

BSM phenomenology with FeynRules

Claude Duhr

In collaboration with: N.D. Christensen, B. Fuks +MC collaborators March 18, 2009 IPMU Focus week

Outline

• A RoadMap to BSM @ the LHC

• FeynRules

• A simple example

• Validation of BSM models

Idea

What about BSM? A Roadmap for BSM @ the LHC

- Workload is tripled, due to disconnected fields of expertise.
- Error-prone, painful validation at each step.
- Proliferation of private MC's/Pythia tunings:
 - ➡ No clear documentation.
 - ➡ Not traceable.
- We need more than just papers to communicate between theorists and experimentalists!

hat about BSM? A Roadmap for BSM @ the LHC

hat about BSM? A Roadmap for BSM @ the LHC

hat about BSM? A Roadmap for BSM @ the LHC

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_X$$
$$\mathcal{L}_X = \frac{1}{2} \partial_\mu X \partial^\mu X + \frac{1}{2} m_X^2 X^2 + \lambda_X X^2 \Phi^{\dagger} \Phi$$

- Two step implementation:
 - Step 1: Define your new particles and parameters.
 - Step II: Write your lagrangian.

• Step I: Define your particles and parameters:

lX == {
 Value -> 0.5,
 InteractionOrder -> {QED, 2}}

S[4] == {
 ClassName -> X,
 SelfConjugate -> True,
 Mass -> {MX, 40},
 Width -> {WX, 0}}

$$\mathcal{L}_X = \frac{1}{2} \partial_\mu X \partial^\mu X$$

$$+\frac{1}{2}m_X^2 X^2$$

$$+ \lambda_X X^2 \Phi^{\dagger} \Phi$$

• Step II: Write your Lagrangian:

+ 1/2 MX^2 X^2

+ lX X^2 HC[Phi].Phi;

$$\mathcal{L}_X = \frac{1}{2} \partial_\mu X \partial^\mu X$$

$$+\frac{1}{2}m_X^2 X^2$$

$$+\lambda_X X^2 \Phi^{\dagger} \Phi$$

• Step III: Feynman Rules

FeynmanRules[LX]

Vertex 1

Particle 1 : Scalar, H

Particle 2 : Scalar , H

Particle 3 : Scalar, X

Particle 4 : Scalar, X

Vertex:

−2 *i* lX

Vertex 2 Particle 1 : Scalar , HParticle 2 : Scalar , XParticle 3 : Scalar , XVertex: -2i lX v

Step IV: Do Phenomenology!

WriteMGOutput[LSM, LX]

This model can now be used just as any other MadGraph model, both at the theory and the experimental side.
 No private MC needed!

- In this approach, we 'standardize' the validation of the model:
 - Use Feynman rules to cross-check some simple handmade calculations.
 - This step can even be automatized by using FeynArts/ FormCalc.
 - Use different Monte Carlo's with different conventions to validate the model (Different gauges, unitarity...).

Validation

• SM (N.D. Christensen, CD)

- ✓ FeynArts
- ✓ CalcHep/CompHep (31 2-to-2 processes)
- ✓ MadGraph/MadEvent (31 2-to-2 processes)

	CalcHEP	CalcHEP	CalcHEP	CompHEP	MadGraph	MadGraph
Process	Stock	Feynman	Unitary	Feynman	Stock	
gg->gg	116490.	116 490.	116490.	116490.	116520.	116460.
uū->gg	199.95	199.95	199.95	199.94	200.24	200.07
tī->gg	64.595	64.595	64.595	64.592	64.619	64.577
$e^+e^ > \mu^+\mu^-$	0.37195	0.37195	0.37195	0.37194	0.372	0.37142
e*e>e*e-	734.15	734.15	734.15	734.16	733.65	735.09
$e^+e^ > v_e \bar{v}_e$	49.145	49.145	49.145	49.145	49.135	49.086
tt->uū	16.018	16.018	16.018	16.018	16.002	16.016
uū->sš	9.6103	9.6102	9.6103	9.6097	9.6257	9.6205
ud->cs	0.23864	0.23864	0.23864	0.23864	0.23867	0.23859
us->cd	0.018947	0.018947	0.018947	0.018947	0.018954	0.018916
$t\bar{t} - > W^+W^-$	17.265	17.265	17.265	17.265	17.256	17.272
tt->zz	1.2686	1.2686	1.2686	1.2686	1.2679	1.2705

Validation

• 3-Site Model (N.D. Christensen)

✓ 222 2-to-2 processes in CalcHep and MadGraph/MadEvent.

