
The UFO

Claude Duhr

Taipei School on MadGraph for LHC physics
National Taiwan University Taipei, 24-27 May 2012

Eidgentissische Technische Hochschule Ziirich
Swiss Federal lnstitute of Technology Zurich

Physics Department

Prof. Dr. Charalampos Anastasiou

I nstitut fi.ir Theoretische Physik
HIT R42,2
CH-8093 Zririch
Tel. direkt +41-1-633 2583
Tel. Sekr. +4t-t-633 2570
Fax +41-1-633 1115
E-Mail babis@phys.ethz.ch

Visit to an INFN lnstitute by Claude Duhr

Tirich, October L7, 20Ll

To whom it may concern

This is to certify that Dr Claude Duhr is employed by the ETH Zurich, lnstitute of Theoretical
Physics, Department of Physics as a Reseach Associate since October 1, 201-l- and for a period
of five years. He is allowed to visit and work with colleagues in other research lnstitutes at his
own wish and at any time. Specifically, he has been allowed to work at the National Laboratories
of Frascati of INFN from Oct t2th - Oct 16th 2011, and in any other future instance he finds it
necessary.

Yours sincerely

Charalampos An

Recap of previous lecture
• In the previous lecture we saw how to

➡ implement a model into FeynRules.

➡ export the model to MadGraph 5.

➡ check a model implementation.

• So far we have used the input files for MadGraph as
‘black boxes’ without caring to much about what is inside.

• For most applications this is good enough (this is the
whole goal of FeynRules!).

• But sometimes it is good to know what is going on behind
the scenes...

UFO..?
• UFO = Universal FeynRules Output

• The UFO is the default model format of MadGraph 5
(but not of MadGraph 4!).

• The UFO is a generic format for BSM models that is not
tied to any matrix element generator.

[C. Degrande, CD, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter]

UFO..?
• UFO = Universal FeynRules Output

• The UFO is the default model format of MadGraph 5
(but not of MadGraph 4!).

• The UFO is a generic format for BSM models that is not
tied to any matrix element generator.

[C. Degrande, CD, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter]

• Question: Why switch to a new model format in
MadGraph 4..?
➡ the old format did a good job for many years.

➡ users are familiar with this format.

➡ never change a winning team!!!!

➡ so why did we change it nevertheless..?

Why the UFO..?
• Reason 1: The UFO is ‘agnostic’, and does not make any

assumption about any matrix element generator
downstream in the code.

Why the UFO..?
• Reason 1: The UFO is ‘agnostic’, and does not make any

assumption about any matrix element generator
downstream in the code.
➡ clear factorization between what is model and what is

generator!

➡ in other words, clear separation between what
FeynRules should provide, and what generators should
do with this information.

Why the UFO..?
• Reason 1: The UFO is ‘agnostic’, and does not make any

assumption about any matrix element generator
downstream in the code.
➡ clear factorization between what is model and what is

generator!

➡ in other words, clear separation between what
FeynRules should provide, and what generators should
do with this information.

➡ the UFO is not exclusively used by MadGraph 5, but
also by other codes.

➡ makes it possible to use the same model file with various
generators.

Why the UFO..?
• Reason 2: The old format was not flexible enough:

➡ most model formats are based on text files:

FFV (llZ)
b b g GG QCD
t t g GG QCD

g g g G QCD

g g g g G G QCD QCDD

Why the UFO..?
• Reason 2: The old format was not flexible enough:

➡ most model formats are based on text files:

FFV (llZ)
b b g GG QCD
t t g GG QCD

g g g G QCD

g g g g G G QCD QCDD

➡ Fixed number of particles per vertex.

➡ Implicit Lorentz structures.

➡ Implicit color structures.

➡ In other words, everything beyond
the ordinary is very hard to
implement.

Why the UFO..?
• Reason 2: The old format was not flexible enough:

➡ most model formats are based on text files:

FFV (llZ)
b b g GG QCD
t t g GG QCD

g g g G QCD

g g g g G G QCD QCDD

➡ Fixed number of particles per vertex.

➡ Implicit Lorentz structures.

➡ Implicit color structures.

➡ In other words, everything beyond
the ordinary is very hard to
implement.

