

In Figure 6, we fix the top-excitation mass to 300 GeV and
study the importance of the z parameter on the di↵erential
distribution d�/dMt¯t at the LHC, still assumed to be running
at a center-of-mass energy of 14 TeV. Similarly to the findings
of earlier works [20], the o↵-shell parameter is found to largely
control the shape of the Mt¯t distribution. For large positive
z-values, new physics e↵ects appear to be important even far
below the e↵ective scale ⇤, in contrast to more popular choices
where z is taken vanishing or negative [13,15].

[Christensen, de Aquino, Deutschmann, CD, Fuks, 
Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu]



Spin 3/2

!
!

!
!

[Christensen, de Aquino, Deutschmann, CD, Fuks, 
Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu]N.D. Christensen et al.: Simulating spin- 3

2

particles at colliders 9

 [ GeV ]  ttM
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 ]
-1

 [ 
pb

 G
eV

tt
 / 

dM
σd

-610

-510

-410

-310

-210

-110

1

z = 1
z = 0.5
z = 0.25
z = 0
Standard Model

 at the LHC (14 TeV)t t →p p 

Fig. 6. Invariant-mass spectrum of a top-antitop pair as would
be produced at the LHC, running at a center-of-mass energy
of 14 TeV, for an excited top mass of Mt⇤ = 300 GeV and an
o↵-shell parameter fixed to z = 0 (gray large dashed-dotted
line), z = 0.25 (green dotted line), z = 0.5 (blue dashed line)
and z = 1 (red small dashed-dotted line). The results are con-
fronted to the Standard Model predictions (plain purple line).

4.3 Angular distributions for a spin-32 particle

In this section, we study a particular case of spin- 3
2

colored
resonances that can be thought of as excited quarks. We ex-
ploit our implementation to test spin correlation e↵ects possi-
bly due to such resonances. In the rest of this section, we use
the notation u⇤µ for Rarita-Schwinger fields describing excited
spin- 3

2

quarks with the same internal quantum numbers as the
up quark, and d⇤µ for Rarita-Schwinger fields with the same
quantum numbers as the down quark. If these resonances ex-
isted, they could be produced in a proton-proton collider when
one quark and one gluon scatter. The simplest gauge-invariant
operator that can describe such a process is

L
prod

=
gs
⇤
gaµ⌫q�

µ(k�PL + k
+

PR)Taq
⇤⌫ + h.c. . (25)

In this expression, the excited and usual quark fields are de-
noted by q⇤ = (u⇤, d⇤) and q = (u, d), PL and PR are chirality
projectors acting on spin space, ⇤ is a cut-o↵ scale and the
interaction strengths are described by the k± parameters. We
recall that the objects related to strong interactions have been
introduced in the two previous subsections. We assume now
that the resonances decay into a quark and either a photon or
a Z boson. After electroweak symmetry breaking, the simplest
Lagrangian describing these decays reads

L
decay

=
e

⇤
Fµ⌫q(k��PL + k�+PR)�

µq⇤⌫ + h.c.

+
g

cos ✓W
Zµq(kZ�PL + kZ+

PR)q
⇤µ + h.c. ,

(26)

where we denote the photon field strength tensor by Fµ⌫ and
model the couplings by the parameters k�± and kZ±. In order
to study the angular distribution in the decay products caused
by these resonances, we calculate analytically the correspond-
ing di↵erential cross sections. For the process gq ! q⇤ ! �q,
we find

d�
d⌦

/ �|k
+

|2|k�+|2 + |k�|2|k��|2
�
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�

�

d
3
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+
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,
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Table 1. Wigner d-functions used in this paper. The expres-
sions that are not listed are related to the ones shown in the
table by means of Eq. (119).

while for the process gq ! q⇤ ! Zq, we have

d�
d⌦

/ �|k
+
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�

�
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+O
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m2
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◆

.

