ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FeynRules

Claude Duhr

in collaboration with N. Christensen and B. Fuks

MC4BSM, 22/03/2012

Outline

- FeynRules in a nutshell.
- Recent developments:
 - ➡ Tree-level.
 - ➡ Tools for SUSY.
 - Automatized validation of models.
- Conclusion and further directions.

- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- Current public version: 1.6.x, available from http://feynrules.phys.ucl.ac.be
- The only requirements on the Lagrangian are:
 - All indices need to be contracted (Lorentz and gauge invariance)
 - ➡ Locality
 - Supported field types: spin 0, 1/2, 1, 2 & ghosts

• FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.

FeynRules

© C. Degrande

- Interfaces coming with current public version
 - ➡ CalcHep / CompHep
 - ➡ FeynArts / FormCalc
 - ➡ MadGraph
 - ➡ Sherpa
 - ➡ Whizard / Omega

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
- Interfaces coming with current public version:
 - ➡ CalcHep / CompHep
 - ➡ FeynArts / FormCalc
 - ➡ MadGraph
 - ➡ Sherpa
 - ➡ Whizard / Omega

© C. Degrande

• The input requested form the user is twofold.

• The Model File: Definitions of particles and parameters (e.g., a quark)

F[1] ==

{ClassName -> q, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass $-> \{MQ, 200\},$

Width

-> {WQ, 5} }

• The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} \, G^{\mu\nu}_a + i\bar{q} \, \gamma^\mu \, D_\mu q - M_q \, \bar{q} \, q$$

I = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I gbar.Ga[mu].del[g,mu] - MQ qbar.q

• Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

 Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

Vertex 1 Particle 1 : Vector, GParticle 2 : Dirac, q^{\dagger} Particle 3 : Dirac, qVertex:

 $i \operatorname{gs} \gamma^{\mu_1}{}_{s_2,s_3} \delta_{f_2,f_3} T^{a_1}{}_{i_2,i_3}$

• Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[L]

• This produces a set of files that can be directly used in the matrix element generator ("plug 'n' play").

interactions.dat

				Δ.
1	qqG	GG	QCD	
	GGG	MGVX1	QCD	
	GGGG	MGVX2	QCD QCD	
7				1

particles.dat

couplings.dat

GG(1) = -GGG(1) = -GMGVX1 = G $MGVX2 = G^2$

q	q~	F	S	ZERO	ZERO	Τ	d	1
G	G	V	С	ZERO	ZERO	0	G	21

Recent developments:

Tree-level

Higher-dimensional operators

- Even though FeynRules 1.4.x could already compute the Feynman rules for higher-dimensional operators, they were 'useless', in the sense that they could be exported to almost no Monte Carlo code.
- Reason: Most Monte Carlo codes have internal limitations for the vertices:
 - ➡ hardcoded library of color and/or Lorentz structures.
 - Upper limit on the number of particles enter in a vertex (usually 4).
- To overcome this problem, a joint effort between the FeynRules team and the MC developers was needed!

The Universal FeynRules Output

UFO = Universal FeynRules Output

- Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.
- The UFO is a self-contained Python code, and not tied to a specific matrix element generator.
- The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes.
- By design, the UFO does not make any assumptions on Lorentz/color structures, or the number of particles.
- GoSam and MadGraph 5 use the UFO as the default model format for BSM, Herwig++ will use it in the future.

The UFO & ALOHA

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

➡ See Olivier Mattelaer's talk.

The UFO & ALOHA

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

See Olivier Mattelaer's talk.

