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The giant news of the last year is that we 
have discovered the Higgs boson!

Is it the SM Higgs?



Good reason to expect new physics 
beyond the Standard Model (SM).
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What was the problem?



Problem 1:

Implementing a model was 
often tedious and error 
prone.







Problem 2:

Each matrix element 
generator has its strengths.  
What if you need more than 
one?  In the past you had to 
start over.
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Problem 3:

Implementations often did 
not transfer well to 
experimentalists.
It often required modifying the code of 
the matrix element generator.
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FeynRules 2.0
Coming soon!

Beyond 1.0 (CPC 180, 1614):

• 2-Component Weyl Notation (CPC 182, 2404)

• Spin-3/2 (arXiv:1308.1668)

• Superspace Notation (CPC 182, 2404)

• Automatic Mass Diagonalization (EPJC 73, 2325)

• “.gen” files in FA interface 

• Universal FeynRules Output (UFO) (CPC 183, 1201)

•  Whizard Interface (EPJC 72, 1990)

• Automatic 1→2 widths (in preparation)

• Speed & Efficiency Improvements

• Web Validation (arXiv:1003.1643)
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Model Info

2.1 Model Information

The user has the possibility to include general information about the model
implementation into the model file via the variables M$ModelName and M$In-
formation. While the first of these variables is a string giving the name of the
model, the variable M$Information acts as an electronic signature of the model
file that allows to store, e.g., the names and addresses of the authors of the
model file, references to the papers used for the implementation, the version
number of the model file, etc. This information is stored as a Mathematica

replacement list as shown in the following example

M$ModelName = "my_new_model";

M$Information = {
Authors -> {"Mr. X", "Ms. Y"},
Institutions -> {"UC Louvain"},
Emails -> {"X@uclouvain.be", "Y@uclouvain.be},
Date -> "01.03.2013",
References -> {"reference 1", "reference 2"},
URLs -> {"http://feynrules.irmp.ucl.ac.be"},
Version -> "1.0"

};

A summary and complete set of options available for M$Information can be
found in Table 1.

The model information will be printed on the screen whenever the model is
loaded into Mathematica. In addition, the contents of M$Information can
be retrieved by issuing the command ModelInformation[] in a Mathemat-

ica session, after the model has been loaded.

2.2 Index Definitions

In general the Lagrangian describing a model is a polynomial in the fields (and
their derivatives) as well as in the parameters of the model. Very often, these
quantities carry indices specifying their members and/or how the different
quantities transform under symmetry operations. For example, the gauge field
Ga

µ of an unbroken gauge group SU(N) carries two different types of indices:

- a Lorentz index µ ranging from 0 to 3;
- an adjoint gauge index a ranging from 1 to N2 − 1.

10
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Indices

It is therefore crucial to define at the beginning of each model file the types of
indices that appear in the model, together with the range of values each type
of index may take.

A field ψi1i2...(x) carrying indices i1, i2, . . . is represented inside FeynRules

by an expression of the form psi[index1, index2, . . . ]. Each indexi denotes
an object of the form Index[name, i], and represents an index of type name
taking the value i. In this expression name is a symbol and value can be both a
symbol or an integer. In general the name can be chosen freely by the user, but
we emphasize that there are predefined names for the index types describing
four-vectors (Lorentz), four-component spinors (Spin) and two-component
left and right-handed Weyl spinors (Spin1 and Spin2).

For FeynRules to run properly, the different types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];
IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this type
appears contracted inside a monomial, then it should expanded, i.e., the
monomial with the contracted pair of indices should be replaced by the
explicit sum over the indices. For instance, the SU(2)L indices in the
Standard Model or in the Minimal Supersymmetric Standard Model must
always be expanded in order to get the Feynman rules in terms of the
physical states of the theory. Otherwise, wrong results could be obtained
when employing matrix element generators. We refer to Section 4 for
more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [14]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
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Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] −→ G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the different types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules

to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.
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input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, αs as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-
pending on one or several of the other internal and/or external parameters of
the model. As a result, αs (aS) and gs (gs) could be implemented as in the
example

aS == {
TeX -> Subscript[\[Alpha],s],
ParameterType -> External,
InteractionOrder -> {QCD, 2},
Value -> 0.1184,
BlockName -> SMINPUTS,
OrderBlock -> 3,
Description -> "Strong coupling constant at the Z pole"

}

gs == {
TeX -> Subscript[g,s],
ParameterType -> Internal,
ComplexParameter -> False,
InteractionOrder -> {QCD, 1},
Value -> Sqrt[4 Pi aS],
ParameterName -> G,
Description -> "Strong coupling constant at the Z pole"
}

The external or internal nature of a parameter can be specified by setting
the attribute ParameterType to the value External or Internal. Another
difference between external and internal parameters lies in the value taken by
the attribute Value of the parameter class. For external parameters, it refers
to a real number 1 while for internal parameters, it contains a formula. This
formula is given in standard Mathematica syntax and provides the way an
internal parameter is connected to the other model parameters. It is impor-
tant to note that only previously declared parameters can be employed when
implementing the formula. Internal parameters can be either real or complex
variables, which is specified by setting the attribute ComplexParameter to the
value True or False (default).

1 Complex external parameters have to be split into their real and imaginary parts
and declared individually.
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Feynman rule calculation

Instead of providing the value of a parameter (a real number for an external
parameter or a formula for an internal parameter) through the attribute Value,
the user has the option to use the attribute Definitions. This option of
the parameter class takes as argument a Mathematica replacement rule.
Returning to our example above, we could replace the Value attribute of gs
by

Definitions -> { gs -> Sqrt[4 Pi aS] }

The difference between these two choices appears at a later stage and con-
cerns the derivation of the interaction vertices by FeynRules. A parameter
provided with a definition is removed from the vertices and replaced by its
definition, whilst otherwise, the associated symbol is kept.

The list of all the attributes of the parameter class for scalar quantities is given
in Table 3 and Table 4. With the exception of the TeX attribute allowing for
the TEX-form of a parameter and the Description attribute which gives, as
a string, the physical meaning of a parameter, the options non-described so
far are related to the interfaces to Feynman diagram generators and discussed
in greater detail in Section 6.

2.3.2 Tensorial parameters

The second category of parameters are tensorial parameters, i.e., parameters
carrying indices. The index structure can be specified through the attribute
Indices of the parameter class as in the following example,

Indices -> {Index[Scalar], Index[Generation]}

The parameter under consideration carries two indices, one index of type
Scalar and one index of type Generation. In many cases tensorial parameters
correspond to unitary, Hermitian or orthogonal matrices. These properties can
be implemented in the FeynRules model description by turning the values of
the attributes Unitary, Hermitian or Orthogonal to True, the default value
being False.

In contrast to scalar parameters, the attribute Value (Definitions) is now a
list of values (replacement rules) for all possible numerical value of the indices.
Moreover, tensorial parameters are by default complex quantities, i.e., the
default value for the attribute ComplexParameter is True.

For example, the Cabibbo-Kobayashi-Maskawa (CKM) matrix could be de-
fined as follows,

CKM == {

16
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Table 4: Additional attributes of the parameter class

related to Feynman diagram calculators

ParameterName Specifies what to replace the symbol
by before writing out the Feynman dia-
gram calculator model files. By default,
it is taken equal to the symbol rep-
resenting the parameter. See Section
6.1.1 for more details.

InteractionOrder Specifies the order of the parameter
according to a specific interaction. It
refers to a pair with the interaction
name, followed by the order, or a list
of such pairs. This option has no de-
fault value. See Section 6.1.7 for more
details.

Table 4

ParameterType -> Internal,
Indices -> {Index[Generation], Index[Generation]},
Unitary -> True,
ComplexParameter -> True,
Definitions -> {
CKM[i_,3] :> 0 /; i!=3,
CKM[3,i_] :> 0 /; i!=3,
CKM[3,3] -> 1 },

Value -> {
CKM[1,1] -> Cos[cabi],
CKM[1,2] -> Sin[cabi],
CKM[2,1] -> -Sin[cabi],
CKM[2,2] -> Cos[cabi] },

Description -> "CKM-Matrix"
}

In these declarations, cabi stands for the Cabibbo angle, assumed to be de-
clared previously in the model file. We have also simultaneously employed the
attributes Value and Definitions so that vanishing elements of the CKM
matrix are removed at the time of the extraction of the interaction vertices by
FeynRules. In this way, zero vertices are removed from the output.

FeynRules assumes that all indices appearing inside a Lagrangian are con-
tracted, i.e., all indices must come in pairs. However, it may sometimes be
convenient to be able to break this rule. For example, in the case of a diagonal

18



Parameters

Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] −→ G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the different types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules

to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.
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label and the right-hand side is a list of Mathematica replacement rules.
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and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
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The external or internal nature of a parameter can be specified by setting
the attribute ParameterType to the value External or Internal. Another
difference between external and internal parameters lies in the value taken by
the attribute Value of the parameter class. For external parameters, it refers
to a real number 1 while for internal parameters, it contains a formula. This
formula is given in standard Mathematica syntax and provides the way an
internal parameter is connected to the other model parameters. It is impor-
tant to note that only previously declared parameters can be employed when
implementing the formula. Internal parameters can be either real or complex
variables, which is specified by setting the attribute ComplexParameter to the
value True or False (default).

1 Complex external parameters have to be split into their real and imaginary parts
and declared individually.

15



Parameters

Instead of providing the value of a parameter (a real number for an external
parameter or a formula for an internal parameter) through the attribute Value,
the user has the option to use the attribute Definitions. This option of
the parameter class takes as argument a Mathematica replacement rule.
Returning to our example above, we could replace the Value attribute of gs
by

Definitions -> { gs -> Sqrt[4 Pi aS] }

The difference between these two choices appears at a later stage and con-
cerns the derivation of the interaction vertices by FeynRules. A parameter
provided with a definition is removed from the vertices and replaced by its
definition, whilst otherwise, the associated symbol is kept.

The list of all the attributes of the parameter class for scalar quantities is given
in Table 3 and Table 4. With the exception of the TeX attribute allowing for
the TEX-form of a parameter and the Description attribute which gives, as
a string, the physical meaning of a parameter, the options non-described so
far are related to the interfaces to Feynman diagram generators and discussed
in greater detail in Section 6.

2.3.2 Tensorial parameters

The second category of parameters are tensorial parameters, i.e., parameters
carrying indices. The index structure can be specified through the attribute
Indices of the parameter class as in the following example,

Indices -> {Index[Scalar], Index[Generation]}

The parameter under consideration carries two indices, one index of type
Scalar and one index of type Generation. In many cases tensorial parameters
correspond to unitary, Hermitian or orthogonal matrices. These properties can
be implemented in the FeynRules model description by turning the values of
the attributes Unitary, Hermitian or Orthogonal to True, the default value
being False.

In contrast to scalar parameters, the attribute Value (Definitions) is now a
list of values (replacement rules) for all possible numerical value of the indices.
Moreover, tensorial parameters are by default complex quantities, i.e., the
default value for the attribute ComplexParameter is True.

For example, the Cabibbo-Kobayashi-Maskawa (CKM) matrix could be de-
fined as follows,

CKM == {
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Table 4: Additional attributes of the parameter class

related to Feynman diagram calculators

ParameterName Specifies what to replace the symbol
by before writing out the Feynman dia-
gram calculator model files. By default,
it is taken equal to the symbol rep-
resenting the parameter. See Section
6.1.1 for more details.

InteractionOrder Specifies the order of the parameter
according to a specific interaction. It
refers to a pair with the interaction
name, followed by the order, or a list
of such pairs. This option has no de-
fault value. See Section 6.1.7 for more
details.

Table 4

ParameterType -> Internal,
Indices -> {Index[Generation], Index[Generation]},
Unitary -> True,
ComplexParameter -> True,
Definitions -> {
CKM[i_,3] :> 0 /; i!=3,
CKM[3,i_] :> 0 /; i!=3,
CKM[3,3] -> 1 },

Value -> {
CKM[1,1] -> Cos[cabi],
CKM[1,2] -> Sin[cabi],
CKM[2,1] -> -Sin[cabi],
CKM[2,2] -> Cos[cabi] },

Description -> "CKM-Matrix"
}

In these declarations, cabi stands for the Cabibbo angle, assumed to be de-
clared previously in the model file. We have also simultaneously employed the
attributes Value and Definitions so that vanishing elements of the CKM
matrix are removed at the time of the extraction of the interaction vertices by
FeynRules. In this way, zero vertices are removed from the output.

FeynRules assumes that all indices appearing inside a Lagrangian are con-
tracted, i.e., all indices must come in pairs. However, it may sometimes be
convenient to be able to break this rule. For example, in the case of a diagonal
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Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}

where the symbols sw and cw stand for the sine and cosine of the weak mixing
angle and are declared alongside the other model parametrers. The replace-
ment is purely symbolic and can be performed at the Mathematica level,
even if the numerical values of the mixing parameters are unknown.

We conclude this section by giving some options specific to certain kinds of
fields. For ghost particles, there is an option Ghost which tells FeynRules

the name of the gauge boson the ghost field is connected to. There is a similar
option Goldstone in the case of scalar fields.

Majorana fermions are by definition eigenstates of the charge conjugation op-
erator, and the associated eigenvalue must be a phase, since charge conjugation
is unitary. If λ denotes a Majorana fermion, then

λc = C λ̄T = eiφ λ . (2.5)

The information on the phase φ can be provided by the option MajoranaPhase
of the particle class,

MajoranaPhase -> Phi

where Phi stands for the phase of the Majorana fermion λ. This phase can be
further retrieved in the Mathematica session by typing

MajoranaPhase[lambda]

where the symbol lambda represents the Majorana fermion λ. The default
value for the Majorana phase is 0.

Weyl fermion classes have an additional attribute that allows to specify their
chirality. For example, the sets of rules

W[1] == {
ClassName -> chi,
Chirality -> Left,
SelfConjugate -> False
},

W[2] == {
ClassName -> xibar,
Chirality -> Right,
SelfConjugate -> False
}

define two Weyl fermions χ (chi) and ξ̄ (xibar), the first one being left-
handed and the second one right-handed. While Weyl fermions are in general
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main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/∂qf + gsq̄fγ
µTaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling contant, Ta the fun-
damental representation matrices of SU(3) and Gµ stands for the gluon field.
The notation of Eq. (2.4) avoids having to write out explicitly a Lagrangian
term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName
option, which is at the same time the symbol by which the particle class
is denoted in the Lagrangian.

