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• In the previous lecture we learned the basic usage of 
FeynRules:

➡ Implement a model.

➡ Compute Feynman rules.

➡ Use the interfaces.

• While this basic usage is in principle enough to implement 
any model, doing so can be quite tedious in practise.

FeynRules: the basics



• Example I: Supersymmetric models.

➡ SUSY models are very compact when written in 
superspace notation.

➡ Matrix element generators require Feynman rules 
given for the component fields.

➡ Thus, FeynRules requires the Lagrangian for the 
component fields.

➡ The component field Lagrangian can be extremely 
complicated!

Supersymmetric models



• Example II: Mass spectra
➡ In most BSM scenarios, the mass matrices are not 

diagonal, but we need to diagonalize the mass matrices.

➡ For simple models, this can be done analytically, and 
the analytic formulas can be implemented as internal 
parameters (cf. tutorial).

➡ In most models, the diagonalization cannot be 
performed analytically (cf. 6x6 squark mixing matrix).

➡ Could use Mathematica to numerically diagonalize 
matrices, but want to avoid to rerun FeynRules for 
every benchmark point.

Masses



• Example III: Widths and branching ratios

➡ Matrix element generators require the widths of the 
particles.

➡ Need to recompute all the widths for every benchmark 
point (some generators do this on the fly).

➡ Cannot use analytic formulas for the width as internal 
parameters, as allowed channels are benchmark 
dependent.

➡ Want to avoid to rerun FeynRules for every 
benchmark point.

Decay rates



• Aim of the lecture: Give an introduction to the 
Mathematica package FeynRules.

• Lecture I: The basics.

FeynRules

How to implement a model and compute its Feynman 
rules.

• Lecture II: Advanced topics.

➡ SUSY

➡ Computing two-body decays.

➡ Spectrum generation with ASperGe.

➡ Towards NLO.



Superfields in 
FeynRules



• Example: SUSY model

➡ Choose a gauge group (+ additional internal symmetries).

➡ Choose the matter content (= chiral superfields in some 
representation).

➡ Write down the most general superpotential.

➡ Write down the soft-SUSY breaking terms.

➡ (+ check validity of the model)

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.
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* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +
SF2Components[GetSuperFS[] + SuperPot][[2,5]] +
SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +
LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• Very easy ‘theory description’

The lifecycle of SUSY pheno



• Example: SUSY model

➡ Express superfields in terms of component fields.

➡ Express everything in terms of 4-component fermions 
(beware of the Majoranas!).

➡ Express everything in terms of mass eigenstates.

➡ Integrate out D and F terms.

➡ Implement vertices one-by-one (beware of factors of i, etc!)
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• ‘Monte Carlo description’

The lifecycle of SUSY pheno



Supersymmetric models

• FeynRules allows to use the superfield formalism for 
supersymmetric theories.

• The code then 

➡ expands the superfields in the Grassmann variables and 
integrates them out.

➡ Weyl fermions are transformed into 4-component 
spinors.

➡ auxiliary fields are integrated out.

• As a result, we obtain a Lagrangian that can be exported 
to matrix element generators!



Supersymmetric models
• Example: SUSY QCD

➡ 1 octet vector superfield 

➡ 1 triplet left-handed chiral superfield

➡ 1 triplet right-handed chiral superfield

• The physical spectrum contains

V a = (g̃a, Ga
µ, Da)

➡ a gauge boson, the gluon

➡ two complex triplet scalars

➡ an octet Majorana fermion

➡ a triplet Dirac fermion, the quark

Qi
R = (q̃i

R, �̄i, F i
R)

Qi
L = (q̃i

L, �i, F i
L)

qi = (⇥i, �̄i)



Supersymmetric models
• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...
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Defining superfields

  VSF[1] == { ClassName   -> GSF, 
                      GaugeBoson  -> G,  
                      Gaugino     -> gow, 
                      Indices     -> {Index[Gluon]}},

  CSF[1] == { ClassName     -> QL, 
                       Chirality     -> Left, 
                       Weyl          -> qLw, 
                       Scalar        -> QLs, 
                       Indices->{Index[Colour]}},

V a = (g̃a, Ga
µ, Da)

Qi
L = (q̃i

L, �i, F i
L)

• The component fields are defined separately.
• Auxiliary F and D fields could be added, but can be left 

out, and are created on the fly.



Using superfields

• A set of functions allows to transform the superspace 
action into a component field Lagrangian.