The UFO & ALOHA

```
This File is Automatically generated by ALOHA
С
             The process calculated in this file is:
С
           Gamma(3,2,1)
С
С
           SUBROUTINE FFV1_0(F1,F2,V3,COUP,VERTEX)
           IMPLICIT NONE
           DOUBLE COMPLEX F1(*)
           DOUBLE COMPLEX F2(*)
           DOUBLE COMPLEX V3(*)
           DOUBLE COMPLEX COUP
           DOUBLE COMPLEX VERTEX
           VERTEX = COUP*((F2(1)*((F1(3)*((0,-1)*V3(1)+(0,1)*V3(4))))))
         (F1(4)^{(0,1)}V3(2)+V3(3))))+(F2(2)^{(F1(3)}(0,1))))+(F2(2)^{(F1(3)}(0,1))))
          *V3(2)-V3(3)) + (F1(4)*((0,-1)*V3(1)+(0,-1)*V3(4)))) 
         +((F_{2}(3))+((F_{1}(1))+((0,-1))+V_{3}(1)+(0,-1))+(F_{1}(2))+(F_{1}(2))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F_{2}(3))+(F
         $ *( (0, -1)*V3(2)-V3(3))))+(F2(4)*( (F1(1)*( (0, -1)*V3(2)
         (+V3(3))+(F1(2)*((0,-1)*V3(1)+(0,1)*V3(4)))))))
```

END

Spin 3/2 fields

- The development version of FeynRules allows to implement models including spin 3/2 particles.
- Implementation basically ready:
 - ➡ Feynman rules can be computed.
 - Interfaces to CalcHep and MadGraph 5 (UFO) have been updated.
- Currently under testing against independent MadGraph 4 implementation.

[Hagiwara, Mawatari, Takaesu]

Recent developments:

Tools for SUSY

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathsf{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathsf{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

- 'Monte Carlo description':
 - Express superfields in terms of component fields.
 - Express everything in terms of 4-component fermions (beware of the Majoranas!).
 - ➡ Integrate out D and F terms.

• FeynRules 1.6.x allows to define superfields directly:

- CSF[1] == { ClassName -> ER, Chirality -> Left, Weyl -> ERw, Scalar -> ERs, QuantumNumbers -> {Y-> 1}, Indices -> {Index[GEN]} }
- The F term does not need to be defined, but is added automatically.
- Once the superfields (and their component fields) have been defined, FeynRules takes care of the rest.

• The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

$$\begin{aligned} \frac{\mathrm{d}\mu}{\mathrm{d}t} &= \mu \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right] \\ \frac{\mathrm{d}b}{\mathrm{d}t} &= b \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right] \\ &+ \mu \left[\frac{3g'^2 M_1}{40\pi^2} + \frac{3g_w^2 M_2}{8\pi^2} + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{T}^{\mathbf{d}} \right] + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{T}^{\mathbf{u}} \right] + \frac{1}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{T}^{\mathbf{e}} \right] \right] \end{aligned}$$

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

• In parallel, an interface to SuSpect 3 is being developed that allows to input the RGE's obtained by FeynRules into SuSpect to solve them numerically.

WriteSuSpectOutput[LSoft, SuperW]

Recent developments:

Automatized validation of models

Validation of new models

- FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecedented level!
- A given model can be output to more than one matrix element generator, and their results can be compared
 - Different conventions
 - Different gauges
 - ➡ Different ways of handling large cancellations.
- This procedure can easily be automatized!

Web validation

000		Claude Duhr's Models		0
(1) - C × (1) (1) (1) (1)	/127.0.0.1:8080/author		😭 🔻 🚷 👔 👔 ipad delete app wait	٩)
CP3 FYMA Webmail FeynRules MadGraph Hotmail	SPIRES LEO IPPP IP3 We	ebmail		
Claude Duhr's Models +				
	(Janda Duhula Mad	ala	
		laude Dunr's Mod	eis	
	Remove	Standard Model		
		New Model		
Fastio				

		127.0.0.1.9090/author/arvit/adal	() (etitch ufe		
		127.0.0.1:8080/author/newModel			
FYMA Webmail Feyn	Rules MadGraph Hotmail	SPIRES LEO IPPP IP3 Webmail		_	
New Model	+				
		New Model			
		Claude Duhr			
M	odel Files	Restriction Files	Parameter Files		
	Durchsuchen)	(Add) a restriction file	(Add) a parameter file		
Add an	other model file				
	Lagrangian :	Test Process : ,	\rightarrow ,		
		Exclude 4 Scalar Vertices			
		FeynRules Version			
		⊖Current ⊙Development			
		(Heles d Medel)			
		Upload Model			