• The UFO does not have these restrictions by design!

The UFO

UFO = Universal FeynRules Output

• Idea: Create Python modules that can be linked to other
codes and contain all the information on a given model.

• The UFO is a self-contained Python code, and not tied to
a specific matrix element generator.

• The content of the FR model files, together with the
vertices, is translated into a library of Python objects, that
can be linked to other codes.

• By design, the UFO does not make any assumptions on
Lorentz/color structures, or the number of particles.

• GoSam and MadGraph 5 use the UFO as the default
model format for BSM, Herwig++ will use it in the future.

Plan of the lecture

• What is inside the UFO?
➡ structure of the model files.

➡ what makes it so flexible.

• From the Lagrangian to events:
➡ The FeynRules-UFO-ALOHA-MadGraph chain.

Inside the UFO

Inside the UFO
• The UFO is a fully fledged Python module that can be

linked to other codes.
➡ no parsing of text files.

• Content of the module:

__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Let’s have a closer look at these files!

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Standard initialization file
present in every Python module.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• File containing the definitions of
the classes (Particle, Parameter, ...)
used in this Python module.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Built-in function to produce Les
Houches-style input parameter
files (‘param_card.dat’).

• Will be discussed later.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• It is possible to use functions
from the cmath library when
writing algebraic expressions in
the UFO (e.g. cmath.sqrt(x)).

• Sometimes however these
functions are insufficient or too
cumbersome to use.

• function_library.py allows you
to define new customized
(algebraic) functions.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• It is possible to use functions
from the cmath library when
writing algebraic expressions in
the UFO (e.g. cmath.sqrt(x)).

• Sometimes however these
functions are insufficient or too
cumbersome to use.

• function_library.py allows you
to define new customized
(algebraic) functions.

➡ Example:

cmath does not
contain a
definition of sec(x).

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• It is possible to use functions
from the cmath library when
writing algebraic expressions in
the UFO (e.g. cmath.sqrt(x)).

• Sometimes however these
functions are insufficient or too
cumbersome to use.

• function_library.py allows you
to define new customized
(algebraic) functions.

➡ Example:

cmath does not
contain a
definition of sec(x).

sec = Function(name = 'sec',
 arguments = ('z',),
 expression = '1./cmath.cos(z)')

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

u = Particle(pdg_code = 2,
 name = 'u',
 antiname = 'u~',
 spin = 2,
 color = 3,
 mass = Param.ZERO,
 width = Param.ZERO,
 texname = 'u',
 antitexname = 'u',
 charge = 2/3,
 LeptonNumber = 0,
 GhostNumber = 0)

u__tilde__ = u.anti()

➡ The Particle class comes
with a predefined
method to instantiate
the antiparticle.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

u = Particle(pdg_code = 2,
 name = 'u',
 antiname = 'u~',
 spin = 2,
 color = 3,
 mass = Param.ZERO,
 width = Param.ZERO,
 texname = 'u',
 antitexname = 'u',
 charge = 2/3,
 LeptonNumber = 0,
 GhostNumber = 0)

u__tilde__ = u.anti()

➡ Allowed colors: 1,3,6,8

➡ Allowed spins: 0,1/2,1,2

-1 = ghosts

3/2 under testing in MadGraph 5.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

➡ Parameters are
grouped into
external and
internal, just like in
FeynRules.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

v = Parameter(name = 'v',
 nature = 'internal',
 type = 'real',
 value = '(2*MW*sw)/ee',
 texname = 'v')

➡ Parameters are
grouped into
external and
internal, just like in
FeynRules.

➡ An internal parameter

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

v = Parameter(name = 'v',
 nature = 'internal',
 type = 'real',
 value = '(2*MW*sw)/ee',
 texname = 'v')

➡ Parameters are
grouped into
external and
internal, just like in
FeynRules.

➡ An internal parameter

➡ An external parameter

aS = Parameter(name = 'aS',
 nature = 'external',
 type = 'real',
 value = 0.118,
 texname = '\\text{aS}',
 lhablock = 'SMINPUTS',
 lhacode = [3])

The param_card
• If you want to change a numerical input parameter, you do

not need to do this in the UFO!