(28)

For these expressions, we have assumed that the energy in the
center-of-mass frame equals the mass of the resonance m. That
is, the spin- 3

2

particle is on-shell. We see that expressing the
scattering amplitudes in terms of the Wigner d-functions makes
the angular dependence of our results more transparent. We
have reviewed the Wigner d-functions in Appendix B.5 and
give the relevant spin- 3

2

Wigner d-functions in Table 1.
We have implemented this new spin- 3

2

particle along with
the Lagrangian of Eq. (25) and Eq. (26) into FeynRules
and exported the model to CalcHEP and MadGraph 5 us-
ing the interfaces described in the previous section. We have
then generated events for the processes gq ! q⇤ ! �q and
gq ! q⇤ ! Zq for three di↵erent choices of couplings and
show the resulting distributions in the three panels of Figure 7.
The solid black curves correspond to the analytical computa-
tions of Eq. (27) and Eq. (28), while the red dashed and blue
dotted predictions have been numerically obtained by using
CalcHEP and MadGraph 5, respectively. In all cases, the
results match perfectly, illustrating the on-shell propagation of
a spin- 3

2

particle. For this study, we used a new physics mass
of 1 TeV and width of 1 GeV for the sake of the example, such
a small relative width making the o↵-shell e↵ects negligible.

5 Summary

In this paper, we have reported the implementation of support
for spin- 3

2

fields in the high-energy physics programs ALO-
HA, CalcHEP, FeynRules and MadGraph 5, including the
definition of the conventions for those fields in the UFO format.

We have used the chain of packages above-mentioned for
several physics applications. First, we have implemented the
gravitino of supergravity together with its interactions in Feyn-
Rules and analyzed both gravitino pair-production and grav-
itino contributions to gluino pair-production at the LHC us-
ing MadGraph 5. Our numerical results have been compared
to known analytic expressions that can be found in the liter-
ature and perfect agreement has been found. Next, we have
implemented a spin- 3

2

top-quark excitation into FeynRules
and studied its pair production using both MadGraph 5 and
CalcHEP. On the one hand, we have compared the resulting

➡ Not more difficult to implement that ‘ordinary’ particles.	


➡ Perfect agreement between CalcHEP and MadGraph 5.



Diagonalisation of Mass Matrices
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• Dilemma:

• The gauge and mass eigenstates are then related via some 
unitary rotation,	


L = Dµ�
†
iD

µ�i �m2�†
i�i +�(�†

i�i)
2�m2

12(�
†
1�2 + �†

2�1)

✓
�1

�2

◆
= U

✓
�1

�2

◆

➡ Lagrangian is simple in terms of the gauge eigenstates.	


➡ MC tools generically require mass eigenstates as input.

• Problem: 
➡ For small mixing matrices (2x2), diagonalization is easy.	


➡ MSSM: 6x6 squark mixing matrix.

• In many BSM models the mass matrix is not diagonal.
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• ASperGe = Automatic Spectrum Generator

• ASperGe allows to	

! ➡ Extract the mass matrix from the Lagrangian.	


➡ Outputs a standalone numerical code taking as input a 
SLHA-like parameter file 
information, and returns the complete parameter file

FeynRules
MC Model file

MC program

ASperGe

Parameter file

[Alloul, D’Hondt, de Causmaecker,	

Fuks, Rausch de Traubenberg]ASperGe



!
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• Input: Definition of the mixing matrix in the model file 
(without specifying the numerical values!):	


[Alloul, D’Hondt, de Causmaecker,	

Fuks, Rausch de Traubenberg]

Mix["AZmix"] == { 
           MassBasis -> {A, Z}, 
           GaugeBasis -> {B, Wi[3]}, 
           MixingMatrix -> UW, 
           BlockName -> WEAKMIX 
          }

4

where the mixing matrix is the identity. The underscore
reflects that the same color index is carried by all fields.

We now get back to weak gauge boson mixings and
turn to the neutral sector. We hence focus on the rota-
tion of the third weak boson W3 and the hypercharge
gauge boson B to the photon and Z-boson states,

(

Aµ

Zµ

)

= Uw

(

Bµ

W 3
µ

)

, (2)

after introducing the a priori unknown weak mixing
matrix Uw

4. The computation of the numerical values of
its matrix elements is addressed by means of the C++

package generated by FeynRules (see Section 4) and
is only possible if the mixing is declared according to
the syntax

Mix["AZmix"] == {

MassBasis -> {A, Z},

GaugeBasis -> {B, Wi[3]},

MixingMatrix -> UW,

BlockName -> WEAKMIX

}

The declaration of the gauge and mass bases is simi-
lar to the case of the charged W bosons, while the at-
tribute Value has been removed as the numerical value
of the mixing matrix is not known. The user provides in-
stead the symbol referring to the mixing matrix (UW) by
means of the MixingMatrix attribute, without declar-
ing it as one of the model parameters. This last task is
internally handled by FeynRules which assumes that
the mixing matrix is complex and which creates two
external tensorial parameters, one for the real part and
one for the imaginary part of the matrix, together with
one internal tensorial parameter being the matrix itself.

