A look into the BSM hunter's toolbox

Claude Duhr

Characterization of new physics at the LHC

CERN, July 4th 2010

Donnerstag, 14. Oktober 2010

Simulating 112 comstons

Donnerstag, 14. Oktober 2010

Simulating IL CO

- Searching for new physics requires the modeling of hard interaction.
- Various tools have been developed on the theory side to perform this task.
- Knowing when/how to use a given tool is a valuable asset.

The zoo of HEP tools

The aim of this talk is ...

- ... to provide an overview of the different tools, their features and limitations.
- ... to show how the same tool can be used in different contexts.
- ... to trigger discussions and interaction between theorists and experimentalists, in order to further sharpen the tools.

Generating BSM matrix elements

• Main approaches:

- Compute hard ME 'by hand', and put it into the Monte Carlo program (cf. Pythia 6 and Fortran Herwig).
- → Use simplified (flat) ME (cf. OSET approach).
- ➡ Use multi-purpose ME generators.
- Philosophy behind multi-purpose ME generators: Given a collection of particles, parameters and vertices, construct the matrix element and perform the phase space integration for the hard process.
- Advantage: All the information (spin, interference) is kept!
- **N.B.:** This approach can be used both for model dependent **and** independent searches (cf. second part of the talk).

Generating BSM matrix elements

• Commonly used ME generators:

- ➡ CalcHep / CompHep
- ➡ Herwig++ (2-to-2)
- ➡ MadGraph / MadEvent
- ➡ Sherpa
- ➡ Whizard / Omega
- Generate events for the hard process, e.g.,

p p > go go

• The events can be passed on to Monte Carlo codes via LHE files (where applicable).

- In many BSM models, particles decay via long decay chains.
- Final state multiplicity in general too high for ME generator.

- But we do not need all the diagrams, but only those that have a given set of s-channel resonances.
- In the narrow-width approximation, intermediate particles can be treated as 'almost on shell'.

- In many BSM models, particles decay via long decay chains.
- Final state multiplicity in general too high for ME generator.

- But we do not need all the diagrams, but only those that have a given set of s-channel resonances.
- In the narrow-width approximation, intermediate particles can be treated as 'almost on shell'.

- Solution 1: Produce particles on shell, decay them later (e.g., in Pythia).
 - \checkmark Allows to go to arbitrary high multiplicity.
 - Looses information on spin correlations, off-shell effects,...
- Solution 2: Produce particles on shell, decay them later using dedicated tools using narrow width approximation (e.g. Bridge).
 - \checkmark Allows to go to arbitrary high multiplicity.
 - \checkmark (Most of the) spin correlations are kept.
 - Looses information on off-shell effects.

- Solution 3: Use ME generators to generate the relevant resonant diagrams.
 - ✓ Work with the full resonant Feynman diagrams: Full Information on spin correlations, off-shell effects, etc. is kept.
 - Length of the decay chain can be limited (depends on the tool).

p p > go go, (go > sb~ b, sb~ > x2 b~, x2 > se+ ese+ > x1 e+), (go > sb b~ sb > x1 b) [MG5 syntax]

	CalcHep	Herwig++	MadGraph	Sherpa	Whizard
SM					
cMSSM					
MSSM					
NMSSM					
2HDM					
UED					
Technicolor					
Little Higgs					

	CalcHep	Herwig++	MadGraph	Sherpa	Whizard
SM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cMSSM					
MSSM					
NMSSM					
2HDM					
UED					
Technicolor					
Little Higgs					

	CalcHep	Herwig++	MadGraph	Sherpa	Whizard
SM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cMSSM	√ *	\checkmark	\checkmark	\checkmark	\checkmark
MSSM					
NMSSM					
2HDM					
UED					
Technicolor					
Little Higgs					

* Derived from LanHep implementation.

	CalcHep	Herwig++	MadGraph	Sherpa	Whizard
SM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cMSSM	√ *	\checkmark	\checkmark	\checkmark	\checkmark
MSSM	√ *			\checkmark	\checkmark
NMSSM					\checkmark
2HDM			\checkmark		
UED	\checkmark				\checkmark
Technicolor					
Little Higgs					

* Derived from LanHep implementation.

Implementing a new model

- Even though all the ME elements generators can in principle handle any renormalisable model, implementing a new model can be a very tough task!
- In general, all the vertices need to be entered one at the time.
- For complicated models, one can easily end up with 1000's of vertices!
 - extremely tedious and error-prone!
- Additional tools have been developed that allow to go directly from a Lagrangian to a model implementation:
 FeynRules
 - ➡ LanHep

Implemented models

	CalcHep	Herwig	MadGraph	Sherpa	Whizard
SM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cMSSM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MSSM	\checkmark			\checkmark	\checkmark
NMSSM					\checkmark
2HDM			\checkmark		
UED	\checkmark				\checkmark
Technicolor					
Little Higgs					

Implemented models

	CalcHep	Herwig	MadGraph	Sherpa	Whizard
SM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cMSSM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MSSM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NMSSM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2HDM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
UED	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Technicolor					
Little Higgs					

• Still many model missing/private... how to make them public..?

