
Neil Christensen
PITT PACC

PITTsburgh Particle physics, Astrophysics and Cosmology Center

BSM @ LHC

The giant news of the last year is that we
have discovered the Higgs boson!

Is it the SM Higgs?

Good reason to expect new physics
beyond the Standard Model (SM).

SUSY
Little Higgs

Higgsless
TechnicolorExtra

dimensions

...others

SUSYLittle Higgs

Higgsless
Technicolor

Extra
dimensions

...others

Simulation
Software

SUSY
MSSM

pMSSM
NMSSM

RPVMSSM
...

Little Higgs

Higgsless
Technicolor

Extra
dimensions

...others

Simulation
Software

SUSY
MSSM

pMSSM
NMSSM

RPVMSSM
...

Little Higgs

Higgsless
Technicolor

Extra
dimensions

...others

CalcHEP
MadGraph

Sherpa
Whizard

FeynArts

What was the problem?

Problem 1:

Implementing a model was
often tedious and error
prone.

Problem 2:

Each matrix element
generator has its strengths.
What if you need more than
one? In the past you had to
start over.

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

© C. Degrande

Problem 3:

Implementations often did
not transfer well to
experimentalists.
It often required modifying the code of
the matrix element generator.

Problem 3:

Implementations often did
not transfer well to
experimentalists.
It often required modifying the code of
the matrix element generator.

SUSY
MSSM

pMSSM
NMSSM

RPVMSSM
...

Little Higgs

Higgsless
Technicolor

Extra
dimensions

...others

CalcHEP
MadGraph

Sherpa
Whizard

FeynArts

SUSY
MSSM

pMSSM
NMSSM

RPVMSSM
...

Little Higgs

Higgsless
Technicolor

Extra
dimensions

...others

CalcHEP

MadGraph

Sherpa

Whizard

FeynArts

FeynRules

LanHEP

SARAH

MC4BSM 2012 Tutorial
arXiv:1209.0297

SARAH

Sherpa

Whizard

LanHEP FeynRules SARAH

First Released

Programming
Language
General

Lagrangian

Superfields

Parameter
Running

Aut. Mass
Diagonalization

Spin

Superfields

1996 2008 2008

C Mathematica Mathematica

Yes Yes SUSY Only

No Yes Yes

No In Progress Yes

Yes Yes Yes

0,1/2,1,3/2,2 0,1/2,1,3/2,2 -

- Chiral, Vector Chiral, Vector

LanHEP FeynRules SARAH

CalcHEP

FeynArts

MadGraph

Sherpa

Whizard

Yes Yes Yes

Yes Yes Yes

In Progress Yes Yes

No Yes No

No Yes Yes

Example: IDP
CPC 184(2013) 1729-1769

LanHEP

FeynRules

LanHEP

FeynRules

LanHEP

FeynRules

LanHEP

FeynRules

Automatic Mass Diagonalization
Eur.Phys.J. C73 (2013) 2325

3

In the context of supersymmetric theories, the most
natural and convenient way to construct a Lagrangian
consists of employing the superspace formalism. There-
fore, the FeynRules package includes a module allow-
ing for superfield declarations and Lagrangian imple-
mentation in terms of superfields. Dedicated functions
are then provided to convert superfield expressions into
a form more suitable with respect to the requirements of
the interfaces to the Monte Carlo event generators [4].

3 Implementing mixings in FeynRules

In this work, we propose an extension of the Feyn-

Rules package aiming to simplify the declaration of
the mixing relations linking the unphysical degrees of
freedom of the theory to the physical fields. This new
module allows to automatically fill the Definitions

attribute of the fields, where relevant, and declare the
mixing matrices as parameters. In addition, we have
developed an interface generating a C++ code dedi-
cated to the diagonalization of the mass matrices of
the model (see Section 4) after having implemented in
FeynRules a function allowing for their analytical ex-
traction from the Lagrangian. In this way, the values of
all the mixing parameters are derived numerically and
can be re-imported into FeynRules.

