
FeynRules

Claude Duhr

in collaboration with N. Christensen and B. Fuks

MC4BSM, 22/03/2012

Outline

• FeynRules in a nutshell.

• Recent developments:

➡ Tree-level.
➡ Tools for SUSY.
➡ Automatized validation of models.

• Conclusion and further directions.

FeynRules
in a nutshell

FeynRules in a nutshell

• FeynRules is a Mathematica package that allows to derive
Feynman rules from a Lagrangian.

• Current public version: 1.6.x, available from

• The only requirements on the Lagrangian are:

➡ All indices need to be contracted (Lorentz and gauge
invariance)

➡ Locality

➡ Supported field types: spin 0, 1/2, 1, 2 & ghosts

http://feynrules.phys.ucl.ac.be

http://feynrules.phys.ucl.ac.be
http://feynrules.phys.ucl.ac.be

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to
export the Feynman rules to various matrix element
generators.

• Interfaces coming with current public version

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules in a nutshell

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to
export the Feynman rules to various matrix element
generators.

• Interfaces coming with current public version:

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules in a nutshell

• The input requested form the user is twofold.

F[1] ==
 {ClassName -> q,
 SelfConjugate -> False,
 Indices -> {Index[Colour]},
 Mass -> {MQ, 200},
 Width -> {WQ, 5} }

L =
-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
+ I qbar.Ga[mu].del[q,mu]
- MQ qbar.q

• The Model File:
Definitions of particles and
parameters (e.g., a quark)

• The Lagrangian:

L = �1
4
Ga

µ� Gµ�
a + iq̄ �µ Dµq �Mq q̄ q

FeynRules in a nutshell

• Once this information has been provided, FeynRules can
be used to compute the Feynman rules for the model:

FeynmanRules[L]

FeynRules in a nutshell

• Once this information has been provided, FeynRules can
be used to compute the Feynman rules for the model:

FeynmanRules[L]

FeynRules in a nutshell

• Equivalently, we can export the Feynman rules to a
matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[L]

• This produces a set of files that can be directly used in the
matrix element generator (“plug ‘n’ play”).

q q G GG QCD
 G G G MGVX1 QCD
G G G G MGVX2 QCD QCD

q q~ F S ZERO ZERO T d 1
G G V C ZERO ZERO O G 21

GG(1) = -G
GG(1) = -G
MGVX1 = G
MGVX2 = G^2

interactions.dat

particles.dat

couplings.dat

FeynRules in a nutshell

Lagrangian

FeynArts

Translation Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

MadGraph CalcHep Sherpa

FeynRules

Whizard Golem Herwig

Recent developments:

Tree-level

Higher-dimensional operators
• Even though FeynRules 1.4.x could already compute the

Feynman rules for higher-dimensional operators, they were
‘useless’, in the sense that they could be exported to almost
no Monte Carlo code.

• Reason: Most Monte Carlo codes have internal limitations
for the vertices:
➡ hardcoded library of color and/or Lorentz structures.

➡ Upper limit on the number of particles enter in a vertex
(usually 4).

• To overcome this problem, a joint effort between the
FeynRules team and the MC developers was needed!

The Universal FeynRules Output
UFO = Universal FeynRules Output

• Idea: Create Python modules that can be linked to other
codes and contain all the information on a given model.

• The UFO is a self-contained Python code, and not tied to
a specific matrix element generator.

• The content of the FR model files, together with the
vertices, is translated into a library of Python objects, that
can be linked to other codes.

• By design, the UFO does not make any assumptions on
Lorentz/color structures, or the number of particles.

• GoSam and MadGraph 5 use the UFO as the default
model format for BSM, Herwig++ will use it in the future.

The UFO & ALOHA
• The development of the UFO goes hand in

hand with the development of ALOHA.
• Idea: ALOHA uses the information

contained in the UFO to create the
(previously-hardcoded) library of Lorentz
structures for MadGraph 5 on the fly.
➡ See Olivier Mattelaer’s talk.

