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Recap of previous lecture
• In the previous lecture we saw how to 

➡ implement a model into FeynRules.

➡ export the model to MadGraph 5.

➡ check a model implementation.

• So far we have used the input files for MadGraph as 
‘black boxes’ without caring to much about what is inside.

• For most applications this is good enough (this is the 
whole goal of FeynRules!).

• But sometimes it is good to know what is going on behind 
the scenes...



UFO..?
• UFO = Universal FeynRules Output

• The UFO is the default model format of MadGraph 5 
(but not of MadGraph 4!).

• The UFO is a generic format for BSM models that is not 
tied to any matrix element generator.

[C. Degrande, CD, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter]
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• Question: Why switch to a new model format in 
MadGraph 4..?
➡ the old format did a good job for many years.

➡ users are familiar with this format.

➡ never change a winning team!!!!

➡ so why did we change it nevertheless..?
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Why the UFO..?
• Reason 1: The UFO is ‘agnostic’, and does not make any 

assumption about any matrix element generator 
downstream in the code.
➡ clear factorization between what is model and what is 

generator!

➡ in other words, clear separation between what 
FeynRules should provide, and what generators should 
do with this information.

➡ the UFO is not exclusively used by MadGraph 5, but 
also by other codes.

➡ makes it possible to use the same model file with various 
generators.
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Why the UFO..?
• Reason 2: The old format was not flexible enough:

➡ most model formats are based on text files:

# FFV (llZ)
b b g    GG QCD
t  t g    GG QCD

g g g    G    QCD

g g g g G G QCD QCDD

➡ Fixed number of particles per vertex.

➡ Implicit Lorentz structures.

➡ Implicit color structures.

➡ In other words, everything beyond 
the ordinary is very hard to 
implement.

• The UFO does not have these restrictions by design!



The UFO

UFO = Universal FeynRules Output

• Idea: Create Python modules that can be linked to other 
codes and contain all the information on a given model.

• The UFO is a self-contained Python code, and not tied to 
a specific matrix element generator.

• The content of the FR model files, together with the 
vertices, is translated into a library of Python objects, that 
can be linked to other codes.

• By design, the UFO does not make any assumptions on 
Lorentz/color structures, or the number of particles.

• GoSam and MadGraph 5 use the UFO as the default 
model format for BSM, Herwig++ will use it in the future.



Plan of the lecture

• What is inside the UFO?
➡ structure of the model files.

➡ what makes it so flexible.

• From the Lagrangian to events:
➡ The FeynRules-UFO-ALOHA-MadGraph chain.



Inside the UFO



Inside the UFO
• The UFO is a fully fledged Python module that can be 

linked to other codes.
➡ no parsing of text files.

• Content of the module:

__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py



Inside the UFO
__init__.py
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function_library.py
particles.py
parameters.py
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couplings.py
coupling_orders.py

• Let’s have a closer look at these files!
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• Standard initialization file 
present in every Python module.
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• File containing the definitions of 
the classes (Particle, Parameter, ...) 
used in this Python module.
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__init__.py
object_library.py
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• Built-in function to produce Les 
Houches-style input parameter 
files (‘param_card.dat’).

• Will be discussed later.
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Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• It is possible to use functions 
from the cmath library when 
writing algebraic expressions in 
the UFO (e.g. cmath.sqrt(x)).

• Sometimes however these 
functions are insufficient or too 
cumbersome to use.

• function_library.py allows you 
to define new customized 
(algebraic) functions.

➡ Example:

cmath does not 
contain a                    
definition of sec(x).

sec = Function(name = 'sec',
             arguments = ('z',),
             expression = '1./cmath.cos(z)')



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

u = Particle(pdg_code = 2,
             name = 'u',
             antiname = 'u~',
             spin = 2,
             color = 3,
             mass = Param.ZERO,
             width = Param.ZERO,
             texname = 'u',
             antitexname = 'u',
             charge = 2/3,
             LeptonNumber = 0,
             GhostNumber = 0)

u__tilde__ = u.anti()

➡ The Particle class comes 
with a predefined 
method to instantiate 
the antiparticle.