WS = ...
SL = VSFKineticTerms[] + CSFKineticTerms[] + WS + HC[WS];

➡ SF2Components: expansion in the Grassmann parameters
➡ ThetaThetabarComponent etc.: selects the desired 

coefficient in the Grassmann expansion.
➡ SolveEqMotionF/SolveEqMotionD: solves the equations of 

motion for the F and D terms.
➡ WeylToDirac: Transforms Weyl fermions into 4-component 

fermions.



Using superfields



Model database



Summary
• FeynRules allows to use the superfield formalism for 

supersymmetric theories.

➡ expands the superfields in the Grassmann variables and 
integrates them out.

➡ Weyl fermions are transformed into 4-component 
spinors.

➡ auxiliary fields are integrated out.

• Upshot: You implement a SUSY model using compact 
superspace notation, and FeynRules takes care of the 
signs!



Interlude:
SLHA files



SLHA
• For SUSY theories there is a standardized format for 

numerical values of parameter sets
➡ SUSY Les Houches Accord (SLHA)

➡ Allows for easy communication between different codes, 
e.g., spectrum generators and MC codes.

• Many ME generators have adopted/extended the SLHA 
format as the default format for numerical input 
parameters (=external parameters).

➡ Allows to change the numerical input parameters at run-
time.

➡ FeynRules can read/write SLHA files.



SLHA
• Parameters are grouped into blocks.

➡ Numerical values must be real.

➡ SMINPUTS should always be defined.

➡ Some blocks are mandatory.

Block SMINPUTS      # Standard Model inputs
     1         1.32506980E+02   # alpha_em(MZ)(-1) SM MSbar
     2         1.16639000E-05   # G_Fermi
     3         1.18000000E-01   # alpha_s(MZ) SM MSbar
     4         9.11880000E+01   # Z mass (as input parameter)

• New blocks can be added by the user



SLHA
• The masses and widths of all massive particles are defined 

in the MASS and DECAY blocks:

Block MASS      #  Mass spectrum (kinematic masses)
#       PDG       Mass
        24     8.04190000E+01   # W        mass
        25     1.25000000E+02   # H        mass

DECAY        25     5.75308848E-03   # H   width
#        BR           NDA        ID1       ID2
     8.27451012E-02    2           4        -4   # BR( H -> c  cbar  )
     7.17809696E-01    2           5        -5   # BR( H -> b  bbar  )

• NB: Parameters in SLHA file must not be independent.
➡ E.g., widths are always dependent.

➡ Must however make sure that the parameters are 
consistent!



Mass diagonalization 
with ASperGe



Mass matrices

• In general, the mass matrices appearing inside the Lagrangian 
are not diagonal, but they need to be diagonalized.

• For simple models, this can be done analytically (cf. tutorial).

• For complicated models, this needs to be done numerically.



Mass matrices

• In general, the mass matrices appearing inside the Lagrangian 
are not diagonal, but they need to be diagonalized.

• For simple models, this can be done analytically (cf. tutorial).

• For complicated models, this needs to be done numerically.

• Example:
1
2
@µ�i@

µ�i �
1
2
�iMij�j

�i = Uij�j UTMU = D

➡ For small matrices this can be done analytically.

➡ For ‘large’ matrices, need numerical diagonalization.



ASperGe

• For the MSSM, there are many tools that allow to perform 
this task.
➡ General idea: obtain SLHA file that contains the whole 

mass spectrum, + mixing matrices.



ASperGe

• For the MSSM, there are many tools that allow to perform 
this task.
➡ General idea: obtain SLHA file that contains the whole 

mass spectrum, + mixing matrices.

• Something similar can be done for generic models!

➡ ASperGe = Automatic Spectrum Generator

• ASperGe has two parts:
➡ Mathematica (embedded into FR): extract mass 

matrices form Lagrangian.

➡ C++: Numerical diagonalization of the matrices.

[Alloul, de Causmaecker, d’Hondt, Fuks, Rausch de Traubenberg]



ASperGe
• Mixing relations can be specified in the model file:

• Mass matrix can be extracted from Lagrangian:

4

where the mixing matrix is the identity. The underscore
reflects that the same color index is carried by all fields.