3.1 Mixing declarations

For an efficient declaration of the mixing relations, we
have extended the FeynRules model file structure by
adjoining a new class dedicated to particle mixings.
Consequently, all mixing relations among the states can
be declared on the same spirit as particles, gauge groups
and parameters, after having been gathered into a list
dubbed M$MixingsDescription

M$MixingsDescription = {

Mix["l1"] == { options1 },

Mix["l2"] == { options2 },

...

}

Each element of this list consists of an equality ded-
icated to one specific mixing relation. It associates a
label, given as a string, ("l1", "l2", etc.) with a set of
Mathematica replacement rules defining the mixing
properties (options1, options2, etc.).

In order to illustrate the choice of options offered to
the user, we consider the example of Section 2 where
we have focused on the mixing of the SU(2)L gauge
bosons. We start by implementing the mixing of the

W1 and W2 gauge fields,

W+
µ =

W 1
µ − iW 2

µ√
2

and W−
µ =

W 1
µ + iW 2

µ√
2

, (1)

which stems from the diagonalization of the third gen-
erator of SU(2)L in the adjoint representation. As Eq.
(1) is purely numerical, i.e., it does not involve any
model parameter, it can be declared in the model file
in a very compact form,

Mix["Wmix"] == {

MassBasis -> {W, Wbar},

GaugeBasis -> {Wi[1], Wi[2]},

Value -> { {1/Sqrt[2], -I/Sqrt[2]},

{1/Sqrt[2], I/Sqrt[2]} }

}

The command above declares a mixing relation, dubbed
Wmix, that can be schematically written as

MassBasis = Value . GaugeBasis

where the dot product stands for the usual matrix prod-
uct. The information on the gauge basis is provided as
the value of the attribute GaugeBasis which refers here
to the unphysical fields W1 (Wi[1]) and W2 (Wi[2]).
Similarly, the MassBasis attribute refers to the mass
basis, containing here the symbols associated with the
W+ (W) and W− (Wbar) bosons. Finally, the mixing ma-
trix is given under a numerical form as the argument of
the attribute Value.

Some remarks are in order. First, the gauge basis
only contains unphysical fields, while the mass basis can
contain either physical fields, unphysical fields or both.
Particle mixings can therefore be possibly implemented
in several steps, as illustrated in Section 5.2. Next, spin
and Lorentz indices can be omitted and the index or-
dering is defined when declaring the fields (through the
attribute Indices of the particle class [1]). Finally, if
some indices are irrelevant, i.e., if they are identical
for all the involved fields, underscores can be employed
to simplify the mixing declaration. For instance, the
three left-handed down-type squarks d̃cL (sdL[1,c]),
s̃cL (sdL[2,c]), and b̃cL (sdL[3,c]) are related to the
squark gauge-eigenstates Q̃ifc

L (QLs[i,f,c]), the index
i being a fundamental SU(2)L index, the index f a fla-
vor index and the index c a fundamental color index.
The corresponding declaration reads

Mix["sdleft"] == {

MassBasis ->

{sdL[1,_], sdL[2,_], sdL[3,_]},

GaugeBasis ->

{QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...

}

Automatic Mass Diagonalization
Eur.Phys.J. C73 (2013) 2325

3

In the context of supersymmetric theories, the most
natural and convenient way to construct a Lagrangian
consists of employing the superspace formalism. There-
fore, the FeynRules package includes a module allow-
ing for superfield declarations and Lagrangian imple-
mentation in terms of superfields. Dedicated functions
are then provided to convert superfield expressions into
a form more suitable with respect to the requirements of
the interfaces to the Monte Carlo event generators [4].

3 Implementing mixings in FeynRules

In this work, we propose an extension of the Feyn-

Rules package aiming to simplify the declaration of
the mixing relations linking the unphysical degrees of
freedom of the theory to the physical fields. This new
module allows to automatically fill the Definitions

attribute of the fields, where relevant, and declare the
mixing matrices as parameters. In addition, we have
developed an interface generating a C++ code dedi-
cated to the diagonalization of the mass matrices of
the model (see Section 4) after having implemented in
FeynRules a function allowing for their analytical ex-
traction from the Lagrangian. In this way, the values of
all the mixing parameters are derived numerically and
can be re-imported into FeynRules.