The UFO & ALOHA
• The development of the UFO goes hand in

hand with the development of ALOHA.
• Idea: ALOHA uses the information

contained in the UFO to create the
(previously-hardcoded) library of Lorentz
structures for MadGraph 5 on the fly.

FFV1 = Lorentz(name = 'FFV1',
 spins = [2, 2, 3],
 structure = 'Gamma(3,2,1)')

➡ See Olivier Mattelaer’s talk.

The UFO & ALOHA

C This File is Automatically generated by ALOHA
C The process calculated in this file is:
C Gamma(3,2,1)
C
 SUBROUTINE FFV1_0(F1,F2,V3,COUP,VERTEX)
 IMPLICIT NONE
 DOUBLE COMPLEX F1(*)
 DOUBLE COMPLEX F2(*)
 DOUBLE COMPLEX V3(*)
 DOUBLE COMPLEX COUP
 DOUBLE COMPLEX VERTEX

 VERTEX = COUP*((F2(1)*((F1(3)*((0, -1)*V3(1)+(0, 1)*V3(4)))
 $ +(F1(4)*((0, 1)*V3(2)+V3(3)))))+((F2(2)*((F1(3)*((0, 1)
 $ *V3(2)-V3(3)))+(F1(4)*((0, -1)*V3(1)+(0, -1)*V3(4)))))
 $ +((F2(3)*((F1(1)*((0, -1)*V3(1)+(0, -1)*V3(4)))+(F1(2)
 $ *((0, -1)*V3(2)-V3(3)))))+(F2(4)*((F1(1)*((0, -1)*V3(2)
 $ +V3(3)))+(F1(2)*((0, -1)*V3(1)+(0, 1)*V3(4))))))))
 END

Spin 3/2 fields
• The development version of FeynRules allows to

implement models including spin 3/2 particles.

➡ Feynman rules can be computed.

➡ Interfaces to CalcHep and MadGraph 5 (UFO) have
been updated.

• Implementation basically ready:

• Currently under testing against independent MadGraph 4
implementation.

[Hagiwara, Mawatari, Takaesu]

Recent developments:

Tools for SUSY

Superfields

• FeynRules 1.4.x required the Lagrangian to be written in
component fields.

Superfields

• FeynRules 1.4.x required the Lagrangian to be written in
component fields.•

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = �†e�2gV �|
�2�̄2

+
1

16g2�R
Tr(W �W�)|

�2
+

1

16g2�R
Tr(W̄�̇W̄ �̇)|

�̄2

+ W (�)|
�2

+ W ⇥(�†)|
�̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +
SF2Components[GetSuperFS[] + SuperPot][[2,5]] +
SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +
LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• Very easy ‘theory description’

From Lagrangians to Experiments?

Dienstag, 15. November 11

Superfields

• FeynRules 1.4.x required the Lagrangian to be written in
component fields.•

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = �†e�2gV �|
�2�̄2

+
1

16g2�R
Tr(W �W�)|

�2
+

1

16g2�R
Tr(W̄�̇W̄ �̇)|

�̄2

+ W (�)|
�2

+ W ⇥(�†)|
�̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +
SF2Components[GetSuperFS[] + SuperPot][[2,5]] +
SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +
LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• Very easy ‘theory description’

From Lagrangians to Experiments?

Dienstag, 15. November 11

• ‘Monte Carlo description’:

➡ Express superfields in terms of component fields.

➡ Express everything in terms of 4-component fermions
(beware of the Majoranas!).

➡ Integrate out D and F terms.

Superfields

• FeynRules 1.6.x allows to define superfields directly:

CSF[1] == { ClassName -> ER,
 Chirality -> Left,
 Weyl -> ERw,
 Scalar -> ERs,
 QuantumNumbers -> {Y-> 1},
 Indices -> {Index[GEN]}
 }

• The F term does not need to be defined, but is added
automatically.