We now get back to weak gauge boson mixings and
turn to the neutral sector. We hence focus on the rota-
tion of the third weak boson W3 and the hypercharge
gauge boson B to the photon and Z-boson states,

(

Aµ

Zµ

)

= Uw

(

Bµ

W 3
µ

)

, (2)

after introducing the a priori unknown weak mixing
matrix Uw

4. The computation of the numerical values of
its matrix elements is addressed by means of the C++

package generated by FeynRules (see Section 4) and
is only possible if the mixing is declared according to
the syntax

Mix["AZmix"] == {

MassBasis -> {A, Z},

GaugeBasis -> {B, Wi[3]},

MixingMatrix -> UW,

BlockName -> WEAKMIX

}

The declaration of the gauge and mass bases is simi-
lar to the case of the charged W bosons, while the at-
tribute Value has been removed as the numerical value
of the mixing matrix is not known. The user provides in-
stead the symbol referring to the mixing matrix (UW) by
means of the MixingMatrix attribute, without declar-
ing it as one of the model parameters. This last task is
internally handled by FeynRules which assumes that
the mixing matrix is complex and which creates two
external tensorial parameters, one for the real part and
one for the imaginary part of the matrix, together with
one internal tensorial parameter being the matrix itself.

When a symbol for a mixing matrix is provided, it
is mandatory to specify, in addition, the name of a Les
Houches block which will contain the numerical values
associated with the elements of the matrix. We indeed
recall that both FeynRules and most of the interfaced
Monte Carlo event generators order the model param-
eters according to a structure inspired by the Super-
symmetry Les Houches Accord (SLHA) [30,31]. In our
example, we impose the real part of the elements of
Uw to be stored in a Les Houches block WEAKMIX and
their imaginary part in an automatically created block
IMWEAKMIX, i.e., a block of the same name with the
prefix IM appended.

Implementing model Lagrangians might require to
explicitly use one or several of the mixing matrices for

4Following more standard conventions, the relation of Eq. (2) is
usually written in terms of the cosine and sine of the electroweak
mixing angle, as in Section 2. However, we have adopted the
choice of staying fully general for the sake of the example.

some of the model interactions, as for the Minimal Su-
persymmetric Standard Model where the CKM matrix
is employed in the superpotential [4]. In this case, the
matrices must be declared according to the standard
syntax presented in the FeynRules manual, numeri-
cal values being provided as inputs. This subsequently
renders the attribute BlockName of the mixing class ob-
solete and ignored by FeynRules. Contrary, mixing
matrices automatically declared through a mixing dec-
laration cannot be employed in Lagrangians.

In the Standard Model, the CKM matrix VCKM re-
lates the left-handed down quark gauge-eigenstates d0L
to the mass-eigenstates dL as

d0L = VCKM · dL . (3)

To be compliant with the syntax presented so far, a
symbol for the hermitian-conjugate matrix has to be
created. To avoid such a complication, the optional at-
tribute Inverse can be used and set to True, which
enforces a relation among the mass and gauge bases
given by

GaugeBasis = MixingMatrix . MassBasis

3.2 More advanced cases

3.2.1 Scalar/pseudoscalar splittings

When neutral scalar fields are mixing, the gauge eigen-
states in general split into their real degrees of freedom
so that one scalar and one pseudoscalar mass basis are
required. Consequently, a list of two bases is provided as
argument of the MassBasis attribute, instead of a sin-
gle basis as in Section 3.1. Consistently, the arguments
of the attributes Value, BlockName, MixingMatrix and
Inverse are also upgraded to lists. The first element of
those lists always refers to the scalar fields, while the
second one is related to the pseudoscalar fields. It may
appear that some of the elements of those lists are ir-
relevant, as for instance when the scalar mixing matrix
is unknown (MixingMatrix and BlockName are used)
and the pseudoscalar mixing matrix is known (Value is
used). The irrelevant list components are in this case
replaced by underscores, as illustrated with

Mix["scalar"] == {

MassBasis -> { {h1, h2}, {a1, a2} },

GaugeBasis -> { phi1, phi2 },

BlockName -> { SMIX, _ },

MixingMatrix -> { US, _ },

Value -> { _, ... }

}
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cal values being provided as inputs. This subsequently
renders the attribute BlockName of the mixing class ob-
solete and ignored by FeynRules. Contrary, mixing
matrices automatically declared through a mixing dec-
laration cannot be employed in Lagrangians.