3.1 Mixing declarations

For an efficient declaration of the mixing relations, we
have extended the FeynRules model file structure by
adjoining a new class dedicated to particle mixings.
Consequently, all mixing relations among the states can
be declared on the same spirit as particles, gauge groups
and parameters, after having been gathered into a list
dubbed M$MixingsDescription

M$MixingsDescription = {

Mix["l1"] == { options1 },

Mix["l2"] == { options2 },

...

}

Each element of this list consists of an equality ded-
icated to one specific mixing relation. It associates a
label, given as a string, ("l1", "l2", etc.) with a set of
Mathematica replacement rules defining the mixing
properties (options1, options2, etc.).

In order to illustrate the choice of options offered to
the user, we consider the example of Section 2 where
we have focused on the mixing of the SU(2)L gauge
bosons. We start by implementing the mixing of the

W1 and W2 gauge fields,

W+
µ =

W 1
µ − iW 2

µ√
2

and W−
µ =

W 1
µ + iW 2

µ√
2

, (1)

which stems from the diagonalization of the third gen-
erator of SU(2)L in the adjoint representation. As Eq.
(1) is purely numerical, i.e., it does not involve any
model parameter, it can be declared in the model file
in a very compact form,

Mix["Wmix"] == {

MassBasis -> {W, Wbar},

GaugeBasis -> {Wi[1], Wi[2]},

Value -> { {1/Sqrt[2], -I/Sqrt[2]},

{1/Sqrt[2], I/Sqrt[2]} }

}

The command above declares a mixing relation, dubbed
Wmix, that can be schematically written as

MassBasis = Value . GaugeBasis

where the dot product stands for the usual matrix prod-
uct. The information on the gauge basis is provided as
the value of the attribute GaugeBasis which refers here
to the unphysical fields W1 (Wi[1]) and W2 (Wi[2]).
Similarly, the MassBasis attribute refers to the mass
basis, containing here the symbols associated with the
W+ (W) and W− (Wbar) bosons. Finally, the mixing ma-
trix is given under a numerical form as the argument of
the attribute Value.

Some remarks are in order. First, the gauge basis
only contains unphysical fields, while the mass basis can
contain either physical fields, unphysical fields or both.
Particle mixings can therefore be possibly implemented
in several steps, as illustrated in Section 5.2. Next, spin
and Lorentz indices can be omitted and the index or-
dering is defined when declaring the fields (through the
attribute Indices of the particle class [1]). Finally, if
some indices are irrelevant, i.e., if they are identical
for all the involved fields, underscores can be employed
to simplify the mixing declaration. For instance, the
three left-handed down-type squarks d̃cL (sdL[1,c]),
s̃cL (sdL[2,c]), and b̃cL (sdL[3,c]) are related to the
squark gauge-eigenstates Q̃ifc

L (QLs[i,f,c]), the index
i being a fundamental SU(2)L index, the index f a fla-
vor index and the index c a fundamental color index.
The corresponding declaration reads

Mix["sdleft"] == {

MassBasis ->

{sdL[1,_], sdL[2,_], sdL[3,_]},

GaugeBasis ->

{QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...

}

Automatic Mass Diagonalization
Eur.Phys.J. C73 (2013) 2325

4

where the mixing matrix is the identity. The underscore
reflects that the same color index is carried by all fields.

We now get back to weak gauge boson mixings and
turn to the neutral sector. We hence focus on the rota-
tion of the third weak boson W3 and the hypercharge
gauge boson B to the photon and Z-boson states,

(

Aµ

Zµ

)

= Uw

(

Bµ

W 3
µ

)

, (2)

after introducing the a priori unknown weak mixing
matrix Uw

4. The computation of the numerical values of
its matrix elements is addressed by means of the C++

package generated by FeynRules (see Section 4) and
is only possible if the mixing is declared according to
the syntax

Mix["AZmix"] == {

MassBasis -> {A, Z},

GaugeBasis -> {B, Wi[3]},

MixingMatrix -> UW,

BlockName -> WEAKMIX

}

The declaration of the gauge and mass bases is simi-
lar to the case of the charged W bosons, while the at-
tribute Value has been removed as the numerical value
of the mixing matrix is not known. The user provides in-
stead the symbol referring to the mixing matrix (UW) by
means of the MixingMatrix attribute, without declar-
ing it as one of the model parameters. This last task is
internally handled by FeynRules which assumes that
the mixing matrix is complex and which creates two
external tensorial parameters, one for the real part and
one for the imaginary part of the matrix, together with
one internal tensorial parameter being the matrix itself.