(2) The option SelfConjugate specifies whether the particle has an antipar-
ticle or not. The possible values for this option are True or False.

In addition, the particle class comes with various other options, as shown in
Table 6. The set of all options can be divided into two groups:

- options which are directly used by FeynRules in the Mathematica

session when computing the Feynman rules. Examples include the indices
carried by a field, its mass, etc.;

- options which are mostly ignored by FeynRules, but describe informa-
tion required by some Feynman diagram calculators. These options will
be passed on to the Feynman diagram calculators via the corresponding
FeynRules interfaces (see Section 6).

In the following we only describe the options directly used by FeynRules

itself. The interface specific options are discussed in Section 6.

Besides the name of the particle class, the user may also provide names for
the individual members of the class. For example, if uq denotes the class of all
up-type quarks with members {u,c,t}, then this class and its members can
be defined in the model file as

ClassName -> uq,
ClassMembers -> {u, c, t}

If a field is not self-conjugate, an instance of the particle class associated with
the antiparticle is created automatically by appending ‘bar’ to the name of the
particle. For example, after the model file has been loaded into FeynRules,
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be defined in the model file as

ClassName -> uq,
ClassMembers -> {u, c, t}

If a field is not self-conjugate, an instance of the particle class associated with
the antiparticle is created automatically by appending ‘bar’ to the name of the
particle. For example, after the model file has been loaded into FeynRules,
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damental representation matrices of SU(3) and Gµ stands for the gluon field.
The notation of Eq. (2.4) avoids having to write out explicitly a Lagrangian
term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName
option, which is at the same time the symbol by which the particle class
is denoted in the Lagrangian.

(2) The option SelfConjugate specifies whether the particle has an antipar-
ticle or not. The possible values for this option are True or False.

In addition, the particle class comes with various other options, as shown in
Table 6. The set of all options can be divided into two groups:

- options which are directly used by FeynRules in the Mathematica

session when computing the Feynman rules. Examples include the indices
carried by a field, its mass, etc.;

- options which are mostly ignored by FeynRules, but describe informa-
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be passed on to the Feynman diagram calculators via the corresponding
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the individual members of the class. For example, if uq denotes the class of all
up-type quarks with members {u,c,t}, then this class and its members can
be defined in the model file as
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If a field is not self-conjugate, an instance of the particle class associated with
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particle. For example, after the model file has been loaded into FeynRules,
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the symbols uqbar, as well as {ubar, cbar, tbar}, are available and can
be used to construct a Lagrangian. For bosonic fields, the field representing
the antiparticle corresponds to the Hermitian conjugate of the field, while for
fermonic fields, the symbol psibar (psi representing any fermionic field ψ)
corresponds to the quantity ψ̄ = ψ†γ0.

Fields transform in general as tensors under some symmetry groups, and they
usually carry indices indicating the transformation laws. Just like for param-
eters, the indices carried by a field can be specified via the Indices option,
e.g.,

Indices -> {Index[ Colour ]}
Indices -> {Index[ Colour ], Index[ SU2D ]}

Indices labeling the transformation laws of the fields under the Poincaré sym-
metry (spin and/or Lorentz indices) are automatically inferred by FeynRules

and do not need to be specified. In addition to indices labeling how a field
transforms under symmetries, each field may have additional indices such as
flavor indices. One of these can be distinguished as the flavor index of the class
and labels its members. It is declared in the model file via the FlavorIndex op-
tion. For example, the up-type quark class uq previously introduced is usually
defined carrying two indices supplementing the spin index (automatically han-
dled by FeynRules), one of type Colour ranging from 1 to 3 and specifying
the color of the quark, and another index of type Flavour ranging from 1 to
3. The latter is specified as the flavor index of the class (via the FlavourIndex
option) so that it labels the members of the class,

Indices -> { Index[ Colour ], Index[ Flavour ] },
FlavorIndex -> Flavour

Quantum fields are not always only characterized by the tensor indices they
carry, but also by their charges under the discrete and / or abelian groups of
the model. FeynRules allows the user to define an arbitrary number of U(1)
charges carried by a field, as, e.g., in

QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}
QuantumNumbers -> {Q -> 2/3}

Next, the user can specify the symbol and the numerical value for the masses
and the decay widths of the different members of a particle class using the
Mass and Width options 3 . The argument of Mass is a list with masses for each
of the class members, as in

3 In the following we only discuss the masses of the particles. Widths however work
in exactly the same way.
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3 In the following we only discuss the masses of the particles. Widths however work
in exactly the same way.
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Mass -> {MW}
Mass -> {MU, MC, MT}
Mass -> {Mu, MU, MC, MT}

where in the last example, the symbol Mu is given for the entire class, while
the symbols MU, MC and MT are given to the members. The symbol for the
generic mass (Mu in this case) is by default a tensorial parameter carrying a
single index corresponding to the FlavorIndex of the class. In addition, the
AllowSummation property is internally set to True. The user can not only
specify the symbols used for the masses but also their numerical value as in

Mass -> {MW, Internal}
Mass -> {MZ, 91.188}
Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

If no numerical value is given, the default value 1 is assumed. In the first
example, MW is given the value Internal, which instructs FeynRules that
the mass is defined as an internal parameter in M$Parameters. This is the
only case in which a user needs to define a mass in the parameter list. All
other masses given in the definition of the particles should not be included in
this list.

While Lagrangians can often be written in a compact form in the gauge eigen-
basis, the user usually wants to obtain Feynman rules in the mass eigenbasis.
More generally, if the mass matrix appearing in the Lagrangian is not diag-
onal, one has to perform a field rotation that diagonalizes the mass matrix,
i.e., the user has to replace certain fields by a linear combination of new fields
such that in this new basis the mass matrix is diagonal. For fields in the gauge
eigenbasis, the Mass and Width options do not have to be set, but these options
are replaced by the option

Unphysical -> True

The diagonalization of the gauge eigenbasis can be performed automatically
by means of the ASperGe package which is interfaced to FeynRules. We
refer to Section 4.8 and Section 6.2 for more details. The values of these rota-
tion matrices can also be expressed analytically (if available) or as numerical
values, relying on other tools to perform the diagonalization. The rotation to
the mass eigenbasis in FeynRules are, in this case, implemented by using
the Definitions option of the particle classes, which consists of a set of re-
placement rules that are applied to the Lagrangian before the computation
of the Feynman rules. As an example, the relation between the hypercharge
gauge boson (B) and the photon (A) and Z-boson (Z) could be included in a
model description as
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where in the last example, the symbol Mu is given for the entire class, while
the symbols MU, MC and MT are given to the members. The symbol for the
generic mass (Mu in this case) is by default a tensorial parameter carrying a
single index corresponding to the FlavorIndex of the class. In addition, the
AllowSummation property is internally set to True. The user can not only
specify the symbols used for the masses but also their numerical value as in

Mass -> {MW, Internal}
Mass -> {MZ, 91.188}
Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

If no numerical value is given, the default value 1 is assumed. In the first
example, MW is given the value Internal, which instructs FeynRules that
the mass is defined as an internal parameter in M$Parameters. This is the
only case in which a user needs to define a mass in the parameter list. All
other masses given in the definition of the particles should not be included in
this list.

While Lagrangians can often be written in a compact form in the gauge eigen-
basis, the user usually wants to obtain Feynman rules in the mass eigenbasis.
More generally, if the mass matrix appearing in the Lagrangian is not diag-
onal, one has to perform a field rotation that diagonalizes the mass matrix,
i.e., the user has to replace certain fields by a linear combination of new fields
such that in this new basis the mass matrix is diagonal. For fields in the gauge
eigenbasis, the Mass and Width options do not have to be set, but these options
are replaced by the option

Unphysical -> True

The diagonalization of the gauge eigenbasis can be performed automatically
by means of the ASperGe package which is interfaced to FeynRules. We
refer to Section 4.8 and Section 6.2 for more details. The values of these rota-
tion matrices can also be expressed analytically (if available) or as numerical
values, relying on other tools to perform the diagonalization. The rotation to
the mass eigenbasis in FeynRules are, in this case, implemented by using
the Definitions option of the particle classes, which consists of a set of re-
placement rules that are applied to the Lagrangian before the computation
of the Feynman rules. As an example, the relation between the hypercharge
gauge boson (B) and the photon (A) and Z-boson (Z) could be included in a
model description as
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Unphysical -> True

The diagonalization of the gauge eigenbasis can be performed automatically
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the Definitions option of the particle classes, which consists of a set of re-
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only case in which a user needs to define a mass in the parameter list. All
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While Lagrangians can often be written in a compact form in the gauge eigen-
basis, the user usually wants to obtain Feynman rules in the mass eigenbasis.
More generally, if the mass matrix appearing in the Lagrangian is not diag-
onal, one has to perform a field rotation that diagonalizes the mass matrix,
i.e., the user has to replace certain fields by a linear combination of new fields
such that in this new basis the mass matrix is diagonal. For fields in the gauge
eigenbasis, the Mass and Width options do not have to be set, but these options
are replaced by the option

Unphysical -> True

The diagonalization of the gauge eigenbasis can be performed automatically
by means of the ASperGe package which is interfaced to FeynRules. We
refer to Section 4.8 and Section 6.2 for more details. The values of these rota-
tion matrices can also be expressed analytically (if available) or as numerical
values, relying on other tools to perform the diagonalization. The rotation to
the mass eigenbasis in FeynRules are, in this case, implemented by using
the Definitions option of the particle classes, which consists of a set of re-
placement rules that are applied to the Lagrangian before the computation
of the Feynman rules. As an example, the relation between the hypercharge
gauge boson (B) and the photon (A) and Z-boson (Z) could be included in a
model description as
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Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]}

where the symbols sw and cw stand for the sine and cosine of the weak mixing
angle and are declared alongside the other model parametrers. The replace-
ment is purely symbolic and can be performed at the Mathematica level,
even if the numerical values of the mixing parameters are unknown.

We conclude this section by giving some options specific to certain kinds of
fields. For ghost particles, there is an option Ghost which tells FeynRules

the name of the gauge boson the ghost field is connected to. There is a similar
option Goldstone in the case of scalar fields.

Majorana fermions are by definition eigenstates of the charge conjugation op-
erator, and the associated eigenvalue must be a phase, since charge conjugation
is unitary. If λ denotes a Majorana fermion, then

λc = C λ̄T = eiφ λ . (2.5)

The information on the phase φ can be provided by the option MajoranaPhase
of the particle class,

MajoranaPhase -> Phi

where Phi stands for the phase of the Majorana fermion λ. This phase can be
further retrieved in the Mathematica session by typing

MajoranaPhase[lambda]

where the symbol lambda represents the Majorana fermion λ. The default
value for the Majorana phase is 0.

Weyl fermion classes have an additional attribute that allows to specify their
chirality. For example, the sets of rules

W[1] == {
ClassName -> chi,
Chirality -> Left,
SelfConjugate -> False
},

W[2] == {
ClassName -> xibar,
Chirality -> Right,
SelfConjugate -> False
}

define two Weyl fermions χ (chi) and ξ̄ (xibar), the first one being left-
handed and the second one right-handed. While Weyl fermions are in general
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ment is purely symbolic and can be performed at the Mathematica level,
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the name of the gauge boson the ghost field is connected to. There is a similar
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Majorana fermions are by definition eigenstates of the charge conjugation op-
erator, and the associated eigenvalue must be a phase, since charge conjugation
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where Phi stands for the phase of the Majorana fermion λ. This phase can be
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where the symbol lambda represents the Majorana fermion λ. The default
value for the Majorana phase is 0.
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not supported by any Feynman diagram calculator, it is often simpler to write
down the Lagrangian in terms of two-component fermions and to transform
them into four-component spinors in a second step. For this reason, it is pos-
sible to add the option WeylComponents to an instance of the particle class
F associated with four-component Dirac and Majorana fermions. This option
instructs FeynRules how to perform the mapping of the the two-component
to the four-component spinors. For example, the Dirac fermion ψ = (χ, ξ̄)T

could be defined in FeynRules as

F[1] == {
ClassName -> psi,
SelfConjugate -> False,
WeylComponents -> {chi, xibar}
}

where the Weyl fermions chi and xibar are defined above. In the case of
a four-component Majorana fermion only the left handed component needs
to be specified. In Section 4, we will see how we can instruct FeynRules

to transform a Lagrangian written in terms of two-component spinors to its
counterpart expressed in terms of four-component fermions.

2.5 Implementing superfields in FeynRules

Supersymmetric theories can usually be written in a very compact form when
using superfields, i.e., the irreducible representations of supergroups. Feynman
diagram calculators usually require a model to be implemented in terms of
the component fields, i.e., the standard fields of particle physics. FeynRules

allows the user to implement the model in terms of superfields, and the code
then takes care of deriving internally the component field Lagrangian [6].

Most of the phenomenologically relevant supersymmetric theories can be en-
tirely built in terms of chiral and vector superfields 4 . Superfields are declared
in FeynRules in a way similar to ordinary fields,

M$Superfields = {
superfield1[1] == { options1 },
superfield2[2] == { options2 },

...
}

The elements in the left hand side specify the type of superfield (similar to the
way ordinary particle classes are defined by their spin). Currently, FeynRules

4 Vector superfields must be constructed in the Wess-Zumino gauge.
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Yukawa matrix y, the associated Lagrangian term

Lyuk = H ψ̄f yff ′ ψf ′ , (2.1)

where ψ denotes a generic fermionic field and H a generic scalar field, can be
written in a more compact form as

Lyuk = ỹf H ψ̄f ψf . (2.2)

In the second expression, the Yukawa matrix has been replaced by its diago-
nal form yff ′ = ỹfδff ′ , rendering the summation convention explicitly violated
since the index f appears three times. In order to allow for such violations
in FeynRules, the attribute AllowSummation must be set to the value True
when implementing the Yukawa coupling ỹ. Consequently, this allows Feyn-
Rules to sum the single index carried by the vectorial parameter y along with
the two other indices fulfilling the summation conventions (in our example,
the indices of the fermions). We stress that this option is only available for
parameters carrying one single index.