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

u = Particle(pdg_code = 2,
             name = 'u',
             antiname = 'u~',
             spin = 2,
             color = 3,
             mass = Param.ZERO,
             width = Param.ZERO,
             texname = 'u',
             antitexname = 'u',
             charge = 2/3,
             LeptonNumber = 0,
             GhostNumber = 0)

u__tilde__ = u.anti()

➡ Allowed colors: 1,3,6,8

➡ Allowed spins: 0,1/2,1,2

-1 = ghosts

3/2 under testing in MadGraph 5.
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➡ Parameters are 
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➡ An external parameter

aS = Parameter(name = 'aS',
               nature = 'external',
               type = 'real',
               value = 0.118,
               texname = '\\text{aS}',
               lhablock = 'SMINPUTS',
               lhacode = [ 3 ])



The param_card
• If you want to change a numerical input parameter, you do 

not need to do this in the UFO!

• They can be changed at run time after generating the 
process.

• This can be done in the param_card.dat, stored in the 
directory /Cards/ of the process directory (just like in 
MadGraph 4).

• The format of the param_card.dat is an extension of the 
SUSY-Les-Houches accord format.

➡ All parameters are grouped into blocks.

• Numerical values in the UFO are just default values.
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The param_card
• The param_card consists of 4 parts:

➡ Model parameters (grouped into blocks)

➡ Masses

➡ Widths (given as numerical inputs)

➡ Branching ratios
• Numerical values for the width can be given as inputs in 

FeynRules, and are then passed to the UFO.

• However, FeynRules cannot compute the widths by itself.

➡ Write out the UFO model without the widths, and use 
MadGraph to compute them.

• Branching ratios cannot be included into FeynRules of the 
UFO right now.
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=

1
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|M1!2|2 Vol(phase space)

• Or in words: a two-body decay rate is just a constant: the 
square of a three-point vertex times the PS volume.

• In FeynRules, we have
➡ all the three-point vertices,

➡ a high-level computer algebra system.

• That’s all we need to get the two-body decays!
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The decay module
• The development version of FeynRules already computes the 

widths and writes them to the UFO files.

• Currently being implemented into MadGraph 5.

Decay_H = Decay(name = 'Decay_H',
                particle = P.H,
                partial_widths = {
                                  (P.b,P.b__tilde__):'3*MH**2*yb**2',
                                  (P.ta__minus__,P.ta__plus__):'MH**2*ytau**2',
                                  (P.c,P.c__tilde__):'3*MH**2*yc**2',
                                  (P.t,P.t__tilde__):'3*MH**2*yt**2'})

• The width and the branching ratios will then be included 
automatically computed when loading a UFO.



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• These files are the core of the 
UFO.

• The contain the definition of 
the vertices and the 
couplings.

• The rest of this lecture will be 
about these files.



Vertices in MadGraph
• In MadGraph a vertex is represented by a threefold data:

• The computation of the Lorentz structures is outsourced to 
the Helas library, which allows to compute helicity 
amplitudes in a fast and efficient way.

[Murayama, Hagiwara, Watanabe]

➡ a color structure

➡ a Lorentz structure

➡ a coupling constant (a complex number)



Vertices in MadGraph
• In MadGraph a vertex is represented by a threefold data:

• The computation of the Lorentz structures is outsourced to 
the Helas library, which allows to compute helicity 
amplitudes in a fast and efficient way.

[Murayama, Hagiwara, Watanabe]

• The master formula:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4
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The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads
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(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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➡ a coupling constant (a complex number)
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HELAS
• Idea: Evaluate the matrix element for fixed helicities of the 
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Basics: Helicity amplitudes

• Allows for fast calculation of any tree-level matrix 
element through efficient reuse of previously 
calculated wavefunctions across diagrams
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➡ The complexity grows linearly with the number of 
diagrams.

➡ Recycling of diagrams: reduces the factorial growth.
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• Vertices are saved in vertices.py in precisely this way:

V_5 = Vertex(name = 'V_5',
             particles = [ P.g, P.g, P.g, P.g ],
             color = [ 'f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)' ],
             lorentz = [ L.VVVV6, L.VVVV8, L.VVVV9 ],
             couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py



Vertices in the UFO
• Allowed color building blocks:Table 5: Elementary color tensors

Trivial tensor (for non-colored particles) 1

Kronecker delta δ̄2 i1 Identity(1,2)

Fundamental representation matrices (T a1)̄3 i2 T(1,2,3)

Structure constants fa1a2a3 f(1,2,3)

Symmetric tensor da1a2a3 d(1,2,3)

Fundamental Levi-Civita tensor εi1i2i3 Epsilon(1,2,3)

Antifundamental Levi-Civita tensor εı̄1 ı̄2 ı̄3 EpsilonBar(1,2,3)

Sextet representation matrices (T a1
6 )β̄3

α2
T6(1,2,3)

Sextet Clebsch-Gordan coefficient (K6)ı̄2 ̄3α1
K6(1,2,3)

Antisextet Clebsch-Gordan coefficient (K̄6)ᾱ1
i2j3 K6Bar(1,2,3)

Table 5

tensors currently included in the UFO format, together with the corresponding
Python syntax, is given in Table 5. Using these conventions, the color tensors
related to the four gluon vertex are given by

fa1a2b f ba3a4 ↔ ’f(1,2,-1) * f(-1,3,4)’ ,

fa3a2b f ba2a4 ↔ ’f(1,3,-1) * f(-1,2,4)’ ,

fa1a4b f ba2a3 ↔ ’f(1,4,-1) * f(-1,2,3)’ .