When a symbol for a mixing matrix is provided, it
is mandatory to specify, in addition, the name of a Les
Houches block which will contain the numerical values
associated with the elements of the matrix. We indeed
recall that both FeynRules and most of the interfaced
Monte Carlo event generators order the model param-
eters according to a structure inspired by the Super-
symmetry Les Houches Accord (SLHA) [30,31]. In our
example, we impose the real part of the elements of
Uw to be stored in a Les Houches block WEAKMIX and
their imaginary part in an automatically created block
IMWEAKMIX, i.e., a block of the same name with the
prefix IM appended.

Implementing model Lagrangians might require to
explicitly use one or several of the mixing matrices for

4Following more standard conventions, the relation of Eq. (2) is
usually written in terms of the cosine and sine of the electroweak
mixing angle, as in Section 2. However, we have adopted the
choice of staying fully general for the sake of the example.

some of the model interactions, as for the Minimal Su-
persymmetric Standard Model where the CKM matrix
is employed in the superpotential [4]. In this case, the
matrices must be declared according to the standard
syntax presented in the FeynRules manual, numeri-
cal values being provided as inputs. This subsequently
renders the attribute BlockName of the mixing class ob-
solete and ignored by FeynRules. Contrary, mixing
matrices automatically declared through a mixing dec-
laration cannot be employed in Lagrangians.

In the Standard Model, the CKM matrix VCKM re-
lates the left-handed down quark gauge-eigenstates d0L
to the mass-eigenstates dL as

d0L = VCKM · dL . (3)

To be compliant with the syntax presented so far, a
symbol for the hermitian-conjugate matrix has to be
created. To avoid such a complication, the optional at-
tribute Inverse can be used and set to True, which
enforces a relation among the mass and gauge bases
given by

GaugeBasis = MixingMatrix . MassBasis

3.2 More advanced cases

3.2.1 Scalar/pseudoscalar splittings

When neutral scalar fields are mixing, the gauge eigen-
states in general split into their real degrees of freedom
so that one scalar and one pseudoscalar mass basis are
required. Consequently, a list of two bases is provided as
argument of the MassBasis attribute, instead of a sin-
gle basis as in Section 3.1. Consistently, the arguments
of the attributes Value, BlockName, MixingMatrix and
Inverse are also upgraded to lists. The first element of
those lists always refers to the scalar fields, while the
second one is related to the pseudoscalar fields. It may
appear that some of the elements of those lists are ir-
relevant, as for instance when the scalar mixing matrix
is unknown (MixingMatrix and BlockName are used)
and the pseudoscalar mixing matrix is known (Value is
used). The irrelevant list components are in this case
replaced by underscores, as illustrated with

Mix["scalar"] == {

MassBasis -> { {h1, h2}, {a1, a2} },

GaugeBasis -> { phi1, phi2 },

BlockName -> { SMIX, _ },

MixingMatrix -> { US, _ },

Value -> { _, ... }

}

MEG Hack Not Required

These model implementations can be used just like built in
models. They do not require modification of the matrix

element generator code!

Validation

Validation
• Check Hermiticity.

• Check Feynman rules with literature .

• Check gauge invariance.

• Check consistency between
supported matrix element
generators.

• Check distributions.

• ...

Model Databases

Future

log(1.27) =

0.27� 1

2
0.272 +

1

3
0.273 � 1

4
0.274 + · · ·log(1.27) =

0.27� 1

2
0.272 +

1

3
0.273 � 1

4
0.274 + · · ·log(1.27) =

cos(0.33) = 1� 1

2!