• They can be changed at run time after generating the
process.

• This can be done in the param_card.dat, stored in the
directory /Cards/ of the process directory (just like in
MadGraph 4).

• The format of the param_card.dat is an extension of the
SUSY-Les-Houches accord format.

➡ All parameters are grouped into blocks.

• Numerical values in the UFO are just default values.

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

BR NDA ID1 ID2
 8.27451012E-02 2 4 -4 # BR(H -> c cbar)
 7.17809696E-01 2 5 -5 # BR(H -> b bbar)

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

BR NDA ID1 ID2
 8.27451012E-02 2 4 -4 # BR(H -> c cbar)
 7.17809696E-01 2 5 -5 # BR(H -> b bbar)

Model Parameters

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

BR NDA ID1 ID2
 8.27451012E-02 2 4 -4 # BR(H -> c cbar)
 7.17809696E-01 2 5 -5 # BR(H -> b bbar)

Model Parameters

Masses

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

BR NDA ID1 ID2
 8.27451012E-02 2 4 -4 # BR(H -> c cbar)
 7.17809696E-01 2 5 -5 # BR(H -> b bbar)

Model Parameters

Masses

Widths

Block SMINPUTS # Standard Model inputs
 1 1.32506980E+02 # alpha_em(MZ)(-1) SM MSbar
 2 1.16639000E-05 # G_Fermi
 3 1.18000000E-01 # alpha_s(MZ) SM MSbar
 4 9.11880000E+01 # Z mass (as input parameter)

The param_card

Block MASS # Mass spectrum (kinematic masses)
PDG Mass
 5 4.70000000E+00 # bottom pole mass
 6 1.72000000E+02 # top pole mass
DECAY 6 1.43947825E+00 # top width
DECAY 23 2.44140351E+00 # Z width

BR NDA ID1 ID2
 8.27451012E-02 2 4 -4 # BR(H -> c cbar)
 7.17809696E-01 2 5 -5 # BR(H -> b bbar)

Model Parameters

Masses

Widths

Branching Ratios

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios

aS = Parameter(name = 'aS',
 nature = 'external',
 type = 'real',
 value = 0.118,
 texname = '\\text{aS}',
 lhablock = 'SMINPUTS',
 lhacode = [3])

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios
• Numerical values for the width can be given as inputs in

FeynRules, and are then passed to the UFO.

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios
• Numerical values for the width can be given as inputs in

FeynRules, and are then passed to the UFO.

• However, FeynRules cannot compute the widths by itself.

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios
• Numerical values for the width can be given as inputs in

FeynRules, and are then passed to the UFO.

• However, FeynRules cannot compute the widths by itself.

➡ Write out the UFO model without the widths, and use
MadGraph to compute them.

The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios
• Numerical values for the width can be given as inputs in

FeynRules, and are then passed to the UFO.

• However, FeynRules cannot compute the widths by itself.

➡ Write out the UFO model without the widths, and use
MadGraph to compute them.

• Branching ratios cannot be included into FeynRules of the
UFO right now.

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

�1!2 =
1

2m

Z
d�2 |M1!2|2

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

�1!2 =
1

2m

Z
d�2 |M1!2|2

=

1

2m
|M1!2|2 Vol(phase space)

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

�1!2 =
1

2m

Z
d�2 |M1!2|2

=

1

2m
|M1!2|2 Vol(phase space)

• Or in words: a two-body decay rate is just a constant: the
square of a three-point vertex times the PS volume.

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

�1!2 =
1

2m

Z
d�2 |M1!2|2

=

1

2m
|M1!2|2 Vol(phase space)

• Or in words: a two-body decay rate is just a constant: the
square of a three-point vertex times the PS volume.

• In FeynRules, we have
➡ all the three-point vertices,

➡ a high-level computer algebra system.

The decay module
• In the future, FeynRules will be able to compute all the two-

body decays, and will pass them on to the UFO.

�1!2 =
1

2m

Z
d�2 |M1!2|2

=

1

2m
|M1!2|2 Vol(phase space)

• Or in words: a two-body decay rate is just a constant: the
square of a three-point vertex times the PS volume.