In the Standard Model, the CKM matrix VCKM re-
lates the left-handed down quark gauge-eigenstates d0L
to the mass-eigenstates dL as

d0L = VCKM · dL . (3)

To be compliant with the syntax presented so far, a
symbol for the hermitian-conjugate matrix has to be
created. To avoid such a complication, the optional at-
tribute Inverse can be used and set to True, which
enforces a relation among the mass and gauge bases
given by

GaugeBasis = MixingMatrix . MassBasis

3.2 More advanced cases

3.2.1 Scalar/pseudoscalar splittings

When neutral scalar fields are mixing, the gauge eigen-
states in general split into their real degrees of freedom
so that one scalar and one pseudoscalar mass basis are
required. Consequently, a list of two bases is provided as
argument of the MassBasis attribute, instead of a sin-
gle basis as in Section 3.1. Consistently, the arguments
of the attributes Value, BlockName, MixingMatrix and
Inverse are also upgraded to lists. The first element of
those lists always refers to the scalar fields, while the
second one is related to the pseudoscalar fields. It may
appear that some of the elements of those lists are ir-
relevant, as for instance when the scalar mixing matrix
is unknown (MixingMatrix and BlockName are used)
and the pseudoscalar mixing matrix is known (Value is
used). The irrelevant list components are in this case
replaced by underscores, as illustrated with

Mix["scalar"] == {

MassBasis -> { {h1, h2}, {a1, a2} },

GaugeBasis -> { phi1, phi2 },

BlockName -> { SMIX, _ },

MixingMatrix -> { US, _ },

Value -> { _, ... }

}

ComputeMassMatrix[ L ]

[Alloul, de Causmaecker, d’Hondt, 
Fuks, Rausch de Traubenberg]



• ASperGe generates from FeynRules a C++ code that allows to 
diagonalize the mass matrices

WriteASperGe[ L ]

• Once generated, the C++ code can be used standalone!

➡ No need to return to Mathematica every time!

➡ Input: SLHA file without masses and mixing.

➡ Output: SLHA file with masses and mixing.

ASperGe [Alloul, de Causmaecker, d’Hondt, 
Fuks, Rausch de Traubenberg]



Computing widths 
and branching ratios



Widths
• Similar to the masses, the widths need to be given as 

numerical inputs in the SLHA input files.

• Some MC codes need also the branching ratios in order to 
decay the particles.

DECAY        25     5.75308848E-03   # H   width
#        BR           NDA        ID1       ID2
     8.27451012E-02    2           4        -4   # BR( H -> c  cbar  )
     7.17809696E-01    2           5        -5   # BR( H -> b  bbar  )

• However, widths and branching ratios are not independent 
parameters, so their value cannot be chosen freely.

➡ User needs to compute them separately.



Widths
• Solution 1: Use ME generators to compute all the widths, 

and then update the parameter input file.

• Downside: This procedure must be repeated for every 
parameter set!

➡ Some codes even do this on the fly!



Widths
• Solution 1: Use ME generators to compute all the widths, 

and then update the parameter input file.

• Downside: This procedure must be repeated for every 
parameter set!

➡ Some codes even do this on the fly!

• Solution 2: In many cases the two-body decays are dominant.

➡ Two-body decays are easy to compute analytically.

�1!2 =
1

2m

Z
d�2 |M1!2|2 =

1

2m
|M1!2|2 Vol(phase space)

➡ Two-body decays are constants!
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• In FeynRules, we have
➡ all the three-point vertices,

➡ a high-level computer algebra system.

• That’s all we need to get the two-body decays!



The decay module
�1!2 =

1
2m

Z
d�2 |M1!2|2 =

1

2m
|M1!2|2 Vol(phase space)

• In FeynRules, we have
➡ all the three-point vertices,

➡ a high-level computer algebra system.

• That’s all we need to get the two-body decays!

vertices = FeynmanRules[ L ];

decays = ComputeDecays[ vertices ];

• All two-body partial widths are computed analytically, and 
stored in some internal format.
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The decay module
• The partial widths can be output in the UFO format, and be 

used when generating a process.

Decay_H = Decay(name = 'Decay_H',
                particle = P.H,
                partial_widths = {
                                  (P.b,P.b__tilde__):'3*MH**2*yb**2',
                                  (P.ta__minus__,P.ta__plus__):'MH**2*ytau**2',
                                  (P.c,P.c__tilde__):'3*MH**2*yc**2',
                                  (P.t,P.t__tilde__):'3*MH**2*yt**2'})

• NB: All possible analytic formulas are output, independently 
whether they are kinematically allowed!
➡ Some channels might be open for some benchmark 

scenarios but not for other

➡ Channels depend on spectrum.
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• At the current stage FeynRules can

• This is enough to cover large parts of BSM phenomenology at 
tree-level.

➡ compute Feynman rules.

➡ compute two-body partial widths.

➡ extract and diagonalize mass matrices (vis ASperGe).

Towards NLO

• For next-to-leading order (NLO), tree-level Feynman rules 
are not enough!
➡ UV counterterms.

➡ ‘R2 vertices’ (depending on the NLO ME generator).