Since the list of color tensors associated with a vertex is a mandatory argument
of the Vertex object, we define the trivial color structure associated with an
interaction among non-colored particles as the color tensor ’1’.

Spin structures such as those appearing in the vertex decompositions in color
⊗ spin space are implemented as instances of the class Lorentz. All the struc-
tures necessary for the whole model are declared in the lorentz.py file and
we must hence issue at the beginning of the file vertex.py the instruction

import lorentz as L

Hence, the Lorentz objects used in vertex.py, declared in the lorentz.py
Python module, are preceded by the prefix L. As illustrated in the example
of the four-gluon vertex, the lorentz attribute of the Vertex class contains
the list of the relevant structures. A Lorentz object is instantiated as

FFV1 = Lorentz(name = ’FFV1’,
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Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads
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1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

• Vertices are saved in vertices.py in precisely this way:

V_5 = Vertex(name = 'V_5',
             particles = [ P.g, P.g, P.g, P.g ],
             color = [ 'f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)' ],
             lorentz = [ L.VVVV6, L.VVVV8, L.VVVV9 ],
             couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py
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The UFO format for vertices mimics exactly this structure. As an example,
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space equal to unity.
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• Vertices are saved in vertices.py in precisely this way:
V_5 = Vertex(name = 'V_5',
             particles = [ P.g, P.g, P.g, P.g ],
             color = [ 'f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)' ],
             lorentz = [ L.VVVV6, L.VVVV8, L.VVVV9 ],
             couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) - 
                                   Metric(1,3)*Metric(2,4)')

lorentz.py



Vertices in the UFO
• Allowed Lorentz structure building blocks:Table 6: Elementary Lorentz structures

Charge conjugation matrix: Ci1i2 C(1,2)

Epsilon matrix: εµ1µ2µ3µ4 Epsilon(1,2,3,4)

Dirac matrices: (γµ1)i2i3 Gamma(1, 2, 3)

Fifth Dirac matrix: (γ5)i1i2 Gamma5(1,2)

(Spinorial) Kronecker delta: δi1i2 Identity(1,2)

Minkowski metric: ηµ1µ2
Metric(1,2)

Momentum of the N th particle: pµ1

N P(1,N)

Right-handed chiral projector:
(

1+γ5
2

)

i1i2
ProjP(1,2)

Left-handed chiral projector
(

1−γ5
2

)

i1i2
ProjM(1,2)

Sigma matrices: (σµ1µ2)i3i4 Sigma(1,2,3,4)

Table 6

spins = [ 2, 2, 3 ],
structure = ’Gamma(3,2,1)’)

All attributes are mandatory. While the attribute name is defined in the usual
way, the attribute spins contains the list of the values of the spins, written as
(2s + 1), of the particles entering the vertex. The last argument, structure,
gives the analytical formula of the Lorentz structure as a string. The conven-
tions for the spin indices is similar to the convention for the color indices: a
positive integer i points to the entry i in the list spins while negative inte-
gers are contracted indices. By default, all the Lorentz indices are supposed
to be upper indices, and repeated Lorentz indices are contracted using the
Minkowski metric. The list of all objects that can be used to define a Lorentz
structure is given in Table 6.