• In FeynRules, we have
➡ all the three-point vertices,

➡ a high-level computer algebra system.

• That’s all we need to get the two-body decays!

The decay module
• The development version of FeynRules already computes the

widths and writes them to the UFO files.

• Currently being implemented into MadGraph 5.

The decay module
• The development version of FeynRules already computes the

widths and writes them to the UFO files.

• Currently being implemented into MadGraph 5.

Decay_H = Decay(name = 'Decay_H',
 particle = P.H,
 partial_widths = {
 (P.b,P.b__tilde__):'3*MH**2*yb**2',
 (P.ta__minus__,P.ta__plus__):'MH**2*ytau**2',
 (P.c,P.c__tilde__):'3*MH**2*yc**2',
 (P.t,P.t__tilde__):'3*MH**2*yt**2'})

The decay module
• The development version of FeynRules already computes the

widths and writes them to the UFO files.

• Currently being implemented into MadGraph 5.

Decay_H = Decay(name = 'Decay_H',
 particle = P.H,
 partial_widths = {
 (P.b,P.b__tilde__):'3*MH**2*yb**2',
 (P.ta__minus__,P.ta__plus__):'MH**2*ytau**2',
 (P.c,P.c__tilde__):'3*MH**2*yc**2',
 (P.t,P.t__tilde__):'3*MH**2*yt**2'})

• The width and the branching ratios will then be included
automatically computed when loading a UFO.

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• These files are the core of the
UFO.

• The contain the definition of
the vertices and the
couplings.

• The rest of this lecture will be
about these files.

Vertices in MadGraph
• In MadGraph a vertex is represented by a threefold data:

• The computation of the Lorentz structures is outsourced to
the Helas library, which allows to compute helicity
amplitudes in a fast and efficient way.

[Murayama, Hagiwara, Watanabe]

➡ a color structure

➡ a Lorentz structure

➡ a coupling constant (a complex number)

Vertices in MadGraph
• In MadGraph a vertex is represented by a threefold data:

• The computation of the Lorentz structures is outsourced to
the Helas library, which allows to compute helicity
amplitudes in a fast and efficient way.

[Murayama, Hagiwara, Watanabe]

• The master formula:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

➡ a color structure

➡ a Lorentz structure

➡ a coupling constant (a complex number)

Vertices in MadGraph
• In MadGraph a vertex is represented by a threefold data:

• The computation of the Lorentz structures is outsourced to
the Helas library, which allows to compute helicity
amplitudes in a fast and efficient way.

[Murayama, Hagiwara, Watanabe]

• The master formula:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

➡ a color structure

➡ a Lorentz structure

➡ a coupling constant (a complex number)

HELAS
• Idea: Evaluate the matrix element for fixed helicities of the

external particles

[Murayama, Hagiwara, Watanabe]

e+ e- > a> e+ e- QED=2 page 1/1

Diagrams made by MadGraph5

e+

1

e-

2

e+

3

e-

4

a

 diagram 1 QED=2

M = ū�µv Pµ� ū��v

[Slide from O. Mattelaer]

HELAS
• Idea: Evaluate the matrix element for fixed helicities of the

external particles

[Murayama, Hagiwara, Watanabe]

Number for a given helicity

e+ e- > a> e+ e- QED=2 page 1/1

Diagrams made by MadGraph5

e+

1

e-

2

e+

3

e-

4

a

 diagram 1 QED=2

M = ū�µv Pµ� ū��v

[Slide from O. Mattelaer]

HELAS
• Idea: Evaluate the matrix element for fixed helicities of the

external particles

[Murayama, Hagiwara, Watanabe]

Number for a given helicity

e+ e- > a> e+ e- QED=2 page 1/1

Diagrams made by MadGraph5

e+

1

e-

2

e+

3

e-

4

a

 diagram 1 QED=2

M = ū�µv Pµ� ū��v

[Slide from O. Mattelaer]

HELAS
• Idea: Evaluate the matrix element for fixed helicities of the

external particles

[Murayama, Hagiwara, Watanabe]