000	Standard Model : Validation	\Box
() · C) 🗙 🍙 🐚 http://127.0.0.1:8080/author/newValidatik 😭 🔻 🚷 Google	۹)
CP3 FYMA Webmai	ail FeynRules MadGraph Hotmail SPIRES LEO IPPP IP3 Webmail	
Standard M	Model : Validation +	च

Standard Model Claude Duhr

Validation Name :

R. File	P. File	СН	FA	HW	MG4	MG5	SH	WO1	WO2
\odot		~~	✔?	v ?	~~	✔?	v ?	~~	~~
Massless.rst		~~	✔?	v ?	~~	✔?	✔?	~~	~~
O DiagonalCKM.rst		~~	v ?	v ?	~~	✔?	v ?	~~	~~

2→2 Processes

F	ield Type			Indices		Char	ges
Field Type	Require	Require Not	Index	Require	Require Not	Charge	Require Require Not
Scalar :	0 🛟	0 🛟	Colour :	0 🛟	0 🛟	LeptonNumber :	0 \$ 0 \$
Fermion :	0 \$	0 🛟	Gluon :	0 \$	0 🛟	Q :	0 \$ 0 \$
Vector :	0 ‡	0 🛟				GhostNumber :	0 \$ 0 \$
Spin 2 :	0 \$	0 ‡					
			G	enerate Processe	25		

]	Fest_ Standa Cla	Val_9 ard Mo ude Duhr	SM odel				
	СН	FA ✔ ?	HW ✔ ?	MG4	MG5 ✔ ?	SH	WO1	WO2		
 J	field Typ	pe	ire	I	ndices	Require	(Charges	Require	
Type	Requi	ire No	Γ Co	Index	Require	Not	Charge LeptonNurr	Requir	Not	
Fermion	2	0	Gh	ion	0	0	O	0	0	
Vector	2	0	On	uon	Ū	v	≺ GhostNumł	ber 0	0	
Spin 2	0	0							-	
 ✓ CalcH	EP (Feynn	nan gauge)		🗹 Mae	dGraph4	2	Whizard1 (Fey	ynman gauge)		
✓ CalcH	EP (unitary	y gauge)		🗆 Mad	Graph5	2	Whizard1 (uni	itary gauge)		
🖂 FeynAr	ts			🗆 Sher	pa	2	Whizard2 (Fey	ynman gauge)		
🗌 Herwig			Che	eck All	Che	eck None	Whizard2 (uni	itary gauge)		
				Stoc	k Model	s				
			SM_M	IG (MG	:u)		s	SM_CH (C	(H:f)	
	1	~	param	n card.da	t.part	6	1 🗸	SM.t	tgz	

000		Standard M	lodel : Test	_Val_SM						C	∋
	() (htt	p://127.0.0.1:8080/	/author/vali	dation?v 🏠	•	Google				Q)
CP3 FYMA Webmail FeynRules	MadGraph Hotn	nail SPIRES LEO	IPPP IP3 V	Vebmail							_
Standard Model : Test_Val_	sм +										-
ve , ve~ \rightarrow Z , Z 730.0	182.5 0.49452	0.49452 0.49384	0.494604	0.494622	0.494547	0.494668	0.49351	0.4945	•	0.17%	6
ve , ve~ \rightarrow W+ , W- 639.0	159.75 1.0603	1.0603 1.0604	1.06053	1.0604	1.06035	1.06073	1.0665	1.0603	•	0.51%	
ve, ve~ \rightarrow G, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve , vm~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	C
ve , vm~ $\rightarrow~Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	4
ve , vt~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	П
ve , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow Z , Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	H
ve , e+ \rightarrow A , W+ 319.0	79.75 2.2219	1.9846 1.9809	1.98496	1.98478	1.98454	1.98491	1.9756	1.9845	×	10.56%	
ve , e+ \rightarrow Z , W+ 684.0	171.0 0.71578	0.54663 0.54717	0.54657	0.546756	0.54641	0.546869	0.54864	0.54661	×	26.53%	
ve , m+ \rightarrow A , W+ 320.0	80.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , m+ \rightarrow Z , W+ 684.0	171.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve, tt+ \rightarrow A, W+ 326.0	81.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve, tt+ \rightarrow Z, W+ 691.0	172.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, A 200.0$	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, Z$ 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow Z, Z$ 730.0	182.5 0.49452	0.49452 0.49384	0.494505	0.494545	0.494559	0.494447	0.49351	0.4945	٠	0.17%	
vm , $vm \rightarrow W+$, $W-$ 639.0	159.75 1.0603	1.0603 1.0604	1.0604	1.06033	1.06027	1.06006	1.0665	1.0603	•	0.52%	
vm , $vm \rightarrow G$, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	×.	0%	
vm , $vt \rightarrow A$, A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
vm , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0%	Ų
vm , $vt \rightarrow Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	ľ.	0%	*
Um ut W/I W 630.0	150.75 0.0	00 00	0.0	0.0	0.0	0.0		0.0	~		f"i

