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• A BSM model can be defined via

➡ The particles appearing in the model.

➡ The values of the parameters (‘Benchmark point’).

➡ The interactions among the particles, usually dictated 
by some symmetry group, and quantified in the 
Lagrangian of the model.

• All this information needs to be implemented into the MC 
codes, usually in the form of text files that contain the 
definitions of the particles, the parameters and the 
vertices.

Going Beyond SM



• This can be a very tedious exercise.

• Most of these codes have only a very limited amount of 
models implemented by default (~ SM and MSSM).

• However, still these codes do not work at the level of 
Lagrangians, but need explicit vertices.

• The process of implementing Feynman rules can be 
particularly tedious and painstaking:
➡ Each code has its own conventions (signs, factors of i, ...).

➡ Vertices need to be implemented one at the time.

• Most codes can only handle a limited amount of color and / 
or Lorentz structures (~ SM and MSSM)

Going Beyond SM



• The aim of these lectures is to present a code that 
automatizes all these steps, and allows to implement the 
model into MadGraph 5 starting directly from the 
Lagrangian.

➡ Define your particles and parameters.

➡ Enter your Lagrangian.

➡ Let the code compute the Feynman rules.

➡ Output all the information in the format required by your 
favorite MC code.

Going Beyond SM

• Workflow:



• What is FeynRules?

Plan of the Lecture

• Getting started:
➡      theory.

➡ Adding gauge interactions (scalar QCD).

➡ Adding mixings.

• Extending existing implementations.

N.B.: Tutorials in the afternoon!

�4

• Towards LHC phenomenology: The UFO interface.



What is FeynRules?



FeynRules

• FeynRules is a Mathematica package that allows to derive 
Feynman rules from a Lagrangian.

• The only requirements on the Lagrangian are:

➡ All indices need to be contracted (Lorentz and gauge 
invariance).

➡ Locality.

➡ Supported field types: spin 0, 1/2, 1, 2 & ghosts.

[Christensen, Degrande, CD, Fuks]
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Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version 

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 

➡ Sherpa

➡ Whizard / Omega
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• The input requested form the user is twofold.

F[1]  ==  
   {ClassName     ->   q,
    SelfConjugate ->  False,
    Indices            ->  {Index[Colour]},
    Mass               ->  {MQ,  200},
    Width              ->  {WQ, 5}   }

L = 
-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]  
+ I qbar.Ga[mu].DC[q,mu] 
- MQ qbar.q

• The Model File:
Definitions of particles and 
parameters (e.g., a quark)

• The Lagrangian:

L = �1
4
Ga

µ� Gµ�
a + iq̄ �µ Dµq �Mq q̄ q

FeynRules



• Once this information has been provided, FeynRules can 
be used to compute the Feynman rules for the model:

FeynmanRules[ L ]

• Equivalently, we can export the Feynman rules to a 
matrix element generator, e.g., for MadGraph 5,

WriteUFO[ L ]

• This produces a set of files that can be directly used in the 
matrix element generator (“plug ‘n’ play”).

FeynRules



Lagrangian

FeynArts

Translation Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

MadGraph CalcHep Sherpa

Whizard Golem Herwig

FeynRules: a quick overview
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Getting Started:
phi4 theory



Phi 4 theory
• Let us consider a model consisting of two complex scalar 

fields, interacting with each other:

L = ⇤µ⇥†
i⇤

µ⇥i �m2⇥†
i⇥i + �(⇥†

i⇥i)2

• We need to implement into a FeynRules model file
➡ The two fields      and      , or rather one field carrying 

an index.
➡ The two new parameters m and     .

�1 �2

�

• In a second step, we need to implement the Lagrangian 
into Mathematica.



How to write a model file

• A model file is simply a text file (with extension .fr).
• The syntax is Mathematica.
• General structure:

Preamble 
(Author info, model info, index definitions, ... )

Particle Declarations 
(Particle class definitions, spins, quantum numbers, ...)

Parameter Declarations
(Numerical Values, ...)



Preamble of the model file
• The preamble allows to ‘personalize’ the model file, and 

define all the indices that are carried by the fields
➡ In our case we have one index, taking the values 1 or 2.

M$ModelName =  “Phi_4_Theory“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];



Preamble of the model file
• Sometimes it is useful to introduce auxiliary indices to 

obtain compact Lagrangians, but these indices should 
always be expanded.
➡ Example: Weak isospin indices.