Number for a given helicity
Evaluate Interaction by

interaction

e+ e- > a> e+ e- QED=2 page 1/1

Diagrams made by MadGraph5

e+

1

e-

2

e+

3

e-

4

a

 diagram 1 QED=2

M = ū�µv Pµ� ū��v

[Slide from O. Mattelaer]

HELAS
• Speed:

[Murayama, Hagiwara, Watanabe]

 KIAS MadGrace school, Oct 24-29 2011 MadGraph 5 Olivier Mattelaer

Basics: Helicity amplitudes

• Allows for fast calculation of any tree-level matrix
element through efficient reuse of previously
calculated wavefunctions across diagrams

mardi 25 octobre 2011

[Slide from O. Mattelaer]

HELAS
• Speed:

[Murayama, Hagiwara, Watanabe]

 KIAS MadGrace school, Oct 24-29 2011 MadGraph 5 Olivier Mattelaer

Basics: Helicity amplitudes

• Allows for fast calculation of any tree-level matrix
element through efficient reuse of previously
calculated wavefunctions across diagrams

mardi 25 octobre 2011

➡ The complexity grows linearly with the number of
diagrams.

➡ Recycling of diagrams: reduces the factorial growth.

[Slide from O. Mattelaer]

Vertices in MadGraph
• The master formula:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Example:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:

V_5 = Vertex(name = 'V_5',
 particles = [P.g, P.g, P.g, P.g],
 color = ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'],
 lorentz = [L.VVVV6, L.VVVV8, L.VVVV9],
 couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

Vertices in the UFO
• Allowed color building blocks:Table 5: Elementary color tensors

Trivial tensor (for non-colored particles) 1

Kronecker delta δ̄2 i1 Identity(1,2)

Fundamental representation matrices (T a1)̄3 i2 T(1,2,3)

Structure constants fa1a2a3 f(1,2,3)

Symmetric tensor da1a2a3 d(1,2,3)

Fundamental Levi-Civita tensor εi1i2i3 Epsilon(1,2,3)

Antifundamental Levi-Civita tensor εı̄1 ı̄2 ı̄3 EpsilonBar(1,2,3)

Sextet representation matrices (T a1
6)β̄3

α2
T6(1,2,3)

Sextet Clebsch-Gordan coefficient (K6)ı̄2 ̄3α1
K6(1,2,3)

Antisextet Clebsch-Gordan coefficient (K̄6)ᾱ1
i2j3 K6Bar(1,2,3)

Table 5

tensors currently included in the UFO format, together with the corresponding
Python syntax, is given in Table 5. Using these conventions, the color tensors
related to the four gluon vertex are given by

fa1a2b f ba3a4 ↔ ’f(1,2,-1) * f(-1,3,4)’ ,

fa3a2b f ba2a4 ↔ ’f(1,3,-1) * f(-1,2,4)’ ,

fa1a4b f ba2a3 ↔ ’f(1,4,-1) * f(-1,2,3)’ .

Since the list of color tensors associated with a vertex is a mandatory argument
of the Vertex object, we define the trivial color structure associated with an
interaction among non-colored particles as the color tensor ’1’.

Spin structures such as those appearing in the vertex decompositions in color
⊗ spin space are implemented as instances of the class Lorentz. All the struc-
tures necessary for the whole model are declared in the lorentz.py file and
we must hence issue at the beginning of the file vertex.py the instruction

import lorentz as L

Hence, the Lorentz objects used in vertex.py, declared in the lorentz.py
Python module, are preceded by the prefix L. As illustrated in the example
of the four-gluon vertex, the lorentz attribute of the Vertex class contains
the list of the relevant structures. A Lorentz object is instantiated as

FFV1 = Lorentz(name = ’FFV1’,

15

Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:

V_5 = Vertex(name = 'V_5',
 particles = [P.g, P.g, P.g, P.g],
 color = ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'],
 lorentz = [L.VVVV6, L.VVVV8, L.VVVV9],
 couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:
V_5 = Vertex(name = 'V_5',
 particles = [P.g, P.g, P.g, P.g],
 color = ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'],
 lorentz = [L.VVVV6, L.VVVV8, L.VVVV9],
 couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -
 Metric(1,3)*Metric(2,4)')

lorentz.py

Vertices in the UFO
• Allowed Lorentz structure building blocks:Table 6: Elementary Lorentz structures