In the case of contracted Weyl spin indices, the upper and lower position of
the indices also plays an important role, since

χαχ′
α = −χαχ

′α , (2.3)

where χ and χ′ are two generic left-handed Weyl fermions. This issue is de-
scribed in details in Section 4.6.

The complete list of specific attributes related to tensorial parameters can be
found in Table 5, while all the attributes of Table 3 and Table 4 can also be
employed.

2.4 Particle Classes

Particle classes can be instantiated in a similar way to parameter classes.
The main difference is that, following the original FeynArts syntax [14], the
particle classes are labelled according to the spins of the particles rather than
to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}
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not supported by any Feynman diagram calculator, it is often simpler to write
down the Lagrangian in terms of two-component fermions and to transform
them into four-component spinors in a second step. For this reason, it is pos-
sible to add the option WeylComponents to an instance of the particle class
F associated with four-component Dirac and Majorana fermions. This option
instructs FeynRules how to perform the mapping of the the two-component
to the four-component spinors. For example, the Dirac fermion ψ = (χ, ξ̄)T

could be defined in FeynRules as

F[1] == {
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SelfConjugate -> False,
WeylComponents -> {chi, xibar}
}

where the Weyl fermions chi and xibar are defined above. In the case of
a four-component Majorana fermion only the left handed component needs
to be specified. In Section 4, we will see how we can instruct FeynRules

to transform a Lagrangian written in terms of two-component spinors to its
counterpart expressed in terms of four-component fermions.

2.5 Implementing superfields in FeynRules

Supersymmetric theories can usually be written in a very compact form when
using superfields, i.e., the irreducible representations of supergroups. Feynman
diagram calculators usually require a model to be implemented in terms of
the component fields, i.e., the standard fields of particle physics. FeynRules

allows the user to implement the model in terms of superfields, and the code
then takes care of deriving internally the component field Lagrangian [6].

Most of the phenomenologically relevant supersymmetric theories can be en-
tirely built in terms of chiral and vector superfields 4 . Superfields are declared
in FeynRules in a way similar to ordinary fields,

M$Superfields = {
superfield1[1] == { options1 },
superfield2[2] == { options2 },

...
}

The elements in the left hand side specify the type of superfield (similar to the
way ordinary particle classes are defined by their spin). Currently, FeynRules

4 Vector superfields must be constructed in the Wess-Zumino gauge.
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Particle Class Options (continued)

PropagatorArrow Whether to put an arrow on the propa-
gator (True) or not (False). False by
default. See Section 6.1.8.

PropagatorType This specifies how to draw the prop-
agator line for this field. The de-
fault value is inferred from the class.
The allowed choices are ScalarDash

(straight dashed line), Sine (sinusoidal
line), Straight (straight solid line),
GhostDash (dashed line), and Curly

(curly gluonic line). See Section 6.1.8.

FullName A string, specifying the full name
of the particle, or a list containing
the names for each class member.
By default FullName is the same as
ParticleName.

MixingPartners FeynArts option. See Ref. [14].

InsertOnly FeynArts option. See Ref. [14].

MatrixTraceFactor FeynArts option. See Ref. [14].

Table 8

supports two types of superfields:

- CSF: chiral superfields;
- VSF: vector superfields in the Wess-Zumino gauge.

To illustrate the main features of the superfield declaration, we discuss the
implementation of a left-handed chiral superfield Φ, a right-handed chiral su-
perfield Ξ and a non-abelian vector superfield Vw.z. in the Wess-Zumino gauge,

CSF[1] == {
ClassName -> PHI,
Chirality -> Left,
Weyl -> psi,
Scalar -> z,
Auxiliary -> FF

}
CSF[2] == {

ClassName -> XI,
Chirality -> Right,
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Weyl -> psibar,
Scalar -> zbar

}
VSF[1] == {

ClassName -> VWZ,
GaugeBoson -> V,
Gaugino -> lambda,
Indices -> {Index[SU2W]}
}

This declares two chiral superfields labeled by the tags CSF[1] and CSF[2]
and one vector superfield labeled by the tag VSF[1]. For all three superfields,
the symbols used when constructing Lagrangian or performing computations
in superspace are specified through the attribute ClassName. Moreover, as for
Weyl fermions, the chirality of a chiral superfield can be assigned by setting
the attribute Chirality to Left or Right.

It is mandatory to match each superfield to its component fields. The fermionic
and scalar components of a chiral superfield are hence referred to as the values
of the attributes Weyl and Scalar, respectively, whilst the vector and gaugino
components of a vector superfield are stored in the attributes GaugeBoson
and Gaugino. Each of these options must point to the symbol associated to
the relevant fields. In contrast, the declaration of the auxiliary (F - and D-
) fields is optional. If not specified by the user, FeynRules takes care of it
internally (as for the XI and VWZ superfields above). If the user however desires
to match the auxiliary component of a superfield to an existing unphysical
scalar field, he/she has to provide a value for the attribute Auxiliary (as for
the PHI superfield above). All the components (psi, z, FF, V and lambda in
the examples above) are assumed to be properly declared at the time of the
field declaration as described in Section 2.4.

In addition, the attributes Indices and QuantumNumbers are also available
for the superfield class. We refer to Section 2.4 for more details. The complete
list of the attributes of the superfield class is indicated in Table 9.

2.6 Gauge Groups

2.6.1 Gauge group declaration

The structure of the interactions of a model is in general dictated by gauge
symmetries. Fields are chosen to transform in specific representations of the
gauge group, and the invariance of the action under gauge transformation then
governs the form of the interactions. In this section, we focus on the declaration
of the gauge groups in FeynRules. Doing so allows the user to use several
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and Gaugino. Each of these options must point to the symbol associated to
the relevant fields. In contrast, the declaration of the auxiliary (F - and D-
) fields is optional. If not specified by the user, FeynRules takes care of it
internally (as for the XI and VWZ superfields above). If the user however desires
to match the auxiliary component of a superfield to an existing unphysical
scalar field, he/she has to provide a value for the attribute Auxiliary (as for
the PHI superfield above). All the components (psi, z, FF, V and lambda in
the examples above) are assumed to be properly declared at the time of the
field declaration as described in Section 2.4.

In addition, the attributes Indices and QuantumNumbers are also available
for the superfield class. We refer to Section 2.4 for more details. The complete
list of the attributes of the superfield class is indicated in Table 9.

2.6 Gauge Groups

2.6.1 Gauge group declaration

The structure of the interactions of a model is in general dictated by gauge
symmetries. Fields are chosen to transform in specific representations of the
gauge group, and the invariance of the action under gauge transformation then
governs the form of the interactions. In this section, we focus on the declaration
of the gauge groups in FeynRules. Doing so allows the user to use several
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Each element of this list consists of an equality defining one specific direct
factor of the full symmetry group. The left-hand sides of these equalities are
labels associated to the different subgroups (Group1, Group2, etc.) while the
right-hand sides contain sets of replacement rules defining the properties of
the subgroups (options1, options2, etc.). For example, let us consider the
implementation of the SM gauge group in FeynRules,

M$GaugeGroups = {
U1Y == {

Abelian -> True,
CouplingConstant -> gp,
GaugeBoson -> B,
Charge -> Y

},
SU2L == {

Abelian -> False,
CouplingConstant -> gw,
GaugeBoson -> Wi,
StructureConstant -> ep,
Representations -> {{Ta,SU2D}},
Definitions -> {Ta[a__]->PauliSigma[a]/2, ep->Eps}
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In the case of abelian groups, the user has the possibility to define the associ-
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symbol related to this operator. This allows FeynRules to check for charge
conservation at the Lagrangian or at the Feynman rules level, assuming that
the charges of the different (super)fields have been properly declared via the
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Non-abelian groups have specific attributes to define the generators and struc-
ture constants. For example, the symbols of the symmetric and antisymmetric
structure constants (whose indices are those of the adjoint representation)
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Table 10: Gauge group options (continued)

Representations Refers to a list of two-component lists
containing all the representations de-
fined for this gauge group. The first
component of these lists consists of the
symbol by which the generators of the
representation are denoted, while the
second component is the name of the
index it acts on.

Definitions Contains a list of replacement rules
that should be applied by FeynRules

before calculating vertices, expressing
representation matrices and/or struc-
ture constants in terms of the model
parameters and Mathematica stan-
dard objects.

Table 11

The list of all the options described above is summarized in Table 10.

2.6.2 FeynRules functions related to gauge groups

The declaration of a gauge group enables FeynRules to automatically con-
struct field strength tensors, superfield strength tensors and covariant deriva-
tives associated with this group, so that they can be further used when building
Lagrangians. In the case of abelian gauge groups, the field strength tensor is
invoked by issuing

FS[A, mu, nu]

where A is the corresponding gauge boson and mu and nu denote Lorentz
indices. Its supersymmetric counterparts can be called by the command

SuperfieldStrengthL[ V, sp ]
SuperfieldStrengthR[ V, spdot ]

respectively. In these commands, V stands for the vector superfield associated
with the gauge group and sp and spdot are left-handed and right-handed spin
indices. These three functions can be easily generalized to the non-abelian case,

FS[ A, mu, nu, a ]
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SuperfieldStrengthL[ V, sp , a ]
SuperfieldStrengthR[ V, spdot, a ]

where a stands for an adjoint gauge index. Following the FeynRules con-
ventions, these quantities are defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfa

bcA
b
µA

c
ν ,

Wα = −
1

4
D̄·D̄e2gV Dαe

−2gV ,

W α̇ = −
1

4
D·De−2gV D̄α̇e

2gV ,

(2.7)

where g and f denote the coupling constant and the structure constants of
the gauge group and D and D̄ are the superderivatives defined below, in
Section 4.6. The abelian limit is trivially derived from these expressions. We
emphasize that the spinorial superfields Wα and W α̇ are not hard-coded in
FeynRules and are recalculated each time. However, they are evaluated only
when an expansion in terms of the component fields of the vector superfield V
is performed.

From the information provided at the time of the declaration of the gauge
group, FeynRules can also define, in an automated way, gauge covariant
derivatives. These can be accessed through the symbol DC[phi, mu], where
phi is the field that it acts on and mu the Lorentz index. In our conventions,
the covariant derivative reads

Dµφ = ∂µφ− igAa
µTaφ (2.8)

where Ta stands for the representation matrices associated to the represen-
tation of the gauge group in which the field φ lies. The sign convention in
Eq. (2.8) is consistent with the sign convention in Eq. (2.7).

All the functions presented in this section are summarized in Table 12.

2.7 Model restrictions

In phenomenological studies, it can sometimes be useful to consider restricted
models which are obtained from a parent model by putting some of the ex-
ternal parameters to zero. As an example, one might be interested in the
Standard Model with a diagonal CKM matrix. While it is of course always
possible to make the CKM matrix numerically diagonal, it is desirable to re-
move the interaction terms proportional to the off-diagonal terms alltogether
in order to avoid a proliferation of vanishing diagrams in Feynman diagram
calculations. This can be achieved by the use of the so-called restriction files
in FeynRules. Restriction files are text files (with the extension .rst) that
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Restrictions

Table 12: Field strength tensor and covariant derivative

FS[A, mu, nu] Constructs the field strength tensor
Fµν connected with the U(1) gauge bo-
son A.

FS[A, mu, nu, a] Constructs the field strength tensor
F a
µν connected with the non abelian

gauge boson A.

SuperfieldStrengthL[V, sp]

Calculates the left-handed superfield
strength tensor associated with the
abelian vector superfield V.

SuperfieldStrengthL[V, sp, a]

Calculates the left-handed superfield
strength tensor associated with the
non-abelian vector superfield V.

SuperfieldStrengthR[V, spdot]

Calculates the right-handed superfield
strength tensor associated with the
abelian vector superfield V.

SuperfieldStrengthR[V, spdot, a]

Calculates the right-handed superfield
strength tensor associated with the
non-abelian vector superfield V.

DC[phi, mu] The covariant derivative acting on the
field phi with a Lorentz index mu.