0.332 +
1

4!

0.334 + · · ·

1

0.57
= 1 + 0.43 + 0.432 + 0.433 + 0.434 + · · ·

...

log(1.27) = 0.1038 · · ·

cos(0.33) = 0.9460 · · ·

1

0.57
= 1.754 · · ·

...

Why use technology?
• Can you calculate it on your own? Yes!!!

• Should you learn how to do it? Yes.

• During research, why waste your time on the algorithms?
• We could do so much more physics if we let computers do

the algorithms!

• Rather concentrate on the new physics!

• Humans are good at creativity!

• Computers are good at algorithms!
• Let the computers do the algorithms once they are mature!

We use technology to

Do more!

•Insert vevs

•Insert vevs
•Expand Lagrangian

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis
•Calculate Feynman diagrams

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis
•Calculate Feynman diagrams
•Implement Feynman rules into CH, FA, MG, SH, WO

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis
•Calculate Feynman diagrams
•Implement Feynman rules into CH, FA, MG, SH, WO
•Implement Lagrangian into FR, LH, SARAH

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis
•Calculate Feynman diagrams
•Implement Feynman rules into CH, FA, MG, SH, WO
•Implement Lagrangian into FR, LH, SARAH
•Do calculations

•Insert vevs
•Expand Lagrangian
•Collect quadratic terms
•Diagonalize mass matrices
•Rotate fields to mass basis
•Calculate Feynman diagrams
•Implement Feynman rules into CH, FA, MG, SH, WO
•Implement Lagrangian into FR, LH, SARAH
•Do calculations

Algorithmic!

Algorithmic!

Algorithmic!
Algorithmic!

Algorithmic!
Algorithmic!

Algorithmic!
Algorithmic!
Algorithmic!

Some algorithmic!

Why use technology?
• Can you calculate it on your own? Yes!!!

• Should you learn how to do it? Yes.

• During research, why waste your time on the algorithms?
• We could do so much more physics if we let computers do

the algorithms!

• Rather concentrate on the new physics!

• Humans are good at creativity!

• Computers are good at algorithms!
• Let the computers do the algorithms once they are mature!

We use technology to

Do more!

Galileo was not afraid of getting his
hands dirty with technology!

Galileo was not afraid of getting his
hands dirty with technology!

He worked very hard to improve
the telescope and ...

Galileo was not afraid of getting his
hands dirty with technology!

He worked very hard to improve
the telescope and then he
pointed it at the skies and

discovered craters on the moon,
moons orbiting jupiter, and many

others!

Galileo was not afraid of getting his
hands dirty with technology!

He worked very hard to improve
the telescope and then he
pointed it at the skies and

discovered craters on the moon,
moons orbiting jupiter, and many

others!

We have the same opportunity
in our day!

Introducing

Galileo
Do more!

Galileo : Current
• Supports any semisimple compact Lie

algebra (symmetry).

• Supports fields of spin 0,1/2,1.

• Supports superfields.

• Automatically generates the Lagrangian.

• Core library + GUI wrapper.

Galileo : Plans
• Core and GUI need more polishing.

• Expand Lagrangian.

• Symmetry breaking.

• Mass matrix diagonalization and rotation to physical
basis.

• Save/read.

• Export to FeynRules (for further analysis).

1997: Deep blue beats the
current world champion, Garry

Kasparov at chess!

In 2011, Watson beat the world
champions at Jeopardy!

In 2025, ...

iPad2

Play Station 3

Let’s be part of the next revolution in science.

Summary
• Discovery of a Higgs-like state!

• We still expect to find more new physics BSM.

• It is much easier/safer to implement BSM models into matrix element
generators.

• Several choices for implementation (LanHEP, FeynRules, SARAH).

• Export to many MEGs (CalcHEP, FeynArts, MadGraph, Sherpa,
Whizard).

• No need to modify MEG code.

• Improved validation available.

• Model databases available (FeynRules and HEPMDB).

• Future: Galileo will make the situation even better for the study of BSMs.