For a given vertex, the Gij quantities appearing in Eq. (2.1) are the ‘coordi-
nates’ corresponding to the decomposition of a vertex into the color ⊗ spin
basis. The couplings attribute of the Vertex class contains hence a Python
dictionary relating the coordinate (i, j) to a Coupling object, declared in the
file couplings.py,

Gij ↔ (i,j):C.GC 1 ,

By convention, only non-vanishing coordinates Gij are included in this dictio-
nary. Moreover, the Coupling objects must be imported at the beginning of
the vertices.py file through the command

16



Vertices in the UFO

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
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(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads
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(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×


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




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










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


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











.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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2.4 Implementation of the interactions of the model
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i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
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Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)
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the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
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a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,
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









ig2s 0 0

0 ig2s 0

0 0 ig2s








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
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




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
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The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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• Vertices are saved in vertices.py in precisely this way:
V_5 = Vertex(name = 'V_5',
             particles = [ P.g, P.g, P.g, P.g ],
             color = [ 'f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)' ],
             lorentz = [ L.VVVV6, L.VVVV8, L.VVVV9 ],
             couplings = {(1,1):C.GC_8,(0,0):C.GC_8,(2,2):C.GC_8})

vertices.py

VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) - 
                                   Metric(1,3)*Metric(2,4)')

lorentz.py

couplings.py

GC_8 = Coupling(name = 'GC_8',
                value = 'complex(0,1)*G**2',



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• To understand the content of this 
file we first need to understand 
interaction orders.

• MadGraph has the to ‘count’ the 
number of couplings of a certain 
type that enter a diagram.

• Example: In the SM, there are two 
types of couplings (=interaction 
orders): QED and QCD.

➡ p p > t t~, QCD only: QED = 0, QCD = 2

➡ p p > t t~, EW only:    QED = 2, QCD = 0

➡ p p > t t~, all:               QED = 2, QCD = 2
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parameters.py
vertices.py
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couplings.py
coupling_orders.py



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Sometimes it can be useful to 
define a default behavior for 
interaction orders.
QCD = CouplingOrder(name = 'QCD',
                    expansion_order = 99,
                    hierarchy = 1)

QED = CouplingOrder(name = 'QED',
                    expansion_order = 99,
                    hierarchy = 2)



Inside the UFO
__init__.py
object_library.py
write_param_card.py
function_library.py
particles.py
parameters.py
vertices.py
lorentz.py
couplings.py
coupling_orders.py

• Sometimes it can be useful to 
define a default behavior for 
interaction orders.
QCD = CouplingOrder(name = 'QCD',
                    expansion_order = 99,
                    hierarchy = 1)

QED = CouplingOrder(name = 'QED',
                    expansion_order = 99,
                    hierarchy = 2)

• Default interaction orders can be defined in the FeynRules 
model file:

M$InteractionOrderHierarchy = {
  {QCD, 1},

    {QED, 2}};

M$InteractionOrderLimit = {
  {QCD, 99},

    {QED, 99}};



Summary
• The UFO is the default model format of MadGraph 5.

• A UFO is a selfcontained Python model, and stored all the 
model information in the form of Python modules.

• The structure of the UFO is such that, unlike the traditional 
text-based model format, it allows to accommodate very large 
classes of models.

• Next: How is this information passed to MadGraph..?



From UFO 
to MadGraph



From UFO to MadGraph
• Representation of a vertex in the UFO:

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φ!iai

i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,!1...!n(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

!1...!n
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×















ig2s 0 0

0 ig2s 0

0 0 ig2s





























ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4















.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')
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i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
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Va1...an,!1...!n(p1, . . . , pn) =
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Ca1...an
i Gij L
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where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
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ig2s f
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The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

• Representation of a vertex in the MadGraph: Helas routine
      VERTEX = COUP*( (V4(1)*( (V2(1)*( (0, -1)*(V3(2)*V1(2))
     $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*( (0, 1)
     $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
     $ +( (V4(2)*( (V2(2)*( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
     $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*( (0, 1)*(V3(1)*V2(1))+(0, 
     $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+( (V4(3)*( (V2(3)
     $ *( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(4)
     $ *V1(4))))+(V1(3)*( (0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))
     $ +(0, -1)*(V3(4)*V2(4))))))+(V4(4)*( (V2(4)*( (0, -1)*(V3(1)
     $ *V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(3)*V1(3))))+(V1(4)
     $ *( (0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))+(0, -1)*(V3(3)
     $ *V2(3)))))))))
      END
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2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
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i }, with spin indices 1 {"i} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
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where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and L!1...!n
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
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+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)
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
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(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,
particles = [ P.G, P.G, P.G, P.G ],
color = [ ’f(1,2,-1)*f(-1,3,4)’,

’f(1,3,-1)*f(-1,2,4)’,
’f(1,4,-1)*f(-1,2,3)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],
couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.
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VVVV6 = Lorentz(name = 'VVVV6',
                spins = [ 3, 3, 3, 3 ],
                structure = 'Metric(1,4)*Metric(2,3) -Metric(1,3)*Metric(2,4)')