Table 12

contain a list, named M$Restrictions, of replacement rules to be applied to
the Lagrangian before the evaluation of the Feynman rules. As an example, a
possible restriction file to restrict the CKM matrix to a diagonal matrix reads

M$Restrictions = {
CKM[i_,i_] -> 1,
CKM[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)

}

Applying these rules to the Lagrangian (or to the vertices) obviously removes
all the flavor-changing interactions among quark fields.
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This maps a label given as a string ("l1", "l2", etc.) to a set ofMathematica

replacement rules defining mixing properties (options1, options2, etc.). To
illustrate the available options, we take the example of the W1 and W2 gauge
fields of SU(2)L that mix, in the Standard Model, to the W±-bosons

W+
µ =

W 1
µ − iW 2

µ√
2

and W−
µ =

W 1
µ + iW 2

µ√
2

. (2.9)

As this mixing relation does not depend on any model parameter and is fully
numerical, it can be declared in a very compact form,

Mix["l1"] == {
MassBasis -> {W, Wbar},
GaugeBasis -> {Wi[1], Wi[2]},
Value -> {{1/Sqrt[2],-I/Sqrt[2]},{1/Sqrt[2],I/Sqrt[2]}}

}

The previous mixing declaration should be understood as the matrix product

MassBasis = Value . GaugeBasis

Information on the gauge and mass bases is provided through the attributes
GaugeBasis and MassBasis and the mixing matrix is given in a numerical
form as the argument of the attribute Value. In the case the user already
knows analytical formulas for the element of the mixing matrix, the syntax
above cannot be employed. This matrix has instead to be declared as a stan-
dard model parameter (see Section 2.3) and refered to via the MixingMatrix
attribute of the mixing class (see below). As the gauge basis is unphysical, it
has to only contain fields declared as such, while the mass basis can in contrast
contain either physical fields, unphysical fields or both. When unphysical fields
are present, particle mixings are effectively implemented in several steps. We
refer to Ref. [7] for examples. In order to implement the bases in a more com-
pact form, spin and Lorentz indices can be omitted. Moreover, if some indices
are irrelevant, i.e., if they are identical for all the involved fields, underscores
can be employed, as in the example

Mix["l2"] == {
MassBasis -> {sdL[1,_], sdL[2,_], sdL[3,_]},
GaugeBasis -> {QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...
}

Underscores reflect that the last index of each field has the same type and is
not affected by the mixing (such as color indices for instance).
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GaugeBasis -> {Wi[1], Wi[2]},
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}

The previous mixing declaration should be understood as the matrix product

MassBasis = Value . GaugeBasis

Information on the gauge and mass bases is provided through the attributes
GaugeBasis and MassBasis and the mixing matrix is given in a numerical
form as the argument of the attribute Value. In the case the user already
knows analytical formulas for the element of the mixing matrix, the syntax
above cannot be employed. This matrix has instead to be declared as a stan-
dard model parameter (see Section 2.3) and refered to via the MixingMatrix
attribute of the mixing class (see below). As the gauge basis is unphysical, it
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}

Underscores reflect that the last index of each field has the same type and is
not affected by the mixing (such as color indices for instance).
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GaugeBasis -> {QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...
}

Underscores reflect that the last index of each field has the same type and is
not affected by the mixing (such as color indices for instance).
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W 1
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µ√
2
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2

. (2.9)

As this mixing relation does not depend on any model parameter and is fully
numerical, it can be declared in a very compact form,

Mix["l1"] == {
MassBasis -> {W, Wbar},
GaugeBasis -> {Wi[1], Wi[2]},
Value -> {{1/Sqrt[2],-I/Sqrt[2]},{1/Sqrt[2],I/Sqrt[2]}}

}

The previous mixing declaration should be understood as the matrix product

MassBasis = Value . GaugeBasis

Information on the gauge and mass bases is provided through the attributes
GaugeBasis and MassBasis and the mixing matrix is given in a numerical
form as the argument of the attribute Value. In the case the user already
knows analytical formulas for the element of the mixing matrix, the syntax
above cannot be employed. This matrix has instead to be declared as a stan-
dard model parameter (see Section 2.3) and refered to via the MixingMatrix
attribute of the mixing class (see below). As the gauge basis is unphysical, it
has to only contain fields declared as such, while the mass basis can in contrast
contain either physical fields, unphysical fields or both. When unphysical fields
are present, particle mixings are effectively implemented in several steps. We
refer to Ref. [7] for examples. In order to implement the bases in a more com-
pact form, spin and Lorentz indices can be omitted. Moreover, if some indices
are irrelevant, i.e., if they are identical for all the involved fields, underscores
can be employed, as in the example

Mix["l2"] == {
MassBasis -> {sdL[1,_], sdL[2,_], sdL[3,_]},
GaugeBasis -> {QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...
}

Underscores reflect that the last index of each field has the same type and is
not affected by the mixing (such as color indices for instance).

38



FR
 M

od
el

 F
ile{•Model Info

•Indices
•Parameters
•Fields
•Superfields
•Gauge Groups
•Restrictions
•Mixings
•Lagrangian {•Mass Basis

• Physical or Unphysical 
Basis

•Gauge Basis
• Unphysical Basis

•Mixing Matrix
• Defines Transformation 

Matrix

Most of the time, the mixing matrix is not known numerically before imple-
menting the model, which leads to a slightly different syntax at the level of
the implementation. The declaration

Mix["l3"] == {
MassBasis -> {A, Z},
GaugeBasis -> {B, Wi[3]},
MixingMatrix -> UW,
BlockName -> WEAKMIX

}

describes the rotation of the third weak boson W3 and the hypercharge gauge
boson B to the photon and Z-boson states,







Aµ

Zµ





 = Uw







Bµ

W 3
µ





 , (2.10)

where we have introduced the mixing matrix Uw, the associated symbol being
UW. The latter is referred to by means of the attribute MixingMatrix of the
mixing class. The matrix UW does not have to be declared separately as this
task is internally handled by FeynRules. Note that it is assumed that UW
is a complex matrix with two indices, and according to our conventions we
declare separately its real and imaginary parts. In other words, FeynRules

creates two real external tensorial parameters, the real and imaginary parts
of the matrix, and one internal complex tensorial parameter for the matrix UW
itself. The user can also specify the name of a Les Houches block [15,16] which
will contain the numerical values associated with the elements of the matrix
(see Section 6.1.4). If left unspecified, it is internally handled by the mass
diagonalization module of FeynRules. In the example above, we impose the
real part of the elements of Uw to be stored in a block named WEAKMIX and
their imaginary part in a block IMWEAKMIX.

It must be noted that mixing matrices declared through a mixing declaration
cannot be employed explicitly in Lagrangians (such as for the CKM matrix
in the Minimal Supersymmetric Standard Model). If the user wants to use
the mixing matrices explicitly in the Lagrangian, he/she must declare the ma-
trices following the standard syntax (see Section 2.3), numerical values being
provided from the beginning. CD: I do not understand this paragraph.NC:
Better? Did I understand it correctly? BF: If the mixing matrices appear in
the Lagrangian, they cannot be extracted numerically since this leads to an
infinite loop. Neil’s rephrasing is fine with me.

Finally, it is sometimes more practical to implement a mixing relation under
the form
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Mixingsright-handed fermions. As for neutral scalar mixing, underscores can be used
for irrelevant list elements. This second option is more commonly employed
in the existing models although it may seem more complicated. We therefore
give an explicit example:

Mix["dq"] == {
MassBasis -> {dq[1, _], dq[2, _], dq[3, _]},
GaugeBasis -> {

{QL[2, 1, _], QL[2, 2, _], QL[2, 3, _]},
{dR[1, _], dR[2, _], dR[3, _]}

},
MixingMatrix -> {CKM, _},
Value -> {_, {{1,0,0}, {0,1,0}, {0,0,1}} },
Inverse -> {True, _}

}

In this example, we describe the implementation of the mixing relations as-
sociated with the down-type quarks in the Standard Model. The mass eigen-
states are denoted by the three fields dq standing for the three generations of
down-type quarks. The color indices being irrelevant, they are replaced by un-
derscores everywhere. The left-handed gauge eigenstates are the second piece
of the SU(2)L doublets of quarks (the QL fields) whereas the right-handed
gauge eigenstates are the SU(2)R singlets (the dR quarks). Finally, the last
three arguments of the instance of the mixing class above indicate that the
left-handed fields mix trough Eq. (2.11) (the first elements of the attributes
MixingMatrix and Inverse are set accordingly) and that the right-handed
fields do not have to be rotated (the argument Value contains an idendity
matrix as its second element).

Lagrangian mass terms for charged Weyl fermions are generically written as

(

ψ−
1 , . . . ,ψ

−
n

)

M















χ+
1

...

χ+
n















, (2.13)

whereM stands for the mass matrix and ψ−
i and χ+

i are Weyl fermions with op-
posite electric charges. The diagonalization of the matrix M proceeds through
two unitary rotations U and V ,















ψ̃−
1

...

ψ̃−
n















= U















ψ−
1

...

ψ−
n















and















χ̃+
1

...

χ̃+
n















= V















χ+
1

...

χ+
n















, (2.14)
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which introduces two mass bases. Therefore, all the attributes MassBasis,
GaugeBasis, Value, MixingMatrix, and BlockName now take lists as argu-
ments (with underscores included where relevant). It is mandatory to consis-
tently order these lists.

Finally, in realistic models, the ground state of the theory is non-trivial and
fields must be shifted by their vacuum expectation value (vev). The case of
electrically neutral scalar fields can be treated in a specific way and included
easily in particle mixing handling. Information on the vevs is included in a list
of two-component elements denoted by M$vevs. The first of these elements
refers to an unphysical field while the second one to the symbol associated
with its vev, as in

M$vevs = { { phi1, vev1 }, { phi2, vev2 } }

the vacuum expectation values vev1 and vev2 being declared as any other
model parameter (see Section 2.3). In this way, the information on the vevs
of the different fields is consistently taken into account when FeynRules

internally rewrites the neutral scalar fields in terms of their real degrees of
freedom. For the sake of the example, we associate with the vev declaration
above the following definition of the mixing of the φ1 and φ2 gauge eigenstates
to the real scalar (pseudoscalar) mass eigenstates h1 and h2 (a1 and a2),

Mix["phi"] == {
MassBasis -> { {h1, h2}, {a1, a2} },
GaugeBasis -> { phi1, phi2 },
MixingMatrix -> { US, UP }

}

This teaches FeynRules to internally understand the mixing pattern of the
φi fields as







φ1

φ2





 =
1√
2











v1

v2





+ U †
s







h1

h2





+ iU †
p







a1

a2









 , (2.15)

the scalar and pseudoscalar mixing matrices Us and Up being represented by
the symbols US and UP, respectively.

3 The Lagrangian

An essential ingredient of a model implementation is the Lagrangian of the
model. The Lagrangian can be built out of the fields of the models, augmented
by some internal FeynRules andMathematica functions. All the fields can
be accessed by their ClassName, for example psi[a,b,...] where a,b,... are
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• Dummy Indices can be 
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anticommuting objects

the indices of the field starting with its Lorentz indices for vector and tensor
bosons, or its spin index for fermions followed by a Lorentz index if a spin-3/2
fermion 5 . The remaining indices are the ones defined in the particle definition
through the Indices option, given in the same order. The different flavors can
also be accessed using the names given in ClassMembers. They have the same
indices as the full flavor mutiplet, with the flavor index omitted. We recall
that, if a field is not self-conjugate, FeynRules automatically creates the
symbol for the conjugate field by adding ‘bar’ at the end of the particle name,
i.e., the antiparticle associated to psi is denoted by psibar. For a fermion
ψ, the conjugate field is ψ̄ ≡ ψ†γ0. Alternatively, the conjugate field can be
obtained by issuing anti[psi].

Fields (and their derivatives) can be combined into polynomials. By conven-
tion, all the indices appearing inside a monomial in FeynRules must be
contracted, i.e., all indices must appear pairwise 6 . Furthermore, all indices
must be spelled out explicitly. For anticommuting fields (fermions and ghosts),
the Mathematica Dot function has to be used, in order to keep the relative
order among them fixed. For example, the interaction between the gluon and
all the down quarks can be written as

gs Ga[mu, s, r] T[a, i, j] dqbar[s, f, i].dq[r, f, j] G[mu, a]

There is however one case where indices do not need to be spelled out com-
pletely but can be omitted. If in a fermion bilinear, all the indices of the
rightmost fermion are connected to all the indices of the leftmost fermion
(perhaps with intermediate matrices), then these indices can be suppressed
and FeynRules takes care of restoring them internally, such as in

dqbar.Ga[mu].T[a].dq
→ Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j] .

In case of doubt, the user should always spell out all indices explicitly.

The Dot product is mandatory for anticommuting fields or parameters. It
should be noted that Mathematica does not keep the Dot product between
the components of vectors or matrices after computing their product explicitly

{ubar, dbar}.{u, d} = u ubar + d dbar

The appropriate treatment requires, therefore, use of the Inner function for
each Dot, e.g.

5 Spin-3/2 fields always have their spin index before their Lorentz index.
6 With the exception of single-index parameters for which the AllowSummation

option is set to True (see Section 2.3).
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Tensor
• FS[G, mu, nu, a]

•Covariant Derivative
• DC[psi, mu]

Inner[Dot, {ubar, dbar}, {u, d}] = ubar.u + dbar.d

or for more than one multiplication,

Inner[Dot, Inner[Dot, {ubar, dbar} ,
{{a11, a12} , {a21, a22}}] , {u, d}].

As already discussed in Section 2.6, gauge invariant derivatives can be con-
veniently defined via the functions DC[phi,mu] and FS[G, mu, nu, a]. The
first argument of both functions is the relevant field, mu and nu are Lorentz
indices and a represents an index of the adjoint representation of the associ-
ated gauge group. The gauge fields and generators that appear in covariant
derivatives of a particular field are fixed by its indices and by the definition of
the gauge group. For example, the QCD lagrangian for massless down quarks,

LQCD ≡ −
1

4
Gµν

a Ga
µν + id̄ /Dd, (3.16)

is written as

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I dqbar.Ga[mu].DC[dq, mu]

All the predefined FeynRules functions useful for the building of the La-
grangian are given in Table 14.

Finally, it is often convenient to write a Lagrangian in terms of two-component
fermions and to let FeynRules perform the transformations to four-component
fermions. We note that this operation is mandatory for most Feynman diagram
calculators, which in general only work with four-component spinors. More
precisely, if χ and ξ̄ are left and right-handed Weyl spinors, and ψ = (χ, ξ̄)T
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These transformation rules are implemented in FeynRules via the WeylTo-
Dirac function, which takes as an argument a Lagrangian written in terms of
two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.
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Table 16: Checking the consistency of a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

CheckHermiticity[ L, options ]

Checks if the Lagrangian L is Hermitian.

CheckDiagonalKineticTerms[ L, options ]

Checks if all the kinetic terms in the Lagrangian L are
diagonal.

CheckDiagonalMassTerms[ L, options ]

Checks if all the mass terms in the Lagrangian L are
diagonal.

CheckDiagonalQuadraticTerms[ L, options ]

Checks if all the quadratic terms in the Lagrangian L are
diagonal.

CheckKineticTermNormalisation[ L, options ]

Checks if all the kinetic terms in the Lagrangian L are
correctly diagonalized and normalized.

CheckMassSpectrum[ L, options ]

Checks if all the mass terms in the Lagrangian L are
correctly diagonalized and if their value corresponds to
the numerical value given in the model file.