Towards a database of models...

noDel.org > SuperSym > moDel:1004.1424	ch or Article-id (Help Advanced sea All papers 🗘 G
upersymmetric models	Download:
MSSM + Z' Mr. X	Model files Benchmark Points Validation Tables
Submitted on 14 Apr 2010)	Other formats
We present the FeynRules implementation of the extnsion of the MSSM with a Z' boson. This model was first presented in arXiv:1003.1234.	Current browse context: SuperSym < prev next > new recent 1004
omments: FeynRules model file (3 files) + 2 benchmark points (2 files) ubjects: MSSM - Extensions (SuperSym) ite as: moDel:1004.0123v1 [SuperSym]	 References & Citations SLAC-SPIRES HEP (refers to cited by)
' alidation his model implemetation is known to work with alcHep	Bookmark (what is this?)
olem erwig adGraph	
herpa esults of the validation are available here .	

Which authors of this paper are endorsers?

Overview of features

	Final states	Decay chains	Spins	Lorentz	Color
CalcHep	~6	no limit/no cor.	0,1/2,1,2	< 5 particles	1,3,8
CompHep	~6		0,1/2,1,2	< 5 particles	1,3,8
Herwig	2		0,1/2,1,2	no restric.*	1,3,8
MG4	8	8	0,1/2,1,2	limited	1,3,8
MG5beta	no limit**	no limit**	no limit**	no restric.**	1,3,8**
Sherpa	8	8	0,1/2,1,2	limited	1,3,8
Whizard	~8	no known limit	0,1/2,1, 3/2, 2	limited ****	1,3,8****

Overview of features

	Final states	Decay chains	Spins	Lorentz	Color
CalcHep	~6	no limit/no cor.	0,1/2,1,2	< 5 particles	1,3,8
CompHep	~6		0,1/2,1,2	< 5 particles	1,3,8
Herwig	2		0,1/2,1,2	no restric.*	1,3,8
MG4	8	8	0,1/2,1,2	limited	1,3,8
MG5beta	no limit**	no limit**	no limit**	no restric.**	1,3,8**
Sherpa	8	8	0,1/2,1,2	limited	1,3,8
Whizard	~8	no known limit	0,1/2,1, 3/2, 2	limited ****	1,3,8****

* Lorentz structures will be provided by FeynRules output in the future.
** Still under development / beta testing.

***Possible to extend to arbitrary color structures.

**** Sextets and decuplets and arbitrary Lorentz structures are foreseen.

Donnerstag, 14. Oktober 2010

Model dependent searches

- Can directly use built-in and/or FeynRules generated models.
- Aim: Characterize excesses and/or set exclusion limits on parameter space of the model.
- Advantages:
 - → Work in a fully fledged consisted model.
 - Models provide guidance for the interesting signals and / or benchmark points.
 - Allows to search for multiple signals predicted by one same model.
- But in some cases advantages can turn into disadvantages...

Model dependent searches

- Complicated models in general depend on too many free parameters:
 - ➡ Work with restricted models.
 - E.g.: MSSM : 124 free parameters.
 mSugra : 5 free parameters.
- Models may imply relations between masses and / or couplings
 - can lead to bias in the search and in the ranges of masses and couplings.

Model independent searches

- Some of these problems can be overcome by using simplified models.
- Example: Both ED and certain SUSY models predict color octet scalars.
 - can search for these new particles independently of the underlying model.
 - Simplified model:
 SM + color octect scalar + new couplings.
 - ➡ Parameters of the model:
 - mass of the scalar + (cross section x branching ratio)

Model independent searches

- One way to tackle the problem is to use an OSET / Topology approach.
 - Use a parametrized / flat matrix element.
 - See talks by Arkani-Hamed and Torre.
- Alternatively, matrix element generators can also be used in this context, e.g., if spin information is required
 - Just add a few new particles and interactions to the SM.
 - Some tools, like MadGraph, have a dedicated framework that allows to do this very easily (USRMOD).

Model independent searches

USRMOD approach in MadGraph Add new particle

#MODEL EXTENSION so so S D SMASS SWIDTH O so 9000000 # END

➡ Add new interaction

USRVertex so so g G QCD u u so G QCD

Effective theory approach

New physics can leave traces in SM processes, even if we do not directly observe the new particles.
Best known example : Fermi interaction

- Even though we do not observe the new particles directly, we could obtain interesting new signatures.
- Even more so, many models involving a new strong interaction are described at the weak scale by an effective theory involving higher dimensional operators.

Effective theory approach

- The simulation of higher dimensional operators was for a long time hampered by the fact that (most of) the ME generators did not support these types of vertices.
- The situation is about to change dramatically:
 Herwig++, MadGraph 5 and Pythia 8 will receive full information on the vertices from FeynRules.
 This will allow for the first time to simulate these kinds of interactions with these tools.

Summary

- The BSM hunter's toolbox starts to fill up!
- We slowly get to the point that we can easily generate matrix elements for all kinds of (Lagrangian-based) models.

- This chain can be used easily in different contexts
 Top-down / model dependent
 - Bottom-up / model independent
 - → Effective theories and higher dimensional operators.