• There is a way to instruct FeynRules at run time to expand 
certain indices (see later).

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];
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Preamble of the model file
• Sometimes it is useful to introduce auxiliary indices to 

obtain compact Lagrangians, but these indices should 
always be expanded.
➡ Example: Weak isospin indices.

• There is a way to instruct FeynRules at run time to expand 
certain indices (see later).

IndexRange[ Index[Scalar] ] = Unfold[ Range[2] ];
IndexStyle[ Scalar, i];

• In addition, one can specify in the model file if a certain 
type of indices should always be expanded:



Particle Declaration
• Particles are defined as ‘classes’, grouping together particles 

with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};



Particle Declaration
• Particles are defined as ‘classes’, grouping together particles 

with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Spin (S, F, V, U, T)



Particle Declaration
• Particles are defined as ‘classes’, grouping together particles 

with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol used for the 
particle in the Lagrangian.

         Antiparticle called 
phibar.



Particle Declaration
• Particles are defined as ‘classes’, grouping together particles 

with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

The field is complex, i.e., 
there is an antiparticle.



Particle Declaration
• Particles are defined as ‘classes’, grouping together particles 

with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol for the mass 
used in the Lagrangian,

+ numerical value in GeV.



Particle Declaration
• There are many more (optional) properties for particle 

classes:

➡ QuantumNumbers: U(1) charges carried by the field.
➡ PDG: PDG code of the particle (if existent).
➡ ParticleName/AntiParticleName: A string, by which the 

particle will be referred to in the MC code.

➡ Unphysical: If True, then the particle is tagged as not a 
mass eigenstate, and will not be output to the MC code.

➡ Many more. See the FeynRules manual.

➡ Width: Total width of the particle. 0 if stable.



Parameter Declaration
• Parameter classes are defined in a similar way to the particle 

classes.
➡ In our case, we have two parameters, the mass m and 

the coupling    .
➡ The mass was already defined with the particle, no need 

to define it a second time.

M$Parameters = {
    lam == {
             Value -> 0.1
       }
};

�



➡ External: Numerical input parameters of the model.
The Value must be a real floating point number.
Example:

Parameter Declaration
• Parameters belong to two different classes, specified by the 

option ParameterType:

➡ Internal: Dependent on other external and/or internal 
parameters. The Value can be a floating point number 
or an algebraic expression (in Mathematica synthax). 
Example:

↵s = 0.118

gs =
p

4⇡↵s

• By default every new parameter is External.



Parameter Declaration
• By default, all parameters are defined as real. It can be 

made complex by setting the ComplexParameter option to 
True.



Parameter Declaration
• By default, all parameters are defined as real. It can be 

made complex by setting the ComplexParameter option to 
True.

• Just like particles, parameters can carry Indices, i.e., they 
can be matrices

➡ Hermitian:  True/False.
• It is possible to specifiy that a matrix is hermitian, etc. 

➡ Orthogonal: True/False.
➡ Unitary:      True/False.



The Mathematica session
• We now run FeynRules to obtain the Feynman rules of the 

model
➡ This is done in a Mathematica notebook.

• Step 1: Load FeynRules into Mathematica
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• Step 2: Load the model file

The Mathematica session



• Step 2: Load the model file

The Mathematica session



• Step 3: Enter the Lagrangian

L = ⇤µ⇥†
i⇤

µ⇥i �m2⇥†
i⇥i + �(⇥†

i⇥i)2

The Mathematica session



• Step 4: Computing the Feynman rules

The Mathematica session



• Step 4: Computing the Feynman rules
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• Step 4: Computing the Feynman rules

The Mathematica session



• Step 4: Computing the Feynman rules

Feynman rule for 
the particle class! 

The Mathematica session



• Step 4: Computing the Feynman rules

The Mathematica session



• Step 4: Computing the Feynman rules

The Mathematica session



• Step 4: Computing the Feynman rules

The Mathematica session



• Step 4: Computing the Feynman rules

The Mathematica session



• A selection of options for the FeynmanRules function:

The Mathematica session

➡ FlavorExpand: List of all flavor indices that should be 
expanded. If True, then all flavor indices are expanded.

➡ ScreenOutput: If False, the vertices are not printed on 
screen (useful for big models with 100’s of vertices).