Charge conjugation matrix: Ci1i2 C(1,2)

Epsilon matrix: εµ1µ2µ3µ4 Epsilon(1,2,3,4)

Dirac matrices: (γµ1)i2i3 Gamma(1, 2, 3)

Fifth Dirac matrix: (γ5)i1i2 Gamma5(1,2)

(Spinorial) Kronecker delta: δi1i2 Identity(1,2)

Minkowski metric: ηµ1µ2
Metric(1,2)

Momentum of the N th particle: pµ1

N P(1,N)

Right-handed chiral projector:
(

1+γ5
2

)

i1i2
ProjP(1,2)

Left-handed chiral projector
(

1−γ5
2

)

i1i2
ProjM(1,2)

Sigma matrices: (σµ1µ2)i3i4 Sigma(1,2,3,4)

Table 6

spins = [2, 2, 3],
structure = ’Gamma(3,2,1)’)

All attributes are mandatory. While the attribute name is defined in the usual
way, the attribute spins contains the list of the values of the spins, written as
(2s + 1), of the particles entering the vertex. The last argument, structure,
gives the analytical formula of the Lorentz structure as a string. The conven-
tions for the spin indices is similar to the convention for the color indices: a
positive integer i points to the entry i in the list spins while negative inte-
gers are contracted indices. By default, all the Lorentz indices are supposed
to be upper indices, and repeated Lorentz indices are contracted using the
Minkowski metric. The list of all objects that can be used to define a Lorentz
structure is given in Table 6.

For a given vertex, the Gij quantities appearing in Eq. (2.1) are the ‘coordi-
nates’ corresponding to the decomposition of a vertex into the color ⊗ spin
basis. The couplings attribute of the Vertex class contains hence a Python
dictionary relating the coordinate (i, j) to a Coupling object, declared in the
file couplings.py,

Gij ↔ (i,j):C.GC 1 ,

By convention, only non-vanishing coordinates Gij are included in this dictio-
nary. Moreover, the Coupling objects must be imported at the beginning of
the vertices.py file through the command

16

Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:
V_5 = Vertex(name = 'V_5',
 particles = [P.g, P.g, P.g, P.g],
 color = ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'],
 lorentz = [L.VVVV6, L.VVVV8, L.VVVV9],
 couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -
 Metric(1,3)*Metric(2,4)')

lorentz.py

Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:
V_5 = Vertex(name = 'V_5',
 particles = [P.g, P.g, P.g, P.g],
 color = ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'],
 lorentz = [L.VVVV6, L.VVVV8, L.VVVV9],
 couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -
 Metric(1,3)*Metric(2,4)')

lorentz.py

couplings.py

GC_8 = Coupling(name = 'GC_8',
 value = 'complex(0,1)*G**2',

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• To understand the content of this
file we first need to understand
interaction orders.

• MadGraph has the to ‘count’ the
number of couplings of a certain
type that enter a diagram.

• Example: In the SM, there are two
types of couplings (=interaction
orders): QED and QCD.

➡ p p > t t~, QCD only: QED = 0, QCD = 2

➡ p p > t t~, EW only: QED = 2, QCD = 0

➡ p p > t t~, all: QED = 2, QCD = 2

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Sometimes it can be useful to
define a default behavior for
interaction orders.
QCD = CouplingOrder(name = 'QCD',
 expansion_order = 99,
 hierarchy = 1)

QED = CouplingOrder(name = 'QED',
 expansion_order = 99,
 hierarchy = 2)

Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Sometimes it can be useful to
define a default behavior for
interaction orders.
QCD = CouplingOrder(name = 'QCD',
 expansion_order = 99,
 hierarchy = 1)

QED = CouplingOrder(name = 'QED',
 expansion_order = 99,
 hierarchy = 2)

• Default interaction orders can be defined in the FeynRules
model file:

M$InteractionOrderHierarchy = {
 {QCD, 1},

 {QED, 2}};

M$InteractionOrderLimit = {
 {QCD, 99},

 {QED, 99}};

Summary
• The UFO is the default model format of MadGraph 5.

• A UFO is a selfcontained Python model, and stored all the
model information in the form of Python modules.