Table 16

the first line of the equation above, the [ . ]θ·θθ̄·θ̄ indicates that one has to extract
the highest-order coefficient in θ and θ̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[ CSFKineticTerms[ ] ]

The function CSFKineticTerms returns the kinetic and gauge interaction La-
grangian terms for all the chiral supermultiplets of the model. As a result, the
Lagrangian is computed in terms of superfields. The method Theta2Theta-
bar2Component is then needed to ensure that only the terms in θ ·θθ̄ · θ̄ are
kept, after the superfields have been expanded in terms of their component
fields. If the user is interested in one specific superfield, represented by, e.g.,
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(1) Scalar fields:
- Real:

1

2
∂µφ∂

µφ−
1

2
m2φ2,

- Complex (including ghost fields):

∂µφ
†∂µφ−m2φ†φ,

(2) Spin-1/2 fermions:
- Majorana:

1

2
λ̄i/∂λ−

1

2
mλ̄λ,

- Dirac:
ψ̄i/∂ψ −mψ̄ψ,

(3) Vectors:
- Real:

−
1

4
FµνF

µν −
1

2
m2AµA

µ,

- Complex:

−
1

2
F †
µνF

µν −m2A†
µA

µ.

FeynRules does not use the quadratic pieces of a Lagrangian. However, the
propagators hard-coded either in FeynRules or in the event generators as-
sume that the quadratic piece of the Lagrangian follow the above-mentionned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Fi-
nally, checks on Weyl fermion kinetic and mass terms are also not supported
since there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =

[

Φ†
i e

−2gjV j

Φi

]

θ·θθ̄·θ̄

= Dµφ
†
iD

µφi + F †
i F

i −
i

2

(

Dµψ̄iσ̄
µψi − ψ̄iσ̄

µDµψ
i
)

+ i
√
2gjλ̄

ja · ψ̄iTaφ
i − i

√
2gjφ

†
iTaψ

i · λja − gjD
jaφ†

iTaφ
i ,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {Φi = (φi,ψi, F i)} and vector superfields {V j = (vj,λj, Dj)}. In
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the symbol Phi, the corresponding Lagrangian can be obtained by specifying
this superfield as the argument of the function CSFKineticTerms,

Theta2Thetabar2Component[ CSFKineticTerms[ Phi ] ]

Non-gauge interactions among the chiral superfields are driven by the superpo-
tential, a holomorphic function W (Φ) of the chiral superfields Φ of the theory.
The associated interaction Lagrangian is given by

LW =
[

W (Φ)
]

θ·θ
+ h.c. = F i∂W (φ)

∂φi
+

1

2

∂2W (φ)

∂φi∂φj
ψi ·ψj + h.c. , (3.19)

where in our notations, [ . ]θ·θ indicates that one has to select the component
in θ ·θ from the expansion of the superpotential in terms of the Grassmann
variables θ and θ̄. Assuming that W (Φ) is represented in the FeynRules

model file by a variable SuperW, the Lagrangian can be calculated by issuing

Theta2Component[SuperW] + Thetabar2Component[HC[SuperW]]

where the two functions Theta2Component and Thetabar2Component allow
to extract the correct coefficients of the expansion of the superpotential in θ
and θ̄.

We now turn to the Lagrangian associated with the gauge sector. Kinetic and
gauge interaction terms are built from squaring the superfield strength tensors
and read, in the non-abelian case 7 ,

LV =
1

16g2

[

W αaWαa

]

θ·θ
+ h.c.

= −
1

4
F µν
a F a

µν +
i

2
(λaσ

µDµλ̄
a −Dµλaσ

µλ̄a) +
1

2
DaDa .

(3.20)

Implementing this Lagrangian into FeynRules can be achieved by issuing

LV = Theta2Component[ VSFKineticTerms[ ] ] +
Thetabar2Component[ VSFKineticTerms[ ] ]

where an implicit sum over the whole vector superfield content of the the-
ory is performed. The function VSFKineticTerms allows us to construct the
Lagrangian in terms of superfields and the functions Theta2Component and
Thetabar2Component to select the θ·θ and θ̄·θ̄ components of the expansion of
the superfield Lagrangian in terms of the Grassmann variables, respectively.
Specifying the arguments of the function VSFKineticTerms,

LV = Theta2Component[ VSFKineticTerms[ VSF ] ] +
Thetabar2Component[ VSFKineticTerms[ VSF ] ]

7 The abelian limit can be easily derived.
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allows us to compute the kinetic and gauge interaction Lagrangian terms as-
sociated with the vector superfield represented by the symbol VSF.

To summarize, implementing a (renormalizable) Lagrangian density for a su-
persymmetric theory in FeynRules only requires the definition of the super-
potential SuperW, since the rest of the Lagrangian computation is automatic.
The full (supersymmetric) Lagrangian is thus calculated by issuing

LC=Theta2Thetabar2Component[CSFKineticTerms[]];
LV=Theta2Component[VSFKineticTerms[]] +

Thetabar2Component[VSFKineticTerms[]];
LW=Theta2Component[SuperW]+Thetabar2Component[HC[SuperW]];
Lag = LC + LV + LW;

The Lagrangian density obtained in this way still depends on the auxiliary F
and D-fields that can be eliminated by inserting the solutions of their equa-
tions of motion back into the Lagrangian. This operation is automated in
FeynRules by means of the SolveEqMotionD (this eliminates the D-fields),
SolveEqMotionF (this eliminates the F -fields) and SolveEqMotionFD (this
eliminates all auxiliary fields) functions. More precisely, all the auxiliary fields
that could appear in the Lagrangian represented by the symbol Lag are elim-
inated by typing one of the two commands

SolveEqMotionFD[Lag]
SolveEqMotionF[SolveEqMotionD[Lag]]

Finally, the component fields of a supermultiplet are Weyl fermions and need
to rewritten in terms of four-component spinors. This can be achieved using
the WeylToDirac[] function described in the beginning of this section.

For more information on the superspace module of FeynRules we refer to
refs. [6,17] and to Table 17 which collects all the functions presented in this
section.

4 Running FeynRules

After the model description is created and the Lagrangian constructed, it can
be loaded into FeynRules and the Feynman rules obtained.
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LC=Theta2Thetabar2Component[CSFKineticTerms[]];
LV=Theta2Component[VSFKineticTerms[]] +

Thetabar2Component[VSFKineticTerms[]];
LW=Theta2Component[SuperW]+Thetabar2Component[HC[SuperW]];
Lag = LC + LV + LW;

The Lagrangian density obtained in this way still depends on the auxiliary F
and D-fields that can be eliminated by inserting the solutions of their equa-
tions of motion back into the Lagrangian. This operation is automated in
FeynRules by means of the SolveEqMotionD (this eliminates the D-fields),
SolveEqMotionF (this eliminates the F -fields) and SolveEqMotionFD (this
eliminates all auxiliary fields) functions. More precisely, all the auxiliary fields
that could appear in the Lagrangian represented by the symbol Lag are elim-
inated by typing one of the two commands

SolveEqMotionFD[Lag]
SolveEqMotionF[SolveEqMotionD[Lag]]

Finally, the component fields of a supermultiplet are Weyl fermions and need
to rewritten in terms of four-component spinors. This can be achieved using
the WeylToDirac[] function described in the beginning of this section.

For more information on the superspace module of FeynRules we refer to
refs. [6,17] and to Table 17 which collects all the functions presented in this
section.

4 Running FeynRules

After the model description is created and the Lagrangian constructed, it can
be loaded into FeynRules and the Feynman rules obtained.
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

4.1 Loading FeynRules

The first thing that must be done when using FeynRules is to load the
package into a Mathematica session. This should be done before any of the
model desciption is loaded in the kernel and so should be the first line of the
Mathematica notebook 8 . In order to load FeynRules, the user must first
specify the directory where it is stored and then load it by issuing

$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules‘

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-

Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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The vertices derived by FeynRules are then written out on the screen and
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The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,
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Restriction files can be loaded at run time after the model file has been loaded,
i.e., after the LoadModel[ ] command has been issued. The corresponding
command is

LoadRestriction[ file1.rst, file2.rst, ... ]

After this function has been called, the parameter definitions inside Feyn-

Rules are updated and the parameters appearing in the left-hand side of the
replacement rules are removed from the model. In addition, the rules are kept
in memory and are applied automatically to the Lagrangian when computing
the Feynman rules. Note that this process is irreversible, and the restrictions
cannot be undone after the LoadRestrictions[] command has been issued
(unless the kernel is restarted).

For complicated models, one often chooses the benchmark point in a special
way such that many of the new parameters in the model are zero, and only
a few new interactions are considered. FeynRules provides a command that
allows to identify the parameters that are numerically zero and to create a
restriction file that removes all the vanishing parameters from the model.
More precisely, the command

WriteRestrictionFile[]

creates a restriction file called ZeroValues.rst which can be loaded just like
any other restriction file. We emphasize that for complicated model the use
of this restriction file may considerably speed up calculation performed with
Feynman diagram calculators.

2.8 Mixing declaration

FeynRules comes with a module allowing for the derivation of the mass
spectrum included in any Lagrangian (see Section 4.8). The mass matrices
calculated in this way can be further passed to the ASperGe program [7]
for a numerical evaluation of the necessary rotations yielding a diagonal mass
basis (see Section 6.2). In order to employ these functionalities, the user has
to implement particle mixings in a specific way, using instances of the mixing
class collected into a list dubbed M$MixingsDescription,

M$MixingsDescription = {
Mix["l1"] == { options1 },
Mix["l2"] == { options2 },

...
}
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4.5 Manipulating Parameters

The parameters are also an important part of the model and several func-
tions allow to manipulate them. The numerical values of any parameter or
function of one or several parameters can be obtained with the use of the
NumericalValue function, as for example in

NumericalValue[ Sin[ cabi ]]

where cabi is the Cabbibo angle. This returns the numerical value of the sine
of the Cabbibo angle.

In the case the user wants to change the value of a subset of external param-
eters, the function UpdateParameters can be used such as in

UpdateParameters[ gs -> 0.118 , ee -> 0.33 ]

where gs and ee are the strong and electromagnetic coupling constants, re-
spectively.

In order to write and read the numerical values of the parameters to and
from a file, FeynRules comes with the two functions WriteParameters and
ReadParameters. By default, they write and read the parameters to and from
the file named M$ModelName with a “.pars” appended, but this can be changed
with the options Output and Input as in:

WriteParameters[Output -> "parameters.pars"]
ReadParameters[Input -> "parameters.pars"]

The routine WriteParameters writes out the external and internal param-
eters (including masses and widths) to the specified file, while the function
ReadParameters only reads in the external parameters (including masses and
widths). This gives the user another way to change the values of the external
parameters. The user can modify the values of the parameters included in the
parameter file created by WriteParameters, and then read them back in using
ReadParameters. Any changes made to the internal parameters are ignored.

NC: This seems like a good place to discuss writing/reading of LHA files. BF:
I have no opinion pro or con. The original point was that the LHA format is
bound to feynman diagram generators by definition. Thus, it might be good
to keep it together with the interfaces. But the topic fits naturally here too. I
leave you the choice. In any case, it might be good to add either a reference
to section 6.1.4 here or to move section 6.1.4 here and add a reference to here
in section 6. NC: I used to agree but now I think it is another way to update
the parameters of a model which should be thought of as independent of the
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parameter is assigned to a block and counter, which can be specified using the
BlockName and OrderBlock options of the parameter class. For example, the
definition of the strong coupling constant can be assigned to the third entry of
the block named SMINPUTS by adding the following options to the definition
of the parameter

BlockName -> SMINPUTS,
OrderBlock -> 3,

The value of BlockName can be an arbitrary Mathematica symbol, while
the value of OrderBlock can be either an integer or a list of integers. The
BlockName and OrderBlock attributes are optional. If omitted, the parameter
are assigned automatically to the block FRBlock. Moreover, masses and widths
are automatically assigned to the blocks MASS and DECAY, the identifier inside
the block being the PDG code of the particle. By convention, the entries of
a matrix defines a block on its own, the identifiers inside the block being the
position inside the matrix.

By convention, all the parameters defined inside a LH-like format are real.
Complex external parameters have then to be implemented by splitting them
into their real and imaginary parts. As an illustration, we consider a complex
external parameter a = aR + iaI , where aR and aI are real. This parameter
is thus implemented into the LH-like format by defining a as internal and aR
and aI as external.

FeynRules is equipped with its own reading and writing routine for LH-like
parameter files. For example, issuing the command

ReadLHAFile[ Input -> "LH-file" ]

reads the LH-like parameter file "LH-file" and updates the numerical values
of all the external parameters of the model in the current Mathematica

session. Similarly, the command

WriteLHAFile[ Output -> "LH-file" ]

writes all the numerical values to file in a LH-like format. NC: The details of
this should be in Section 4.5. Just a reference to that section should be here.
BF: As I said, I am neither pro nor against this.

6.1.5 Definition of Standard Model parameters and gauge groups

The parameters and the gauge groups of the Standard Model have a special
significance in most Monte Carlo codes. In particular they must be imple-
mented using certain conventions and giving specific names to certain vari-
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Table 15: Manipulating a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in
the Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms
in the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms
in the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to
the field content specified in
list.

Table 15

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a different part of the Lagrangian as described in the table.

Once the Lagrangian is implemented, several sanity checks can be perfomed
by means of the functions presented in Table 16. First, the function

CheckHermiticity[ L ];

checks if the Lagrangian L is Hermitian. Next, three functions are available to
check if the kinetic terms and the mass terms are diagonal, CheckDiagonalKi-
neticTerms, CheckDiagonalMassTerms and CheckDiagonalQuadraticTerms.
Finally, two functions, CheckKineticTermNormalisation and CheckMass-
Spectrum, allow to check the normalization of the kinetic terms and compare
the masses computed from the Lagrangian to those of the model description.
The FeynRules conventions on the normalization of the kinetic and mass
terms for the scalar, spin 1/2 and vector fields are
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Table 16: Checking the consistency of a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

CheckHermiticity[ L, options ]

Checks if the Lagrangian L is Hermitian.

CheckDiagonalKineticTerms[ L, options ]

Checks if all the kinetic terms in the Lagrangian L are
diagonal.

CheckDiagonalMassTerms[ L, options ]

Checks if all the mass terms in the Lagrangian L are
diagonal.

CheckDiagonalQuadraticTerms[ L, options ]

Checks if all the quadratic terms in the Lagrangian L are
diagonal.

CheckKineticTermNormalisation[ L, options ]

Checks if all the kinetic terms in the Lagrangian L are
correctly diagonalized and normalized.