When a symbol for a mixing matrix is provided, it
is mandatory to specify, in addition, the name of a Les
Houches block which will contain the numerical values
associated with the elements of the matrix. We indeed
recall that both FeynRules and most of the interfaced
Monte Carlo event generators order the model param-
eters according to a structure inspired by the Super-
symmetry Les Houches Accord (SLHA) [30,31]. In our
example, we impose the real part of the elements of
Uw to be stored in a Les Houches block WEAKMIX and
their imaginary part in an automatically created block
IMWEAKMIX, i.e., a block of the same name with the
prefix IM appended.

Implementing model Lagrangians might require to
explicitly use one or several of the mixing matrices for

4Following more standard conventions, the relation of Eq. (2) is
usually written in terms of the cosine and sine of the electroweak
mixing angle, as in Section 2. However, we have adopted the
choice of staying fully general for the sake of the example.

some of the model interactions, as for the Minimal Su-
persymmetric Standard Model where the CKM matrix
is employed in the superpotential [4]. In this case, the
matrices must be declared according to the standard
syntax presented in the FeynRules manual, numeri-
cal values being provided as inputs. This subsequently
renders the attribute BlockName of the mixing class ob-
solete and ignored by FeynRules. Contrary, mixing
matrices automatically declared through a mixing dec-
laration cannot be employed in Lagrangians.

In the Standard Model, the CKM matrix VCKM re-
lates the left-handed down quark gauge-eigenstates d0L
to the mass-eigenstates dL as

d0L = VCKM · dL . (3)

To be compliant with the syntax presented so far, a
symbol for the hermitian-conjugate matrix has to be
created. To avoid such a complication, the optional at-
tribute Inverse can be used and set to True, which
enforces a relation among the mass and gauge bases
given by

GaugeBasis = MixingMatrix . MassBasis

3.2 More advanced cases

3.2.1 Scalar/pseudoscalar splittings

When neutral scalar fields are mixing, the gauge eigen-
states in general split into their real degrees of freedom
so that one scalar and one pseudoscalar mass basis are
required. Consequently, a list of two bases is provided as
argument of the MassBasis attribute, instead of a sin-
gle basis as in Section 3.1. Consistently, the arguments
of the attributes Value, BlockName, MixingMatrix and
Inverse are also upgraded to lists. The first element of
those lists always refers to the scalar fields, while the
second one is related to the pseudoscalar fields. It may
appear that some of the elements of those lists are ir-
relevant, as for instance when the scalar mixing matrix
is unknown (MixingMatrix and BlockName are used)
and the pseudoscalar mixing matrix is known (Value is
used). The irrelevant list components are in this case
replaced by underscores, as illustrated with

Mix["scalar"] == {

MassBasis -> { {h1, h2}, {a1, a2} },

GaugeBasis -> { phi1, phi2 },

BlockName -> { SMIX, _ },

MixingMatrix -> { US, _ },

Value -> { _, ... }

}

• FeynRules can be used to extract the mass matrix from 
the Lagrangian:	


ComputeMassMatrix[ Lagrangian ]

ASperGe



!
!

!
!

ASperGe

• If the mass matrix cannot be diagonalised analytically, 
FeynRules can output an ASperGe-code that allows to 

[Alloul, D’Hondt, de Causmaecker,	

Fuks, Rausch de Traubenberg]

• Result: A standalone C++ code for the diagonalization!	

!

WriteASpergGe[ Lagrangian ]

➡ No need to return to Mathematica at this point!

./ASperGe    <infile>      <outfile>

• Extensively tested:	

!

➡ MSSM, Left-Right MSSM, Most general 
2HDM ,… 



!
!

!
!

Two-body decays

• MC programs generically require the total widths of all 
particles to be given as numerical inputs.	


[Alwall, CD, Fuks,	

Mattelaer, Öztürk, Shen]

➡ Widths are not independent input parameters!

• In many cases two-body decays are dominant.	

!

➡ Tedious, and requires to recompute the widths every 
time a numerical input parameter has changed.

• Most MC programs have the capability to compute the 
widths (on the fly).	


➡ Two-body decays are just ‘squares’ of 3-point vertices!	


➡ All relevant information already at FeynRules level.	


➡ Can use Mathematica to compute all two-body decays 
analytically.



!
!

!
!