• The structure of the UFO is such that, unlike the traditional
text-based model format, it allows to accommodate very large
classes of models.

• Next: How is this information passed to MadGraph..?

From UFO
to MadGraph

From UFO to MadGraph
• Representation of a vertex in the UFO:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

From UFO to MadGraph
• Representation of a vertex in the UFO:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

• Representation of a vertex in the MadGraph: Helas routine
 VERTEX = COUP*((V4(1)*((V2(1)*((0, -1)*(V3(2)*V1(2))
 $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*((0, 1)
 $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
 $ +((V4(2)*((V2(2)*((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
 $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*((0, 1)*(V3(1)*V2(1))+(0,
 $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+((V4(3)*((V2(3)
 $ *((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(4)
 $ *V1(4))))+(V1(3)*((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))
 $ +(0, -1)*(V3(4)*V2(4))))))+(V4(4)*((V2(4)*((0, -1)*(V3(1)
 $ *V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(3)*V1(3))))+(V1(4)
 $ *((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))+(0, -1)*(V3(3)
 $ *V2(3)))))))))
 END

From UFO to MadGraph
• Representation of a vertex in the UFO:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [P.G, P.G, P.G, P.G],
color = [’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

• Representation of a vertex in the MadGraph: Helas routine
 VERTEX = COUP*((V4(1)*((V2(1)*((0, -1)*(V3(2)*V1(2))
 $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*((0, 1)
 $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
 $ +((V4(2)*((V2(2)*((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
 $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*((0, 1)*(V3(1)*V2(1))+(0,
 $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+((V4(3)*((V2(3)
 $ *((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(4)
 $ *V1(4))))+(V1(3)*((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))
 $ +(0, -1)*(V3(4)*V2(4))))))+(V4(4)*((V2(4)*((0, -1)*(V3(1)
 $ *V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(3)*V1(3))))+(V1(4)
 $ *((0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))+(0, -1)*(V3(3)
 $ *V2(3)))))))))
 END

• Want to combine the
flexibility of the UFO
with the efficiency of
Helas.

• We need a translater
UFO-Helas.

The UFO & ALOHA
• The development of the UFO goes hand in

hand with the development of ALOHA.
• ALOHA = Automatic Language-independent

Output of Helicity Amplitudes.
• Idea: ALOHA uses the information

contained in the UFO to create the library of
Lorentz structures for MadGraph on the fly.

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

VVVV6 = Lorentz(name = 'VVVV6',
 spins = [3, 3, 3, 3],
 structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

 VERTEX = COUP*((V4(1)*((V2(1)*((0, -1)*(V3(2)*V1(2))
 $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*((0, 1)
 $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
 $ +((V4(2)*((V2(2)*((0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
 $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*((0, 1)*(V3(1)*V2(1))+(0,
 $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+((V4(3)*((V2(3)

News on ALOHA
• ALOHA is optimizing the way to do analytic computations:

➡ SM computed in 1.2s (instead of 3s).

➡ MSSM computed in 1.4s (instead of 5s).

➡ Randall-Sundrum computed in 90s (instead of 15mins).

• More optimized output:
➡ Faster to compile.

➡ Faster to run (up to 40% faster).

• Possibility to create ALOHA routines from the MG5 shell:

mg5> output aloha FFV1_3
[Slide from O. Mattelaer]

News on ALOHA

• New Outputs/Options in progress:

➡ Spin 3/2.

➡ Feynman gauge.

➡ Complex mass scheme.

➡ Quadruple precision.

➡ Open Loops.

[Slide from O. Mattelaer]

O
L
D

A
L
O
H
A

O
U
T
P
U
T [Slide from O. Mattelaer]

O
L
D

A
L
O
H
A

O
U
T
P
U
T

O
L
D

A
L
O
H
A

O
U
T
P
U
T [Slide from O. Mattelaer]

The UFO & ALOHA
• The development of the UFO goes hand in

hand with the development of ALOHA.
• ALOHA = Automatic Language-independent

Output of Helicity Amplitudes.
• Idea: ALOHA uses the information

contained in the UFO to create the library of
Lorentz structures for MadGraph on the fly.