➡ SelectParticles: Allows to only compute certain specific 
vertices.

➡ MaxParticles/MinParticles: an integer, specifying the 
maximal/minimal number of particles that should 
appear in a vertex.

➡ Exclude4Scalars: If True, rejects all four-scalar vertices 
(useful for big models with a plethora of 
phenomenologically irrelevant four-scalar interactions).



Getting Started:
Gauging our model



Gauging phi4 theory
• Let us gauge our model, say the scalar is in the adjoint of 

SU(3) (QCD octet).

• The change in the Lagrangian is very minor:
➡ add field strength tensor
➡ replace derivative by covariant derivative.

L = �1
4
F a

µ�Fµ�
a + Dµ⇥†

iD
µ⇥i �m2⇥†

i⇥i + �(⇥†
i⇥i)2

Dµ = �µ � igsT
aGa

µ

• Technically speaking, we just added two new objects to 
our model:
➡ a new particle: the gluon G.
➡ a new parameter: the gauge coupling gs.



Preamble of the model file

• The fields now carry an index in the adjoint index.
➡ Need to define this new index in the preamble.

M$ModelName =  “Phi_4_Theory_Octet“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];
IndexRange[ Index[Gluon] ] = Range[8];
IndexStyle[ Gluon, a];



Particle Declaration
• The scalar is now an octet.

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar], Index[Gluon]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};



Particle Declaration
• We also need to define the gluon field.

M$ClassesDescription = {
    S[1] == {...},

    V[1] == {
             ClassName -> G,
             SelfConjugate -> True,
	        Indices -> {Index[Gluon]},
             Mass -> 0
       }
};



Parameter Declaration
• We also need to define the gauge coupling.

M$Parameters = {
    lam == {
             Value -> 0.1
       },

    gs == {
             Value -> 1.22
       }
};



Gauge groups

• We have now defined the gauge coupling and the gauge 
boson.

• To gauge the theory we need however more:

➡ Structure constants.

➡ Representation matrices.

➡ ...

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.



Gauge groups

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.

M$GaugeGroups = {

  SU3C == {
        Abelian -> False,
        GaugeBoson -> G,
        StructureConstant -> f,
        CouplingConstant -> gs
      }
}

• Could add other representations via 
      Representation -> {T, Colour}



The Mathematica session
• Step 1: Load FeynRules into Mathematica
• Step 2: Load the model file
• Step 3: Enter the Lagrangian

L = �1
4
F a

µ�Fµ�
a + Dµ⇥†

iD
µ⇥i �m2⇥†

i⇥i + �(⇥†
i⇥i)2



• Step 4: Computing the Feynman rules
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• Step 4: Computing the Feynman rules
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• Step 4: Computing the Feynman rules

The Mathematica session



Getting Started:
Mixings



Mixings

• So far our model has the following form:

L = Dµ�
†
iD

µ�i �m2�†
i�i + �(�†

i�i)
2



Mixings

• So far our model has the following form:

• In many BSM models the new fields are not mass 
eigenstates, but they mix, e.g.

• The gauge and mass eigenstates are then related via some 
unitary rotation,

L = Dµ�
†
iD

µ�i �m2�†
i�i + �(�†

i�i)
2

L = Dµ�
†
iD

µ�i �m2�†
i�i +�(�†

i�i)
2�m2

12(�
†
1�2 + �†

2�1)

✓
�1

�2

◆
= U

✓
�1

�2

◆



Mixings
• FeynRules offers the possibility to write the Lagrangian in 

terms of the gauge eigenstates, and let Mathematica 
perform the rotation.

• N.B.: Right now FeynRules does not diagonalize the mass 
matrix for you! The diagonalization has to be performed 
by the user.

• For small mixing matrices, this can simply be done in 
Mathematica.

• For larger matrices, need to use some external numerical 
code.



Mixings
• The mixing matrix is declared as a parameter:

M$Parameter = {
   ...