• Once the superfields (and their component fields) have
been defined, FeynRules takes care of the rest.

SUSY RGE’s
• The development version of FeynRules allows to extract

the one-loop renormalization group equations for generic
SUSY models.

SUSY RGE’s
• The development version of FeynRules allows to extract

the one-loop renormalization group equations for generic
SUSY models.

• Starting from the superspace action, the RGE’s are simply
obtained via

RGE[LSoft, SuperW]

SUSY RGE’s
• The development version of FeynRules allows to extract

the one-loop renormalization group equations for generic
SUSY models.

• Starting from the superspace action, the RGE’s are simply
obtained via

RGE[LSoft, SuperW]

3. EXTRACTING RENORMALIZATIONGROUP EQUATIONSWITH FEYNRULES
In order to be able to extract the renormalization group equations of a given supersymmetric theory in
an automated way with FEYNRULES, the latter must be implemented using the superspace module [6].
However, as shown in the previous section, the derivation of the coefficients of the beta-functions re-
quires the computation of the multiplicity of each superfield. In order to allow FEYNRULES to perform
this task efficiently, both the superpotential and the soft supersymmetry breaking Lagrangian must be
implemented using the function SUDot for SU(N)-invariant products of N superfields. Hence, taking
the example of the MSSM, the µ-term of the superpotential would be implemented as

MUH SUDot[HU[aa] , HD[aa], aa]

where the SUDot function receives as arguments the sequence of the contracted superfields with all
indices explicit. The contracted SU(N) indices are set to a single given value for all superfields, the
latter being repeated as the last argument of the SUDot function. In our example, it is labeled aa. As
another example, the up-type squark trilinear soft supersymmetry breaking interaction terms would be
implemented as

-tu[ff1,ff2] URs[ff1,cc1] SUDot[QLs[aa,ff2,cc1] , hus[aa], aa]

We refer to Ref. [6] for the definition of the superfields, fields and parameters. After the model file has
been loaded, the renormalization group equations can be extracted via the command

RGE[LSoft, SuperW]

where LSoft and SuperW denote the variables in which the soft supersymmetry breaking Lagrangian
have been stored. The RGE command computes the renormalization group equations according to Eq.
(4), using the beta-functions provided in Eqs. (6), (7), (9) and (10).

We have validated our implementation against the well-known results from the literature both in
the context of the MSSM [12] and the Next-to-Minimal Supersymmetric Standard Model [17]. We give,
as examples, two renormalization group equations given by FEYNRULES in the framework of the general
MSSM. For notations, we refer to Ref. [6]. The evolution of the µ-parameter of the superpotential and
the one of the corresponding b-parameter in the soft supersymmetry breaking Lagrangian are driven by

dµ

dt
= µ

[

−
3g′2

80π2
−

3g2
w

16π2
+

3

16π2
Tr

[

yd†
yd

]

+
3

16π2
Tr

[

yu†yu
]

+
1

16π2
Tr

[

ye†ye
]

]

,

db

dt
= b

[

−
3g′2

80π2
−

3g2
w

16π2
+

3

16π2
Tr

[

yd†
yd

]

+
3

16π2
Tr

[

yu†yu
]

+
1

16π2
Tr

[

ye†ye
]

]

+ µ

[

3g′2M1

40π2
+

3g2
wM2

8π2
+

3

8π2
Tr

[

yd†
Td

]

+
3

8π2
Tr

[

yu†Tu
]

+
1

8π2
Tr

[

ye†Te
]

]

.