• Representation of a vertex in the MadGraph: Helas routine
      VERTEX = COUP*( (V4(1)*( (V2(1)*( (0, -1)*(V3(2)*V1(2))
     $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*( (0, 1)
     $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
     $ +( (V4(2)*( (V2(2)*( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
     $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*( (0, 1)*(V3(1)*V2(1))+(0, 
     $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+( (V4(3)*( (V2(3)
     $ *( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(4)
     $ *V1(4))))+(V1(3)*( (0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))
     $ +(0, -1)*(V3(4)*V2(4))))))+(V4(4)*( (V2(4)*( (0, -1)*(V3(1)
     $ *V1(1))+(0, 1)*(V3(2)*V1(2))+(0, 1)*(V3(3)*V1(3))))+(V1(4)
     $ *( (0, 1)*(V3(1)*V2(1))+(0, -1)*(V3(2)*V2(2))+(0, -1)*(V3(3)
     $ *V2(3)))))))))
      END

• Want to combine the 
flexibility of the UFO 
with the efficiency of 
Helas.

• We need a translater 
UFO-Helas.



The UFO & ALOHA
• The development of the UFO goes hand in 

hand with the development of ALOHA.
• ALOHA = Automatic Language-independent 

Output of Helicity Amplitudes.
• Idea: ALOHA uses the information 

contained in the UFO to create the library of 
Lorentz structures for MadGraph on the fly.
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      VERTEX = COUP*( (V4(1)*( (V2(1)*( (0, -1)*(V3(2)*V1(2))
     $ +(0, -1)*(V3(3)*V1(3))+(0, -1)*(V3(4)*V1(4))))+(V1(1)*( (0, 1)
     $ *(V3(2)*V2(2))+(0, 1)*(V3(3)*V2(3))+(0, 1)*(V3(4)*V2(4))))))
     $ +( (V4(2)*( (V2(2)*( (0, -1)*(V3(1)*V1(1))+(0, 1)*(V3(3)*V1(3))
     $ +(0, 1)*(V3(4)*V1(4))))+(V1(2)*( (0, 1)*(V3(1)*V2(1))+(0, 
     $ -1)*(V3(3)*V2(3))+(0, -1)*(V3(4)*V2(4))))))+( (V4(3)*( (V2(3)



News on ALOHA
• ALOHA is optimizing the way to do analytic computations:

➡ SM computed in 1.2s (instead of 3s).

➡ MSSM computed in 1.4s (instead of 5s).

➡ Randall-Sundrum computed in 90s (instead of 15mins).

• More optimized output:
➡ Faster to compile.

➡ Faster to run (up to 40% faster).

• Possibility to create ALOHA routines from the MG5 shell:

mg5> output aloha FFV1_3
[Slide from O. Mattelaer]



News on ALOHA

• New Outputs/Options in progress:

➡ Spin 3/2.

➡ Feynman gauge.

➡ Complex mass scheme.

➡ Quadruple precision.

➡ Open Loops.

[Slide from O. Mattelaer]
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The UFO & ALOHA
• The development of the UFO goes hand in 

hand with the development of ALOHA.
• ALOHA = Automatic Language-independent 

Output of Helicity Amplitudes. 
• Idea: ALOHA uses the information 

contained in the UFO to create the library of 
Lorentz structures for MadGraph on the fly.

• ALOHA is shipped with MadGraph, and runs unnoticed 
behind the scences... but it is one of the secret stars!

• It allows to output the Helas routines in Fortran, C++ 
(Pythia) and Python.

• UFO combined with ALOHA allows to implement virtually 
any model in MadGraph!



The UFO & ALOHA
• A neat application...
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• Broedel and Dixon had derived a CSW construction for the 
color-ordered helicity amplitudes, but had no way to check 
the validity of the construction.



The UFO & ALOHA
• A neat application... in supergravity!

L = �1
4
F a
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• Broedel and Dixon had derived a CSW construction for the 
color-ordered helicity amplitudes, but had no way to check 
the validity of the construction.

• Solution: 

➡ Put it into FeynRules, and let it run for a long time...

➡ Get the UFO, and put it into MadGraph 5.

➡ Hack matrix.f to read out the color-ordered helicity 
amplitudes for individual phase space points.
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The UFO & ALOHA

All Helicity amplitudes 
agreed out of the box with the 

CSW construction!



Summary
• UFO combined with ALOHA allows to implement virtually 

any model in MadGraph!

• We thus have a simulation chain that is complete and goes all 
the way from the Lagrangian to the events!
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Galileo
G = SU(3)c ⇥ SU(2)L ⇥ U(1)Y