CheckMassSpectrum[ L, options ]

Checks if all the mass terms in the Lagrangian L are
correctly diagonalized and if their value corresponds to
the numerical value given in the model file.

Table 16

the first line of the equation above, the [ . ]θ·θθ̄·θ̄ indicates that one has to extract
the highest-order coefficient in θ and θ̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[ CSFKineticTerms[ ] ]

The function CSFKineticTerms returns the kinetic and gauge interaction La-
grangian terms for all the chiral supermultiplets of the model. As a result, the
Lagrangian is computed in terms of superfields. The method Theta2Theta-
bar2Component is then needed to ensure that only the terms in θ ·θθ̄ · θ̄ are
kept, after the superfields have been expanded in terms of their component
fields. If the user is interested in one specific superfield, represented by, e.g.,
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-

Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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that allow to compute two-body partial widths from a list of vertices.

Let us assume that we have computed all the vertices associated with a given
Lagrangian L in the usual way,

vertices = FeynmanRules[ L ];

We can then immediately compute all the two-body partial widths arising
from vertices by issuing the command

decays = ComputeWidths[ vertices ];

The function ComputeWidths[] selects all three-point vertices from the list
vertices that involve at least one massive particle and no ghost fields and/or
Goldstone bosons. Next, the vertices are squared by contracting them with the
polarization tensors of the external particles and multiplied by the appropriate
phase space factors. The output of ComputeWidths[] is a list of lists of the
form

{{φ1, φ2, φ3}, Γφ1→φ2 φ3
} ,

where the first element of the list contains the initial state (φ1) and the two
decay products (φ2 and φ3) and the second element is the analytic expression
for the corresponding partial width.

Some comments are in order about the function ComputeWidths[]. First, the
output contains the analytic results for all possible cyclic rotations of the
external particles {φ1,φ2,φ3} with a massive initial state, independently of
whether a given decay channel is kinematically allowed, because certain chan-
nels might be closed for a certain choice of the external parameters but not for
others. Second, we note that the output of ComputeWidths[] is also stored
internally in the global variable FR$PartialWidths. The use of this global
variable will become clear below. Everytime the function ComputeWidths[] is
executed, the value of the global variable will be overwritten, unless the option
Save of ComputeWidths[] is set to False (the default is True).

Besides the main function ComputeWidth that allows to compute the two-body
decays, FeynRules is equipped with a set of functions that allow to access
the output list produced by the main function. For example, the following
intuitive commands are available:

PartialWidth[ {φ1,φ2,φ3 }, decays ];
TotWidth[ φ1, decays ];
BranchingRatio[ {φ1,φ2,φ3}, decays ];

In the following we only discuss PartialWidth[], the use of the other two
functions is similar. FeynRules first checks, based on the numerical values

68

to evaluate Eq. (4.28). In the rest of this section we describe the functions
that allow to compute two-body partial widths from a list of vertices.

Let us assume that we have computed all the vertices associated with a given
Lagrangian L in the usual way,

vertices = FeynmanRules[ L ];

We can then immediately compute all the two-body partial widths arising
from vertices by issuing the command

decays = ComputeWidths[ vertices ];

The function ComputeWidths[] selects all three-point vertices from the list
vertices that involve at least one massive particle and no ghost fields and/or
Goldstone bosons. Next, the vertices are squared by contracting them with the
polarization tensors of the external particles and multiplied by the appropriate
phase space factors. The output of ComputeWidths[] is a list of lists of the
form

{{φ1, φ2, φ3}, Γφ1→φ2 φ3
} ,

where the first element of the list contains the initial state (φ1) and the two
decay products (φ2 and φ3) and the second element is the analytic expression
for the corresponding partial width.

Some comments are in order about the function ComputeWidths[]. First, the
output contains the analytic results for all possible cyclic rotations of the
external particles {φ1,φ2,φ3} with a massive initial state, independently of
whether a given decay channel is kinematically allowed, because certain chan-
nels might be closed for a certain choice of the external parameters but not for
others. Second, we note that the output of ComputeWidths[] is also stored
internally in the global variable FR$PartialWidths. The use of this global
variable will become clear below. Everytime the function ComputeWidths[] is
executed, the value of the global variable will be overwritten, unless the option
Save of ComputeWidths[] is set to False (the default is True).

Besides the main function ComputeWidth that allows to compute the two-body
decays, FeynRules is equipped with a set of functions that allow to access
the output list produced by the main function. For example, the following
intuitive commands are available:

PartialWidth[ {φ1,φ2,φ3 }, decays ];
TotWidth[ φ1, decays ];
BranchingRatio[ {φ1,φ2,φ3}, decays ];

In the following we only discuss PartialWidth[], the use of the other two
functions is similar. FeynRules first checks, based on the numerical values
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of the particles defined in the model file, whether the decay φ1 → φ2 φ3 is
kinematically allowed, and if so, it will calculate the corresponding partial
width Γφ1→φ2 φ3

from the list decay. The second argument of PartialWidth[]
is optional and could be omitted. In that case the partial widths stored in the
global variable FR$PartialWidth will be used by default.

Finally, it can be useful to update the information coming from the original
particle declarations by replacing the numerical value of the widths of all
particles by the numerical values obtained by the function TotWidth, which
can be achieved by issuing the command

UpdateWidths[ decays ];

where, as usual, the argument decays is optional. After this command has
been issued, the updated numerical results for the widths will be written out
by the translation interfaces to matrix element generators.

5 A Simple Example

In this section we present an example of how to implement a model into Feyn-
Rules and how to use the code to obtain the Feynman rules. While the model
does not have immediate phenomenological relevance, the implementation is
complete in the sense that we discuss in detail all the necessary steps. We
emphasize that the model does not exploit all the features of FeynRules.
For more advanced examples, we recommend to consult the models already
implemented [19] or the details given in Refs. [3,6,17].

The model under consideration is a variant of the φ4 theory. It displays all
the most relevant features the user might encounter when implementing a new
model. In particular, it shows how to

- define indices of various types,
- to perform expansions over ‘flavor’ indices,
- define mixing matrices,
- perform the rotation from the gauge eigenstates to the mass eigenstates
(without employing the mass diagonalization package for which we refer to
Ref. [7]),

- add gauge interactions to the model.

In the following, we perform the implementation step by step, adding one fea-
ture at a time, in order to clearly show how to deal with the various concepts.
A user who follows these steps all the way down to the end will achieve a fully
functional FeynRules implementation of this model, which may serve as a
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by using a different interface without having to change his/her FeynRules

implementation.

In this section we give a brief account of how to run the FeynRules interfaces
and we discuss their features and limitations. While some of the interfaces have
been the subject of separate publications [8,9], we include a summary on how
to run all the interfaces for the sake of completeness.

6.1 Conventions

While FeynRules itself is completely agnostic of the underlying model and
does not make any a priori assumptions on the form of the particles and
parameters that are defined in the model file, Feynman diagrams generators
usually have some information, in particular about the Standard Model, hard-
coded. For example, most Feynman diagram generators have the running of
the strong and/or weak coupling constants implemented, which allows one to
use the value of αs specific to a given process. In order for this work, the value
of αs must be stored in a variable whose name is hardcoded into the code.
Similarly, many programs have color implemented in an implicit way and/or
perform the color algebra internally. As a consequence, the FeynRules inter-
faces must communicate information about the Standard Model parameters
and gauge groups to the Feynman diagram generators in a specific format. For
this to work properly, the user has to follow a set of conventions when writing
a model file which are detailed in the rest of this section.

6.1.1 Name restrictions

While Mathematica, and hence FeynRules, are case sensitive, many Feyn-
man diagram calculators are not. Consequently, the model builders should
avoid to use names that only differ by case. In addition, FeynRules allows
the use of Greek letters to define the names of parameters and fields, which
cannot be exported to the Feynman diagram calculators. However, the user
can change the name of a parameter or field to be outputted by the inter-
faces by using the parameter option ParameterName. This allows to output a
name matching the requirements of the Feynman diagram calculators. Similar
options, called ParticleName and AntiParticleName, are available for the
particle classes. They allow the user to specify the string (or list of strings)
that should be used in the external programs. Finally, the TEX-form associated
with these names can also be specified via the options TeXParticleName and
TeXAntiParticleName of the particle class and TeX of the parameter class.
An example follows:

ParticleName -> {"ne", "nm", "nt"},
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AntiParticleName -> {"ne~", "nm~", "nt~"}

A more detailed name can also be attached, as a string or list of strings, to
any particle, by means of the attribute FullName of the particle class, such as
in

FullName -> "Photon"

6.1.2 Particle Data Group numbering scheme (PDG) codes

Many programs use the Particle Data Group numbering scheme [20] to refer
to the particles inside the code. In addition, many codes have information on
the particles and their quantum numbers hard-coded. It is therefore crucial
that new models respect the PDG numbering scheme whenever possible and
we strongly encourage the users to use the existing PDG codes.

FeynRules allows the user to assign PDG codes to all the particles in the
model file. For example, the PDG codes for the up-type quarks can be defined
by adding the following option to the up-type particle class (which has the u,
c and t quarks as members),

PDG -> {2,4,6}

If a particle class has only one member, the curly brackets on the right-hand
side may be omitted. If a user does not define a PDG code for a particle, then
FeynRules automatically assigns to it a PDG code starting from 9000001.

6.1.3 Decay widths

When computing Feynman diagrams it is in general important, already at
tree-level, to include the total width into the propagator of a massive particle
in order to avoid singularities in the phase space integration. For this reason
most Monte Carlo tools take the total width of a particle as a numerical
input for tree-level computations. FeynRules allows the user to include the
numerical value for the width into the model file via the option Width (For
more details see Section 2.4). If done in this way, the numerical values for the
widths of all the particles are transmitted to the Monte Carlo codes.

The widths of all the particles are, however, in general unknown at the mo-
ment of the implementation in FeynRules, because the evaluation of the
(tree-level) width of a particle requires the evaluation of Feynman diagrams.
There are four different ways the user can include the widths for the Feynman
diagram calculators:
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SM Parameters

ables, in order to ensure that, e.g., the strong and/or electroweak couplings
are run correctly and the color algebra is performed correctly. As a conse-
quence, despite the fact that FeynRules is generic and does not distinguish
between the Standard Model and non-Standard Model parameters when com-
puting the Feynman rules, the interfaces have an explicit dependence on them.
The Standard Model input parameters and gauge groups must therefore be
implemented into a FeynRules model file following certain conventions.

First, the strong coupling constant gs and its square over 4π should be declared
as in the following example,

aS == {
ParameterType -> External,
BlockName -> SMINPUTS,
OrderBlock -> 3,
Value -> 0.1184,
InteractionOrder -> {QCD,2},
Description -> "Strong coupling constant at the Z pole"
},

gs == {
ParameterType -> Internal,
Value -> Sqrt[4 Pi aS],
InteractionOrder -> {QCD,1},
ParameterName -> G,
Description -> "Strong coupling constant at the Z pole"
},

We note that αs is implemented as an external parameter while gs is defined
as an internal parameter derived from αs. Similarly, the electroweak coupling
is defined as follows,

aEWM1 == {
ParameterType -> External,
BlockName -> SMINPUTS,
OrderBlock -> 1,
Value -> 127.9,
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},

Gf == {
ParameterType -> External,
BlockName -> SMINPUTS,
OrderBlock -> 2,
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Value -> 1.16637*^-5,
InteractionOrder -> {QED,2},
Description -> "Fermi constant"
},

aEW == {
ParameterType -> Internal,
Value -> 1/aEWM1,
InteractionOrder -> {QED,2},
Description -> "Electroweak coupling contant"
},

ee == {
ParameterType -> Internal,
Value -> Sqrt[4 Pi aEW],
InteractionOrder -> {QED,1},
Description -> "Electric coupling constant"
}

The external parameters in the electroweak sector are the inverse of the elec-
tromagnetic coupling at the Z scale, αEW (MZ)−1 and the Fermi constant GF .
The reason for choosing αEW (MZ)−1 as the external input parameter, and not
αEW (MZ) itself is only to be compliant with the SLHA. The electromagnetic
coupling at the Z scale and the electric charge e are declared as internal pa-
rameters. Finally, it is also encouraged to choose the mass of the Z boson as
an external parameter, still following the SLHA conventions.

The QCD gauge group has a special status in FeynRules as it defines quanti-
ties that have to be dealt with in a special way by the interfaces. This ensures,
e.g., that the color algebra is correctly performed by the Feynman diagram
calculators. The correct definition of the QCD gauge groups is

SU3C == {
Abelian -> False,
CouplingConstant -> gs,
GaugeBoson -> G,
StructureConstant -> f,
Representations -> {{T, Colour},

{T6, Sextet}},
SymmetricTensor -> dSUN

}

This definition requires the gluon field, defined in M$ClassesDescription, to
be called G. The gluon field carries an index of type Gluon, which represents
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Table 22: Group-theoretical objects
T[a,i,j] Generators of the fundamental repre-

sentation, T a
ij.

T6[a,m,n] Generators of the sextet representa-
tion, T a

6,ij.
f[a,b,c] SU(3) structure constants, fabc.
dSUN[a,b,c] Totally symmetric tensor dabc.
Eps[i,j,k] Totally antisymmetric tensor εijk con-

necting three (anti)triplet indices.
K6[m,i,j] Clebsch-Gordan coefficient connecting

a sextet and two anti-triplets, consid-
ered incoming.

K6bar[m,i,j] Clebsch-Gordan coefficient connecting
a anti-sextet and two triplets, consid-
ered incoming.

Table 22

the adjoint representation of QCD. So far, there is, at least to our knowledge,
no Monte Carlo code for which an interface exists that can deal with represen-
tation other than 1, 3, 6 and 8 (and their complex conjugate representations,
if applicable). In the example above, we have defined two representations of
the QCD gauge group, the fundamental and sextet representations, which act
via the generators T and T6 on indices of type Colour and Sextet, respec-
tively. A full list of the group theoretical object of QCD that can be used to
construct a Lagrangian can be found in Table 22. Furthermore, the indices
labeling the different representations should be defined at the beginning of
the model file as in

IndexRange[ Index[ Colour ] ] = Range[3];
IndexRange[ Index[ Sextet ] ] = Range[6];
IndexRange[ Index[ Gluon ] ] = Range[8];

The function NoUnfold[] might be added in the right-hand side if desired.
This is only used by the FeynArts interface.