    UU == {
             ComplexParameter -> True,
             Unitary -> True
	        Indices  -> {Index[Scalar], Index[Scalar]},
             Value     -> { UU[1,1]  ->  ...,
                                    UU[1,2]  ->  ...,
                                     ...}
       }
    ...
};



Mixings
• The mass eigenstates are declared as normal particles

M$ClassesDescription = {
    ....
    S[11] == {
             ClassName        -> PP,
             ClassMembers -> {PP1,PP2},
             SelfConjugate   -> False,
	        Indices               -> {Index[Scalar], Index[Gluon]},
             FlavorIndex      -> Scalar,
             Mass                   -> {{MP1, ...},  {MP2, ...}}
       }
     ...
};



Mixings
• The gauge eigenstates are declared in a similar way

M$ClassesDescription = {
    S[1] == {
             ClassName          -> phi,
             ClassMembers   -> {phi1,phi2},
             SelfConjugate    -> False,
	        Indices                -> {Index[Scalar], Index[Gluon]},
             FlavorIndex      -> Scalar,
             Mass                    -> {MS, 100}
             Unphysical         -> True,
             Definitions -> {phi[i_, a_] :> Module[{j}, UU[i,j] PP[j,a]]}
       }
};



Extending existing 
implementations



Extending the SM
• So far we have only considered our model standalone.
• For LHC phenomenology, one usually wants a BSM 

model that is an extension of the SM.
• FeynRules offers the possibility to start form the SM 

model, and to add/change/remove particles and operators.
• For this, it is enough to load our new model together with 

the SM implementation:

LoadModel[ “SM.fr“, “Phi_4_Gauged“ ];

N.B.: In the SM implementation, the gluon and the QCD 
gauge group are already defined, so no need to redefine them.

• Note that the ‘parent model’ should always be loaded first 
in order to ensure that everything is set up correctly.



Other available models

• The same procedure can be used to extend any other 
models.

• Many models can be downloaded from the FeynRules 
web page, and can serve as a start to implement new 
models (http://feynrules.irmp.ucl.ac.be/).

➡ SM (+ extensions: 4th generation, diquarks, See-saw...).

➡ MSSM, NMSSM, RPV-MSSM, MRSSM.

➡ Extra dimensions: UED, LED, Higgsless, HEIDI.

➡ Minimal walking Technicolor.

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be
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Towards LHC phenomenology:
The UFO interface



From FeynRules to MadGraph
• The FeynRules interface for MadGraph is the so called 

UFO interface.

• The UFO interface can be called via
WriteUFO[ L ];                          

• Running the interface produces a set of text files that 
collectively go under name UFO (= Universal FeynRules 
Output).

• Using UFO’s with MadGraph will be discussed in other 
lecture and the tutorials.



FeynRules MC conventions
• FeynRules itself does not make any assumption on the 

model, but its core is completely agnostic of any structure, 
like QCD, QED, etc.

➡ Color and electric charges of particles.

➡ Color structures of vertices.

➡ Strong and weak coupling constant.

➡ etc.

• In order for the MC generator to function properly, they 
must be able to identify in each new model some standard 
information, like for example

• Roughly speaking, each MC code needs the information 
on the SM parameters to be provided in a specific format.



FeynRules MC conventions
• As a consequence, even though the FeynRules core is 

completely agnostic, the SM parameters must be entered 
following specific conventions.
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• As a consequence, even though the FeynRules core is 

completely agnostic, the SM parameters must be entered 
following specific conventions.

➡ Fundamental representation matrices: T
➡ Structure constants: f
➡ Strong coupling: gs

• The SM gauge groups must be defined in the same way as 
in the SM implementation, e.g., for QCD,



FeynRules MC conventions
• As a consequence, even though the FeynRules core is 

completely agnostic, the SM parameters must be entered 
following specific conventions.

➡ Fundamental representation matrices: T
➡ Structure constants: f
➡ Strong coupling: gs

• The SM gauge groups must be defined in the same way as 
in the SM implementation, e.g., for QCD,

• The SM input parameters should correspond to the 
SMINPUTS of the SUSY Les Houches Accord:

MZ , ↵s, ↵
�1
EW , GF



Summary

• Implementing a New Physics into a matrix element 
generator can be a tedious and error-prone task.

• FeynRules tries to remedy this situation by providing a 
Mathematica framework where a new model can be 
implemented starting directly from the Lagrangian.

• There are no restrictions on the model, except
➡ Lorentz and gauge invariance

➡ Locality

➡ Spins: 0, 1/2, 1, 2, ghosts  (3/2 to come in the future)

• Try it out on your favorite model!
      http://feynrules.irmp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be