• Triangle Moose Model (N.D. Christensen)

✓ 222 2-to-2 processes in CalcHep (MadGraph on-going).

• Universal extra dimensions (P. de Aquino)

✓ 118 2-to-2 processes in CalcHep and MadGraph/MadEvent.

elR-,mlR->e-,m-	6.5807×10^{-1}	6.5818×10^{-1}	6.5818×10^{-1}	OK:	0.0167142%
e1R-,m1R+>e-,m+	4.7857×10^{-1}	4.7682×10^{-1}	4.7682×10^{-1}	OK:	0.366343%
elR-,elR+>A,A	2.0803×10^{-1}	2.0788×10^{-1}	2.0788×10^{-1}	OK:	0.072131%
n11,n11~>u,u~	1.6364×10^{-1}	1.6354×10^{-1}	1.6354×10^{-1}	OK:	0.0611284%
n11, n11~>Z,Z	4.1402×10^{-1}	4.1349×10^{-1}	4.1349×10^{-1}	OK:	0.128095%
n11, n11~>W+, W-	5.9018×10^{-1}	5.9009×10^{-1}	5.901×10^{-1}	OK:	0.0152507%

Validation

• Generic MSSM (120 free parameters, B. Fuks)

- We checked the SPS1a cMSSM limit.
 - ✓ FeynArts (2-to-2 hadroproduction cross-sections).
 ✓ MadGraph/MadEvent: 320 1-to-2 decays. 456 2-to-2 processes. 2700 2-to-3 processes.
 ✓ CalcHep validation on-going.

the second se	All and the second s	the second	The second s		the second second second second
elR-,mlR->e-,m-	6.5807×10^{-1}	6.5818×10^{-1}	6.5818×10^{-1}	OK:	0.0167142%
e1R-,m1R+>e-,m+	4.7857×10^{-1}	4.7682×10^{-1}	4.7682×10^{-1}	OK:	0.366343%
elR-,elR+>A,A	2.0803×10^{-1}	2.0788×10^{-1}	2.0788×10^{-1}	OK:	0.072131%
n11,n11~>u,u~	1.6364×10^{-1}	1.6354×10^{-1}	1.6354×10^{-1}	OK:	0.0611284%
n11, n11~>Z,Z	4.1402×10^{-1}	4.1349×10^{-1}	4.1349×10^{-1}	OK:	0.128095%
n11,n11~>W+,W-	5.9018×10^{-1}	5.9009×10^{-1}	5.901×10^{-1}	OK:	0.0152507%

Conclusion

- FeynRules derives Feynman rules from a Lagrangian.
 Automatic implementation of BSM models into various Feynman diagram generators:
 - CalcHep/CompHep
 - FeynArts/FormCalc
 - MadGraph/MadEvent
 - Sherpa
- This approach could provide a new way to implement, validate and test BSM models implementation for the LHC.
 The package can be downloaded from:

http://feynrules.phys.ucl.ac.be

Higher-Dim. Operators

- FeynRules can derive Feynman rules for higher dimensional operators.
- Some ME generators have restrictions on the Lorentz structures available (e.g. the HELAS routines for MadGraph).
- In the FeynRules approach these routines could be generated by FR itself (all the information needed is in the Feynman rules).
- On-going projects to write Lorentz structures in an automated way directly from the Feynman rules for MadGraph and FeynArts.

Eta-Eta' mixing

- The default version of FeynArts does not support non-linear sigma model interactions.
- Solution:

$FR \rightarrow Feynman rules \rightarrow Lorentz structure$ $\rightarrow FeynArts$

• This approach was applied in [arXiv:0901.2860] to compute the eta-eta' mixing in FeynArts (with the use of FR).