In addition to the QCD charges of the particles, some Monte Carlo programs
also use the information on the electric charge of a particle. The electric charge
should be defined in the QuantumNumber option of the particle class as Q to
ensure that the information is correctly transmitted to the matrix element
generators by the FeynRules interfaces.
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Interaction Order

6.1.6 Switching between unitary and Feynman gauge

Some Monte Carlo programs allow the user to generate QCD processes both
in unitary and in Feynman gauge. Having a model that can run in both gauges
can be a powerful way to check that the implementation is gauge invariant
by generating matrix elements in both gauges. In addition, some codes run
faster in one gauge than in the other. It is therefore desirable to implement a
model both in unitary and Feynman gauge whenever possible. At this stage,
the user has to implement by hand all the terms in the Lagrangian related to
the gauge fixing procedure. In practice, every model implemented in Feynman
gauge can be transformed to unitary gauge by removing all the vertices that
involve ghost fields and/or Goldstone bosons. It can therefore be useful to
add a boolean variable $FeynmanGauge into the model, which, if set to False,
removes all the terms from the Lagrangian which depend on ghost fields and
Goldstone bosons. Furthermore, some interfaces use this variable to commu-
nicate to the matrix element generator whether or not the model can be run
in Feynman gauge. For these reasons, we strongly recommend the use of the
variable $FeynmanGauge in each model implementation. For an illustration of
how to use it, we recommend to look at the implementation of the Standard
Model shipped with this package. NC: I didn’t know that we elevated this to
the level of an official FR variable?

6.1.7 Interaction orders

Perturbative expansions allow one to compute an amplitude at a given order
in each of the coupling constants. Some programs, like MadGraph, use this
expansion to order contributions to a process according to their relative im-
portance and eventually only keep the largest one. For example, uū → tt̄ has
three tree-level diagrams, corresponding to the gluon, the Z boson and the
photon in the s-channel. However, the contribution of the electroweak bosons
is only a small correction to the leading strong contribution due to the hierar-
chy between the strong and the electroweak coupling constants. MadGraph

will only compute the strong contributions by default, i.e., the amplitude pro-
portional to g2se

0 and not the one proportional to g0se
2. The largest allowed

power of each coupling can also be specified, which allows to keep the elec-
troweak diagrams as well. As a consequence, the program needs to know how
many powers of gs and e are present in each vertex to compute the dependence
of the diagrams. These powers are computed in FeynRules from the analytic
expressions of the vertices and the dependence in the coupling constants of
each parameter. The latter is given in the parameter description through the
InteractionOrder option. For example, QCD is defined as the power of gs.
Therefore αs has

InteractionOrder -> {QCD,2}
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because it is proportional to g2s . The second order defined for the Standard
Model is QED which counts the powers of e. Both electroweak coupling con-
stants g and g′ have

InteractionOrder -> {QED,1}

while αEM has InteractionOrder -> {QED,2}. In addition, model builders
can define new orders for other couplings similarly.

The default behavior of the Monte Carlo generator comes from the knowledge
of the hierarchy of couplings. This is defined in the FeynRules model as an
additional list :

M$InteractionOrderHierarchy = {
{QCD,1},
{QED,2}

}

The numbers associated with the couplings give their relative importance. In
the above example, one power of e is considered equivalent to two powers of gs.
If a new vector connects the up and top quarks with a new physics coupling
gNP , one can possibly set gNP order to InteractionOrder -> {NP,1} and
the hierarchy can be defined as

M$InteractionOrderHierarchy = {
{QCD,1},
{NP,1},
{QED,2}

}

as for the strong interactions to avoid that new physics is removed by default.
Finally, the user can also define a maximum value for the power of a coupling
to be allowed in each diagram,

M$InteractionOrderLimit = {
{NP,2}

}

This is used to indicate to the generator that the largest power gNP appearing
in an amplitude is two. For example, the interaction of the gluon with the
Higgs boson through a top loop can be added as an effective operator in
the large top mass limit. The production by gluon fusion of a single Higgs
boson can be simulated in this way by tree-level event generators. However,
this vertex cannot be used twice for double Higgs boson production by gluon
fusion because it does not include all the contribution at this order in αs

(box-type diagrams with a top loop are missing).
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NC: It should be mentioned that only some of the interfaces and Feynman
diagram calculators support this. BF: It is noted in the first sentence of the
section, isn’t it? NC: I don’t think it does. It states that MG can use this
information. But, this section is before the matrix element generator specific
sections and I think the reader will get the impression that if they include this
information all the interfaces will use it which isn’t true. This could lead to
the wrong results for example with the gluon fusion process just described.
I suggest we add something like “We note that only the UFO and Sherpa
interfaces currently support this information.”

6.1.8 Drawing Feynman diagrams

Some of the programs interfaced to FeynRules allow to draw Feynman di-
agrams associated with a given process. The way the propagators are drawn
can be defined at the FeynRules level by means of the options Propagator-
Label, PropagatorType and PropagatorArrow of the particle class. The first
of these attributes allows to modify the label attached to an internal line of
a Feynman diagram and takes a string (or a list of strings if one has several
class members) as an argument. The second attribute refers to the type of
line to employ when drawing the propagator. By default, it is inferred from
the spin of the particle but this can be modified by the user, who can set the
argument of PropagatorType to ScalarDash (dashed line), Sine (wavy line),
Straight (straight line), GhostDash (dotted line), or Curly (gluonic line).
NC: We probably also need to add DoubleStraightLine, DoubleSine for spin
3/2 and spin 3, respectively. Finally, setting the option PropagatorArrow to
True or False allows to put an arrow or not on the propagator.

6.2 The ASperGe interface

From the information concerning the mixing relations among the different
fields of the model (see Section 2.8), FeynRules is capable of generating
a package dubbed ASperGe which allows to diagonalize, at tree-level, the
associated mass matrices. The interface between FeynRules and ASperGe

can be called by typing in the Mathematica session

WriteASperGe[ Lag, Output -> dirname ]

In this expression, the first argument (i.e., the symbol Lag) is mandatory
and refers to the model Lagrangian whereas the second argument (i.e., the
replacement rule Output -> dirname) is optional and indicates the name of
the directory where the ASperGe files should be created. If this option is not
specified, the directory ModelName MD is used by default, ModelName being the
name of the FeynRules model.

89

libraries are installed on his/her system at their default location, together
with the g++ compiler which is employed to compile ASperGe. Otherwise,
the makefile generated by the interface must be edited accordingly.

Once compiled, ASperGe can be executed by typing in a shell

./ASperGe <inputfile> <outputfile>

The two arguments of the function refer to the file containing the numerical
value of the external parameters (<inputfile>, which is by default the file
Externals.dat which was mentioned above) and the one which will contain
the program results (<outputfile>). These results consist of the input param-
eters, followed by the numerical values of the mixing matrices, split in terms of
their real and imaginary parts (as imposed by the SLHA conventions). Finally,
the output file also contains the masses of the physical eigenstates stored in
the SLHA block MASS.

It is also possible to indicate to the interface to create a code allowing for the
diagonalization of a given subset of the mass matrices of the model, instead
of all of them. This is achieved via the Mix option, already introduced in
the context of the ComputeMassMatrix (see Section 4.8) function, and which
works in the same way,

WriteASperGe[ Lag, Mix -> {"l1", "l2"} ]

In order to diagonalize specific mass matrices, the user can type in a shell

./ASperGe <infile> <outfile> m1 m2 ...

where m1, m2, etc., are the names of the mixing matrices under consideration.
All the information related to the undiagonalized mass matrices is here ignored
by the code.

Finally, for practical reasons, both the program compilation and execution can
be directly performed from the Mathematica session. The command to use
is

RunASperGe[ ]

which stores the program output in a file named out.dat. The content of this
file is then directly loaded into the Mathematica kernel in order to update
the numerical value of all the model parameters.
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6.3 The CalcHep/CompHep interface

The CalcHep/CompHep interface can be invoked via the command

WriteCHOutput[ L1, L2, . . . , options ]

where L1, L2, . . . are the various pieces of the model Lagrangian and options
are the options to be passed to the interface. They are addressed throughout
this section and can be found summarized in Table 23.

When invoked, this interface first creates a directory named M$ModelName
with -CH appended, if it does not already exist. Then, it creates the files
prtclsN.mdl, varsN.mdl, funcN.mdl and lgrngN.mdl where N is the number
of the model. It is set to 1 by default but this can be modified through the op-
tion ModelNumber. The particle definitions are written to the file prtclsN.mdl,
the external parameters (including external masses and widths) to the file
varsN.mdl and the internal parameters (including internal masses and widths)
to the file funcN.mdl. At this point, the interface derives the Feynman rules
associated with three-point and four-point interactions and writes them to
lgrngN.mdl. The vertex list is simplified by renaming the vertex couplings as
x1, x2, x3, etc., and the definitions of these new couplings are appended to
funcN.mdl, along with the other internal parameters. Since CalcHep only
computes internal variables once per session, this improves the speed of the
phase space integration.

Although CalcHep and CompHep can calculate diagrams in both Feyn-
man and unitary gauge, they are faster when Feynman gauge is adopted.
It is therefore highly recommended to implement a new model in Feynman
gauge. However, if a user decides to implement the model in unitary gauge,
he/she should remember that according to the way CalcHep and CompHep

have been implemented, the ghosts associated with massless non-abelian gauge
bosons must be implemented. In particular, gluonic ghost fields must always
be implemented in either gauge.

One major constraint of the CalcHep/CompHep system is that the color
structure is implicit. For many vertices (e.g., quark-quark-gluon), this is not a
problem. However, for more complicated vertices, there may be an ambiguity.
For this reason, the developers of CalcHep/CompHep have chosen to split
them up using auxiliary fields. Although this can be done for very general
vertices, it is not yet fully supported in FeynRules. Currently, only the gluon
four-point vertex and squark-squark-gluon-gluon vertices are automatically
split up in this way. Support for more general vertices is expected in the
future.

The model files are ready to be used and can be directly copied to the
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]. This function accepts all the options of the CalcHep interface, plus the op-
tion Input which instructs FeynRules where to find the CalcHep variable
file. The default is a file named varsN.mdl, located in the current working di-
rectory. In the case CompHep variable file is read, the option CompHEP should
be set to True.

The current values of the external parameters in FeynRules can also be writ-
ten to a CalcHep external variable file varsN.mdl using WriteCHExtVars[
options ]. This allows to bypass writing out the entire model if only the model
parameters are changed.

Neither CalcHep nor this interface support InteractionOrder defined in
Sec. 6.1.7. However, the strong coupling constant gs must be used explicitly
in the Lagrangian. This interface will factor it out of each vertex and put it
in the Factor column of lgrngN.mdl. The electric charge ee should also be
used explicitly. If its power is the same for each term of a vertex, it will also
be factored out and put in the Factor column.

Further details of howCalcHep uses these model files can be found in Ref. [1].

6.4 The FeynArts interface

The FeynArts model files are generated from a FeynRules model imple-
mentation by issuing the command:

WriteFeynArtsOutput[ L1, L2, . . . , options ]

where L1, L2, . . . are the pieces of the model Lagrangian and options are
options among those listed in Table 24. This function creates a directory de-
noted by M$ModelName_FA with three files. Each of these files is named as
M$ModelName, followed with a different extension among .gen, .mod and .pars
appended. Another filename root may be specified with the Output option of
the interface. This directory can then be moved directly to the FeynArts

model directory and used in FeynArts as any other built-in model.

The FeynArts generic file (.gen) created in this way contains the following
information:

- The kinematical indices as in the standard FeynArts file lorentz.gen,
except if Dirac 17 indices are necessary. In this case, they are consistently
added for the fermionic particles.

17 The spin indices of FeynRules (Spin) are called Dirac indices in FeynArts.
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with i being an integer number, multiplying the various Lorentz structures.
The definitions of these gci quantities are stored in the list of replacement
rules M$FACouplings, an example element of this list being gc3 -> ee/sw.
The user may then apply (or not) this list to the results computed by Fey-

nArts and FormCalc at any time. To turn this renaming off when calling
the FeynArts interface, the option CouplingRename has to be set to False.
The parameters can be further replaced by their numerical values by employ-
ing the lists of replacement rules M$ExtParams, M$IntParams, M$Masses and
M$Widths that contain the values of the different parameters of the model.

Although FeynArts can use vertices expressed in any gauge, FormCalc

only supports Feynman gauge. Therefore, FeynRules models can be ex-
ported to be used with FormCalc only if they are written in Feynman gauge.

As shown in Section 2.4, it is possible to gather particles with similar properties
into classes. This allows FeynArts to generate fewer diagrams and Form-

Calc to receive fewer terms to simplify when a computation is started. The
specific couplings, masses and widths of each particle can then be inserted only
after performing the calculation, made in this way more efficient and faster.

The FeynRules model format is inspired from the FeynArts one and also
allows to group particles into classes. Obviously, the resulting advantage at
the level of FormCalc is only present if the user writes the model and its
Lagrangian in a ‘classy way’. However, the model can still be exported to Fey-
nArts if the Lagrangian breaks this rule. The interface then defines one new
class for each particle as soon as a vertex depending on a specific class member
is found. Only the new classes are subsequently transmitted to FeynArts.
Their list can be obtained with the function NewFeynArtsClasses[].

6.5 The Sherpa interface

NC: —What is the status of this interface?

The Sherpa interface can be called with the following command,

WriteSHOutput[L1, L2,. . . , options]

where L1, L2, . . . , are the different pieces of the model Lagrangian. The inter-
face does not accept any special options besides the usual options available to
FeynmanRules[], the option Exclude4Scalars described in Section 6.3, and
the option Output that allows to set the output directory. Issuing the above
command produces a directory that contains the following text files:

- feynrules.dat: A static file, setting up the model in Sherpa.
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Table 25: TeX Interface Options
Overwrite Determines whether the interface must

overwrite (True) the generated TEX
files, if existing, or not (False). If set
to Automatic (the default value), the
user is asked, for each file, whether it
has to be overwritten.