• ALOHA is shipped with MadGraph, and runs unnoticed
behind the scences... but it is one of the secret stars!

• It allows to output the Helas routines in Fortran, C++
(Pythia) and Python.

• UFO combined with ALOHA allows to implement virtually
any model in MadGraph!

The UFO & ALOHA
• A neat application...

The UFO & ALOHA
• A neat application... in supergravity!

The UFO & ALOHA
• A neat application... in supergravity!

L = �1
4
F a

µ⌫Fµ⌫
a + �fabcTr(F a

µ⌫F ⌫⇢
b F c

⇢µ)

• Broedel and Dixon had derived a CSW construction for the
color-ordered helicity amplitudes, but had no way to check
the validity of the construction.

The UFO & ALOHA
• A neat application... in supergravity!

L = �1
4
F a

µ⌫Fµ⌫
a + �fabcTr(F a

µ⌫F ⌫⇢
b F c

⇢µ)

• Broedel and Dixon had derived a CSW construction for the
color-ordered helicity amplitudes, but had no way to check
the validity of the construction.

• Solution:

➡ Put it into FeynRules, and let it run for a long time...

➡ Get the UFO, and put it into MadGraph 5.

➡ Hack matrix.f to read out the color-ordered helicity
amplitudes for individual phase space points.

The UFO & ALOHA

The UFO & ALOHA

The UFO & ALOHA

All Helicity amplitudes
agreed out of the box with the

CSW construction!

Summary
• UFO combined with ALOHA allows to implement virtually

any model in MadGraph!

• We thus have a simulation chain that is complete and goes all
the way from the Lagrangian to the events!

FeynRules

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

UFO

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

ALOHA

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

$ explanation

30

p p > e+ e- $$ Z

lundi 26 mars 2012

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

Type of Interactions

23

!"#$%&'()$((&*&+#,&-./."%&"0&12345!"#$%&'()$((&*&+#,&-./."%&"0&12345 67

!"#$%&'(&)*+$,-.+)'*%

/)00%&1(($.+)2$&!3$'," 456+)7($,8)'*&2$,+).$%Effective Theory
multi fermion
 interactions

As well as new color structures
(triplet/sextet)

lundi 26 mars 2012

MadGraph

Summary
• UFO combined with ALOHA allows to implement virtually

any model in MadGraph!

• We thus have a simulation chain that is complete and goes all
the way from the Lagrangian to the events!

FeynRules

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

UFO

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

ALOHA

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

$ explanation

30

p p > e+ e- $$ Z

lundi 26 mars 2012

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

Type of Interactions

23

!"#$%&'()$((&*&+#,&-./."%&"0&12345!"#$%&'()$((&*&+#,&-./."%&"0&12345 67

!"#$%&'(&)*+$,-.+)'*%

/)00%&1(($.+)2$&!3$'," 456+)7($,8)'*&2$,+).$%Effective Theory
multi fermion
 interactions

As well as new color structures
(triplet/sextet)

lundi 26 mars 2012

MadGraphInSurGe

Summary
• UFO combined with ALOHA allows to implement virtually

any model in MadGraph!

• We thus have a simulation chain that is complete and goes all
the way from the Lagrangian to the events!

FeynRules

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

UFO

!"#$$%&$'()*+,%"'-./.' 012'3*%&4%"'

56(75'
56(75'

89(' 7%&1)1*:'

;.'

lundi 26 mars 2012

ALOHA

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

$ explanation

30

p p > e+ e- $$ Z

lundi 26 mars 2012

Mattlelaer Olivier FR Mont St Odille 2012: MadGraph 5

Type of Interactions

23

!"#$%&'()$((&*&+#,&-./."%&"0&12345!"#$%&'()$((&*&+#,&-./."%&"0&12345 67

!"#$%&'(&)*+$,-.+)'*%

/)00%&1(($.+)2$&!3$'," 456+)7($,8)'*&2$,+).$%Effective Theory
multi fermion
 interactions

As well as new color structures
(triplet/sextet)

lundi 26 mars 2012

MadGraphInSurGe

Galileo
G = SU(3)c ⇥ SU(2)L ⇥ U(1)Y