Two-body decays [Alwall, CD, Fuks,	

Mattelaer, Öztürk, Shen]

• The partial and total widths can easily evaluated 
numerically and inserted into the model file.	


• FeynRules 2.0 can compute all two-body partial decay 
widths analytically:	


vertices = FeynmanRules[ L ]; 
!
decays = ComputeDecays[ vertices ];

x = PartialWidth[{t,W,b}]            y = TotWidth[ t ]  
!
NumericalValue[ x ]                      NumericalValue[ y ]



!
!

!
!

!

• The partial widths can be output in the UFO format, and be 
used when generating a process.	


Decay_H = Decay(name = 'Decay_H', 
                particle = P.H, 
                partial_widths = { 
                                  (P.b,P.b__tilde__):'3*MH**2*yb**2', 
                                  (P.ta__minus__,P.ta__plus__):'MH**2*ytau**2', 
                                  (P.c,P.c__tilde__):'3*MH**2*yc**2', 
                                  (P.t,P.t__tilde__):'3*MH**2*yt**2'})
!

• NB: All possible analytic formulas are output, independently 
whether they are kinematically allowed!	
!

➡ Some channels might be open for some benchmark 
scenarios but not for other	


➡ Channels depend on spectrum.

Two-body decays [Alwall, CD, Fuks,	

Mattelaer, Öztürk, Shen]



!
!

!
!

!

• NLO accuracy is/will soon be the new standard for MC 
simulations.	
!

• Next goal: Bring NLO models to the same level of 
automation than at LO!	
!

➡ UV counterterms.

➡ ‘R2’ vertices (effective tree-level vertices arising from 
(d-4)-dimensional part of numerators).

NLOCT - NLO counterterms [Degrande]

!

• The information cannot exclusively be extracted from a tree-
level Lagrangian!	

➡ Requires the evaluation of loop integrals.
!

• The NLOCT package allows to solve this problem!	

!



!
!

!
!

!

• Idea of NLOCT:!

➡ Use FeynRules interface to FeynArts to implement the 
model into FeynArts.

➡ Use FeynArts to write the relevant amplitudes and 
NLOCT to compute their R2 and UV parts.

NLOCT - NLO counterterms [Degrande]

FeynRules

MC program

FeynArts + 
N

!

➡ The UV and R2 terms are 
reimported into FeynRules and 
can be output in the UFO format.



!
!

!
!

!

• Step 1: Introduce renormalization constants for all fields and 
parameters, and determine renormalization constants for 
dependent parameters.	

!

NLOCT - NLO counterterms [Degrande]

Lren = OnShellRenormalization[ L ];
!

• Step 2: Output the model to FeynArts.	

!

WriteFeynArtsOutput[ Lren ];
!

• Step 3: Run FeynArts and NLOCT to compute the 
counterterms:	

!

WriteCT[ “model”, “generic_model”, options ];



!
!

!
!

!

• Step 4: Reimport the counterterms into FeynRules, and 
export them together with the tree-level vertices in the UFO 
format.	

!

NLOCT - NLO counterterms [Degrande]

Get[ “model.nlo” ] 
!
WriteUFO[ L, UVCounterterms -> UV$vertlist,   
                          R2Vertices -> R2$vertlist ]

Celine Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

FeynArts
Write the amplitudes

NLOCT.m
Compute the NLO vertices

model.mod
model.gen model.nlo



!
!

!
!

!

• Step 4: Reimport the counterterms into FeynRules, and 
export them together with the tree-level vertices in the UFO 
format.	

!

NLOCT - NLO counterterms [Degrande]

Get[ “model.nlo” ] 
!
WriteUFO[ L, UVCounterterms -> UV$vertlist,   
                          R2Vertices -> R2$vertlist ]

!

• The result is a UFO file that can immediately be used by 
MadGrapgh 5/aMC@NLO to produce events at NLO 
accuracy!	
!

• Validation: Reproduces correctly the counterterms and R2 
terms for the SM.	

➡ Validation of MSSM on-going.



!
!

!
!

Summary
!

• FeynRules 2.0 has been released 6 months ago.	

!

!

• New features:	

!

!

➡ Spin 3/2.	


➡ Automatic computation of two-body decays.

➡ Numeric diagonalisation of mass matrices. 	


ASperGe	


➡ Extraction of one-loop counterterms and R2 vertices for 
renomalisable models (from 2.1).	


NLO!

• Try it out!	

!http://feynrules.irmp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be/