Paper This option determines what kind
of paper format to use. Choices are
letter (the default value), legal and
a4.

Table 25

ward to add a new section and a new tex file for the mixings. And, feel free
to add your name to the interface.

FeynRules comes with an extended TEX-interface that can be invoked with
the command

WriteLaTeXOutput[ L1, L2, . . . , V1, V2, . . . , options ]

where L1, L2, . . . are the different pieces of the model Lagrangian and V1, V2,
. . . are vertex lists (as output by FeynmanRules). The options options sup-
ported by the interface can be found summarized in Table 25 and are ad-
dressed throughout this section. The TEX-interface can be invoked in several
ways according to the arguments of the function WriteLaTeXOutput[]. It can
be either called with no arguments, in which case the interface writes the
TEX-files describing the model but does not include any part of the model
Lagrangian or vertex list, with only Lagrangians, with only vertex lists, with
only options or with any combination of Lagrangians, vertex lists and options.

The Lagrangian pieces and vertex lists can be entered in two ways. Tak-
ing the example of the Lagrangian L1, the interface can be simply called as
in WriteLaTeXOutput[ L1, . . . ]. A TEX-name can also be associated with
the Lagrangian. In this case, the interface is called as in WriteLaTeXOutput[
{Subscript[L,Gauge],L1}, . . . ] where Subscript[L,Gauge] denotes the La-
grangian L1. Vertex lists behave similarly and can be entered directly or with
a name as in WriteLaTeXOutput[ . . . , {Subscript[V,Gauge],V1}, . . . ]. If
entered, these names will be used for the section names. If they are not used,
names will be generated as L1, L2, etc. for the Lagrangians and V1, V2, etc.
for the vertex lists.

The files that this interface generates are split among the various sections of
the TEX document. The main file is named M$ModelName with the extension
.tex appended. This file instructs LATEX to include the other files,
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• title.tex: Contains the title.
• abstract.tex: Contains the abstract.
• introduction.tex: Contains the introduction.
• symmetries.tex: Contains information about the gauge symmetries and in-
dices.

• fields.tex: Contains information about the fields.
• lagrangians.tex: Contains the Lagrangians.
• parameters.tex: Contains information about the parameters.
• vertices.tex: Contains the vertices.
• bibliography.tex: Contains the bibliography.

After being written by the interface, the user can modify these files in any way
he/she wishes. The next time the interface runs, it will first check whether the
files exist. If they do not, it will generate them in the usual way. If they do
exist, the interface will ask the user whether they should be overwritten or not.
In this way, the user can make changes to files and not have them overwritten.
On the other hand, if the user wishes to have all of the files overwritten, he/she
can set the option Overwrite to True. However, if the user would like none
of the files to be overwritten, he/she can set the option Overwrite to False.
In this case, the interface skips any files that already exist. The default is for
the interface to ask the user what to do for each file which already exists.

The paper in common use depends on the country a person lives in. For this
reason, the option Paper was created. Its defaults value is letter, but this
option can also be set to a4 or legal as in Paper -> "a4".

6.7 The UFO interface

The UFO interface can be called with the following command,

WriteUFO[L1, L2,. . . , options]

where L1, L2, . . . , are the different pieces of the model Lagrangian. The in-
terface accepts, in addition to all the options of FeynmanRules[] and the
option Exclude4Scalars described in Section 6.3, various options which are
summarized in Table 26 (see also Ref. [8]). When run, the interface computes
all the vertices and stores all the information about the model in the form
of a Python module which can be linked to existing Feynman diagram cal-
culators. Currently, the UFO is used by Aloha [22], MadAnalysis 5 [23]
and MadGraph 5 [24] and will be used in the future by GoSam [25,26] and
Herwig++ [27]. For details about the structure of the Python module and
the syntax used to store the analytical expressions for the Lorentz and color
structures of the vertices, we refer to Ref. [8]. Here it suffices to say that any
vertex coupling fields of spins no greater than two and transforming in the
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Table 26: Options accepted by the UFO interface

Output A string specifying the output directory. The default is
M$ModelName with UFO appended.

Input A list of vertices that will be merged with the vertices
computed from the Lagrangian before transforming them
into the UFO format. The default is an empty list.

AddDecays If True, the analytic expressions for all two-body decays
are included into the file decays.py. The default is True.

Table 26

representations 1, 3, 6 or 8 of the QCD gauge group can be implemented into
the UFO format. This is done by decomposing each vertex into a color ⊗ spin
basis using the master formula

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (6.40)

where Ca1...an
i and L!1...!n

j (p1, . . . , pn) denote tensors in color and spin space
respectively, and Gij is a matrix of coupling constants. The analytic expression
for the color and spin tensor are stored inside the UFO, and can be transformed
into Fortran and/or C++ routines using the Aloha package [22].

Note that for the UFO files to work properly, all coupling constant should be
assigned an interaction order (see Section 6.1.7).

6.8 The Whizard interface

The Whizard interface can be called with the following command,

WriteWOOutput[L1, L2,. . . , options]

where L1, L2, . . . , are the different pieces of the model Lagrangian. The inter-
face accepts, in addition to all the options of FeynmanRules[] and the option
Exclude4Scalars described in Section 6.3, various options which are summa-
rized in Table 27. The full details of this interface can be found in Ref. [9]. We
will summarize some of the most important points.

The Whizard interface can currently handle spins 0, 1/2, 1 and 2. The color
representations supported include the singlet, triplet, antitriplet and octet.
The full list of vertices supported by this interface can be found in Table 1
of Ref. [9] and comprises a large number of the possible vertices for these
spins and color representations. When an unsupported vertex is identified, a
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Efficiency

Command FR 1.6 FR 2.0 - 1 FR 2.0 - 2 FR 2.0 - 4 FR 2.0 - 8

FeynmanRules 5.84 s 4.98 s 3.09 s 2.32 s 1.93 s

WriteCHOutput 9.33 s 9.51 s 8.05 s 6.26 s 5.53 s

WriteUFO 9.05 s 8.82 s 7.89 s 6.51 s 6.05 s
Table 28

Table 28: Running time associated with the three FeynRules commands
FeynmanRules (second line), WriteCHOutput (third line) and WriteUFO (fourth
line), where the decay widths are not calculated. For this comparison, we use the
Standard Model whose Lagrangian has been calculated before calling these com-
mands. We compare version 1.6 of FeynRules (second column) to version 2.0
when using one (third column), two (fourth column), four (fifth column) and eight
(last column) CPU cores.

if available on the system. By default, the maximum number of available cores
is employed and FeynRules is loaded on each of them, together with one
Mathematica slave kernel per core. This behavior can be modified according
to the user’s needs by setting one of two dedicated variables accordingly. First,
in the case the user wants to run FeynRules on a single CPU core, he/she
has to issue, in a Mathematica session, the command

FR$Parallel = False

before loading the FeynRules package. Second, in the case the user wants
to employ only a subset of the available CPU power for FeynRules, he/she
can type the command

FR$KernelNumber = <n>

where <n> is an integer number smaller than or equal to the maximum number
of available CPU cores. In the case this command is run before FeynRules

is started, <n> Mathematica slave kernels are started and each of these are
employed by FeynRules. Otherwise, if typed after FeynRules has been
loaded, this indicates to FeynRules to reduce the number of slave Mathe-

matica kernels to <n>. Note that in order to increase the number of kernels,
FeynRules must be restarted.

At this stage, it is still possible to force FeynRules to effectively employ one
CPU core for the calculations that it will perform by typing

FR$Parallelize = False

This commands keeps all the slave Mathematica kernels running but only
employs one of them for the computations.

In Table 28, Table 29 and Table 30, we compare the running times of the
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Command FR 1.6 FR 2.0 - 1 FR 2.0 - 2 FR 2.0 - 4 FR 2.0 - 8

FeynmanRules 325.5 s 213.7 s 79.7 s 62.6 s 41.0 s

WriteCHOutput 853.4 s 618.9 s 350.8 s 283.9 s 204.4 s

WriteUFO 436.0 s 518.5 s 316.1 s 273.8 s 239.7 s
Table 29

Table 29: Same as Table 28, but for the MSSM. In contrast to the Standard
Model case, four scalar interactions have been removed when running the com-
mands WriteCHOutput and WriteUFO.

code in three different contexts. Table 28 is dedicated to the Standard Model.
We first compute the model Lagrangian and then execute the FeynmanRules
command without performing the full expansion over flavor indices,

lag = LSM
FeynmanRules [ lag ]

The results are presented in the second line of the table and correspond to
only the second of the two commands above. Then, we turn to the efficiencies
of the interfaces and take the example of the CalcHep (third line of the
table) and UFO (last line of the table) interfaces. In the last case, we omit
the computation of the decay widths for the sake of the comparison, as this
feature is absent in the version 1.6 of FeynRules. The running time are those
obtained after typing, in a Mathematica session,

WriteCHOutput [ lag ]
WriteUFO [ lag, AddDecays->False ]

respectively. They correspond to the sum of the times needed to first extract
the Feynman rules, then perform the flavor expansion and eventually translate
the rules in terms of the CalcHep and UFO formats, respectively. Whereas
this mimics the behavior of most users, an exclusive test of the interfaces
can be achieved by computing the Feynman rules separately and providing
the vertices as input to the interfaces. This however goes beyond the tests
performed in this section where we have chosen to stick to the commands
mostly employed by the users. For all the three commands above, we confront
results as obtained by means ofFeynRules 1.6, the previous stable version, to
those obtained with FeynRules 2.0 when using one, two, four and eight cores.
For the tests, we employ a machine with a 2.3 GHz Intel Core i7 processor
and 16 GB of memory (1600 MHz DDR3). Moreover, the operating system
is MacOS X 10.8.4. As can be seen from the table, the speed improvement
between the older and new version of FeynRules is significant, especially
when more than one core is employed.

Table 29 addresses the MSSM. As for the Standard Model, the Lagrangian is
first computed separately and then employed together with the FeynmanRules
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element generator has slightly different methods of dealing with them. The
results should be included in the documentation.

Although it is virtually impossible to prove the absolute correctness of a model
implementation, following these guidelines should give greater confidence. Un-
fortunately, in practice the level of model validation has been irregular. One of
the challenges is that although it is straightforward to test a handful of Feyn-
man rules by hand, validating the full set of vertices, of which there can be
thousands, has been difficult. One approach to this task has been to automate
the calculation of the cross section by the different matrix element generators
(MEG), in different gauges and in different, independent implementations and
compare the results [3]. We believe that this procedure nicely complements the
sanity tests and the validation of a small set of Feynman rules by hand. How-
ever, it can be difficult for a user to set up such an automated test for several
reasons. It requires expertise in each code that is to be compared as well as a
careful matching of the setups for each code (in particular, the cuts and model
input).

It is our goal to attain a very high level of validation for every model im-
plemented in FeynRules. To this end, we have begun developing a new
automated web validation which abstracts the details of the matrix element
generator setup [13]. Experts in each matrix element generator takes care of
the installation and running of the MEG on the server. The model implemen-
tation author accesses the MEG through a web interface where he/she uploads
his/her FeynRules model files to the server. The server uses the uploaded
files to generate model files for the supported MEGs and allows the user to
run validations on the model implementation. The server displays the results
on the screen and marks processes where inconsistencies are suspected, giving
the user an idea of where to look for problems. If no inconsistencies are found,
the user gains greater confidence in his/her model.

Although this software is still in a beta stage and we feel there is much more
that should be done to improve it, it is already useful for validation. For this
reason, it has been made public.

8.1 URL and Account

The web interface can be accessed from any web enabled device by pointing
a web browser at the url:

http://feynrules.phys.ucl.ac.be/validation

The browser will be immediately redirected to the author’s personal model
page. If not already logged in, the user will be redirected to the login page. To

109



Web Validation



{•Documentation
•Sanity Checks
•1 Generator
•>1 Generators
•Web Validation
•Debugging

Va
lid

at
io

n {•Comment Out
• Syntax errors can be found by 

commenting out until the error is 
found.

•Web validation
• Help find problematic vertices



{•Documentation
•Sanity Checks
•1 Generator
•>1 Generators
•Web Validation
•Debugging

Va
lid

at
io

n



Model

FeynRules

MadGraph

FR Model File

{Validation

•Documentation
•Sanity Checks
•1 Generator
•>1 Generators
•Web Validation
•Debugging



Model

FeynRules

MadGraph

FR Model File

{•Load UFO into MG5
•Run MG5 Tests
•Run Simulations
•...

Validation



M
ad

G
ra

ph{•Load UFO into MG5
•Run MG5 Tests
•Run Simulations
•...

{•UFO Model Dir
• Copy the UFO Model dir 

to the MadGraph5 
models dir

cp -r  ModelName_UFO  .../MadGraph5_v1_5_12/models/.



M
ad

G
ra

ph{•Load UFO into MG5
•Run MG5 Tests
•Run Simulations
•...

{•Load UFO Model
• During MG5 session

mg5>import model ModelName_UFO



M
ad

G
ra

ph{•Load UFO into MG5
•Run MG5 Tests
•Run Simulations
•...
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mg5>import model ModelName_UFO
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mg5>check  p p > uv uv~
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mg5>generate p p > uv uv~
mg5>output
mg5>launch
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• Full FeynRules model info included
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element generator (universal)

• Default model format for MadGraph 5, 
GoSam and Herwig++(future)
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• 4-fermion operators
• operators with >4 particles

• 3, 6 and 8 color reps supported
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VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')
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      VERTEX = COUP*( (V4(1)*( (V2(1)*( (0, -1)*(V3(2)*V1(2))
     $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*( (0, 1)
     $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
     $ +( (V4(2)*( (V2(2)*( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
     $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*( (0, 1)*(V3(1)*V2(1))+(0, 
     $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+( (V4(3)*( (V2(3)
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wrapper
• C++ library linkable to other codes
• Thorough API documentation

•Any rep of any semisimple 
compact Lie algebra

• Including finding singlets
• Many, many automated tests

•Rewriting Lorentz part of core 
to be more general
• Want solid foundation for later 

development
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