(11)

4. AN INTERFACE TO THE SUSPECT 3 SUPERSYMMETRIC SPECTRUMGENERATOR
In collaboration with the SUSPECT 3 team, A. Djouadi, J.L. Kneur, G. Moultaka, M. Ughetto and D.
Zerwas, we have designed an interface exporting the renormalization group equations derived by FEYN-
RULES into a format which can be used by the spectrum calculator SUSPECT 3 presented in Section ??.
Within MATHEMATICA, this interface is called as any other FEYNRULES interface,

WriteSuSpectOutput[LSoft, SuperW]

where again, the variables LSoft and SuperW contain the soft supersymmetry breaking Lagrangian
and the superpotential, respectively. When this command is issued, FEYNRULES internally calls the

SUSY RGE’s
• The development version of FeynRules allows to extract

the one-loop renormalization group equations for generic
SUSY models.

• Starting from the superspace action, the RGE’s are simply
obtained via

RGE[LSoft, SuperW]

• In parallel, an interface to SuSpect 3 is being developed that
allows to input the RGE’s obtained by FeynRules into
SuSpect to solve them numerically.

WriteSuSpectOutput[LSoft, SuperW]

Automatized validation
of models

Recent developments:

Validation of new models

• FeynRules does not only provide the power to develop
and validate new models, but also to validate them to an
unprecedented level!

• A given model can be output to more than one matrix
element generator, and their results can be compared

➡ Different conventions
➡ Different gauges
➡ Different ways of handling large cancellations.

• This procedure can easily be automatized!

Web validation

A look into the future...

Towards NLO

• We are slowly getting to the point that we have automated
tools for NLO computations:

• Most of these codes only do SM processes so far.

➡ Blackhat
➡ GoSam
➡ Helac-NLO
➡ MadLoops
➡ Rocket

• Reason: Beyond LO, we do not only need tree-level
Feynman rules, but also counterterms, etc.

• Future releases of FeynRules will allow to compute also
these quantities!

Extraction of counterterms

• The (not public) development version of FeynRules
already allows to extract counterterm Feynman rules.

• At the moment, the values of the counterterms for the
independent parameters and the fields must still be given
by hand.

• Once this is done, GoSam and MadLoops will allow to
generate events for any BSM model at NLO.

Introduction. Example. Status of FeynRules. Perspectives. Conclusion.

Automatic expansion of the renormalization constants.

Expansion of the renormalization constants (works with full Lagrangians).

* The type of the interactions in the loops can be specified.

* The loop-level can be specified.

ExtractCounterterms[l[s,f],{aS,1}]

⌘lsf ! lsf + ↵s
4⇡

h
(�ZL(1)

ll)↵ 0 (PL)ss0 + (�ZR(1)
ll)↵ 0 (PR)ss0

i
ls0f 0

ExtractCounterterms[ydo,{{aS,2},{aEW,1}}]

⌘yd ! yd + ↵s
2⇡ �y (1,0)

d + ↵
2⇡ �y (0,1)

d +
↵2

s
4⇡2 �y (2,0)

d + ↵s↵
4⇡2 �y (1,1)

d +
↵2

s ↵

8⇡3 �y (2,1)
d

Treatment of the internal parameters.

* Automatic computation of the relations among renormalization constants.

* Only the ren. cnsts of the external parameters will have to be computed.

gs and ↵s at first order in QCD.

gs = 2
p

⇡↵s) �g (1)
s =

p
↵s

2
p

⇡
�↵(1)

s

FeynRules - Status and plans. Benjamin Fuks - MadGraph 2011 - 20.09.2011 - 22

Conclusion

• To download the package and/or model files, have a look at

➡ Superfields
➡ UFO & ALOHA
➡ Support of color sextets.
➡ Spin 3/2 (will be public soon)

• The current version of FeynRules comes with a lot of new
features:

http://feynrules.phys.ucl.ac.be

• New development that are in the pipeline:
➡ Susy RGE’s
➡ Interface to SuSpect
➡ Web validation platform.

http://feynrules.phys.ucl.ac.be
http://feynrules.phys.ucl.ac.be

Backup

Model database

Model database

Model database

Model database

Model database