1

A look into the future...

Towards NLO

- We are slowly getting to the point that we have automated tools for NLO computations:
 - ➡ Blackhat
 - ➡ GoSam
 - ➡ Helac-NLO
 - ➡ MadLoops
 - ➡ Rocket
- Most of these codes only do SM processes so far.
- Reason: Beyond LO, we do not only need tree-level
 Feynman rules, but also counterterms, etc.
- Future releases of FeynRules will allow to compute also these quantities!

Extraction of counterterms

• The (not public) development version of FeynRules already allows to extract counterterm Feynman rules.

 $\texttt{ExtractCounterterms[l[s,f],{aS,1}]}$ $\texttt{I}_{sf} \rightarrow \textit{I}_{sf} + \frac{\alpha_s}{4\pi} \left[(\delta Z_{II}^{L(1)})_{ff'} (P_L)_{ss'} + (\delta Z_{II}^{R(1)})_{ff'} (P_R)_{ss'} \right] \textit{I}_{s'f'}$

ExtractCounterterms[ydo,{{aS,2},{aEW,1}}] $\blacktriangleright y_d \rightarrow y_d + \frac{\alpha_s}{2\pi} \delta y_d^{(1,0)} + \frac{\alpha}{2\pi} \delta y_d^{(0,1)} + \frac{\alpha_s^2}{4\pi^2} \delta y_d^{(2,0)} + \frac{\alpha_s \alpha}{4\pi^2} \delta y_d^{(1,1)} + \frac{\alpha_s^2 \alpha}{8\pi^3} \delta y_d^{(2,1)}$

- At the moment, the values of the counterterms for the independent parameters and the fields must still be given by hand.
- Once this is done, GoSam and MadLoops will allow to generate events for any BSM model at NLO.

Conclusion

- The current version of FeynRules comes with a lot of new features:
 - ➡ Superfields
 - ➡ UFO & ALOHA
 - ➡ Support of color sextets.
 - ➡ Spin 3/2 (will be public soon)
- New development that are in the pipeline:
 - ➡ Susy RGE's
 - ➡ Interface to SuSpect
 - → Web validation platform.
- To download the package and/or model files, have a look at <u>http://feynrules.phys.ucl.ac.be</u>

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Mathematical neil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Model	Contact
Higgs effective theory	C. Duhr
4th generation model	C. Duhr
Standard model + :o Scalars	C. Duhr
Hidden Abelian Higgs Model	C. Duhr
Hill Model	P. de Aquino, C. Duhr
The general 2HDM	C. Duhr, M. Herquet
Triplet diquarks	J. Alwall, C. Duhr
Sextet diquarks	J. Alwall, C. Duhr
Monotops	B. Fuks
Type III See-Saw Model	C. Biggio, F. Bonnet
DY SM extension	N. Christensen

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Second sec
- Meil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Model	Contact
Mimimal Higgsless Model (3-Site Model)	N. Christensen
Minimal UED	P. de Aquino
Large Extra Dimensions	P. de Aquino
Compact HEIDI	C. Speckner

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser (

- Image: Second sec
- Mathematical neil@hep.wisc.edu
- Image: Second sec

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories
(4)

Model	Contact
Mimimal Higgsless Model (3-Site Model)	N. Christensen
Chiral perturbation theory	C. Degrande
Strongly Interacting Light Higgs	C. Degrande
Technicolor	M. Järvinen, T. Hapola, E. Del Nobile, C. Pica