R2 vertices
• All the automatized NLO codes are based, in one way or 

another, on some unitary-based approach.
• Unitarity, however, does not provide everything, but misses 

the rational pieces (without cuts).
• Some can be obtained, others (R2) need a different approach.
• R2 vertices can be obtained via effective tree-level Feynman 

rules.

p

µ1,a1 µ2,a2
=

ig2Ncol

48π2
δa1a2

[ p2

2
gµ1µ2 + λHV

(

gµ1µ2p
2 − pµ1pµ2

)

+
Nf

Ncol
(p2 − 6m2

q) gµ1µ2

]

p2
p1

p3

µ2,a2

µ1,a1

µ3,a3

= −
g3Ncol

48π2

(

7

4
+ λHV + 2

Nf

Ncol

)

fa1a2a3 Vµ1µ2µ3(p1, p2, p3)

µ3,a3µ4,a4

µ2,a2µ1,a1

= −
ig4Ncol

96π2

∑

P (234)

{

[ δa1a2δa3a4 + δa1a3δa4a2 + δa1a4δa2a3

Ncol

+ 4Tr(ta1ta3ta2ta4 + ta1ta4ta2ta3) (3 + λHV )

−Tr({ta1ta2}{ta3ta4}) (5 + 2λHV )
]

gµ1µ2gµ3µ4

+12
Nf

Ncol
Tr(ta1ta2ta3ta4)

(

5

3
gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ2µ3gµ1µ4

)}

µ, a

k

l

=
ig3

16π2

N2
col − 1

2Ncol
taklγµ (1 + λHV )

p

l k
=

ig2

16π2

N2
col − 1

2Ncol
δkl(−/p + 2mq)λHV

Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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[Draggiotis, Garzelli, Papadopoulos, Pittau;
Garzelli, Malamos, Pittau]





FR@NLO
• Upshot: Additional information needed for NLO can be 

obtained specific loop integrals.
➡ can be computed once and for all for every model.

• Idea: Use the FeynRules interfaced to FeynArts to generate 
and compute these loop integrals:

FeynRules FeynArts

UFO

FeynArts Model
(tree-level)

UFO Model
(tree-level) UV + R2 vertices
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FR@NLO

• Automated BSM@NLO will become possible (at least for 
large classes of models)!

• Status: Email by V. Hirschi yesterday: agreement in MG5 
with FR@NLO SM model for (NLO QCD only)

d d~ > w+ w- g       g g > h h t t~    g g > h t t~          u d~ > h t b~    u u~ > w+ w- b b~

u u~ > d d~            d g > d g            d~ u~ > d~ u~    g u~ > g u~       g g > d d~ 

g g > t t~                 g g > g g            d~ d > g a             u~ u > g z         e+ e- > d d~  

d u~ > w- g             d~ d > a g g      d~ d > z g g          d~ d > z z g      d~ u > w+ g g

g g > a t t~              g g > g t t~        g g > w- d~ u       g g > z t t~       s s~ > a z g

u u~ > w+ w- z       u u~ > z z z

➡ We are on the right track!
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• In principle:
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• In practise: This can be quite complicated still (although it is 
already much easier then before).
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Galileo

• At this point, one of the biggest bottlenecks for implementing 
a model into FeynRules is writing the model file.

• In principle:

➡ Fields / particle content.

➡ Symmetries.

➡ Numerical value of the input parameters.

• In practise: This can be quite complicated still (although it is 
already much easier then before).

• Solution: A code that turns symmetries and fields into a 
Lagrangian!

[Christensen, Setzer, Stefanus]



Galileo

• Idea: 

➡ User specifies fields and symmetry groups.

➡ Code generates all Lagrangian term (up to a certain 
dimension.

➡ Output of FeynRules model file.

• Code not ready yet, but I can give you some snapshots...

[Christensen, Setzer, Stefanus]
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[Christensen]



Galileo

• Current status: 

➡ Supports any semi-simple compact Lie algebra (symmetry).

➡ Supports fields of spin 0, 1/2, 0 + superfields.

➡ Automatically generates the Lagrangian.

➡ GUI wrapper.

• To do:

[Christensen, Setzer, Stefanus]

➡ Symmetry breaking.

➡ Mass diagonalization + rotation physical basis.

➡ Export model to FeynRules.



Summary

➡ Computes Feynman rules from a Lagrangian for large 
classes of models.

➡ Interfaces to many ME generators.

➡ Superfield formalism.

➡ Mass diagonalization + ASperGe.

➡ Two-body decays.

• FeynRules:

• Try it out on your favorite model!


