Model Building in the LHC Era from model to LHC and back again Neil Christensen University of Wisconsin - Madison

???

Supersymmetry

Extra Dimensions

Little Higgs

Higgsless

New Strong Dynamics ???

Supersymmetry

Extra Dimensions

Little Higgs

New Strong Dynamics

+ /- $W^{\prime\prime\prime},Z^{\prime\prime\prime}$ W'', Z''W', Z'W, Z

 W^+

PLB 562, 109 (2003), IJMPA 20, 3362 (2005)

$$\mathcal{M} \simeq \frac{\sqrt{6s} \ m_t \cos\theta}{2M_W^2} \Big(2g_{tt\gamma} g_{\gamma WW} + g_{LttZ} g_{ZWW} + g_{RttZ} g_{ZWW} - g_{LtbW}^2 \Big)$$

$$+\frac{\sqrt{6s}\ m_t}{2M_W^2}g_{LtbW}^2$$

$$\mathcal{M} \simeq \frac{\sqrt{6s} \ m_t \cos\theta}{2M_W^2} \Big(2g_{tt\gamma} g_{\gamma WW} + g_{LttZ} g_{ZWW} + g_{RttZ} g_{ZWW} - g_{LtbW}^2 \Big)$$

$$+\frac{\sqrt{6s}\ m_t}{2M_W^2}g_{LtbW}^2$$

 $2g_{tt\gamma}g_{\gamma WW} + g_{LttZ}g_{ZWW} + g_{RttZ}g_{ZWW} - g_{LtbW}^2 = 0$

 $\mathcal{M} \simeq \frac{\sqrt{6s} \ m_t}{2M_W^2} g_{LtbW}^2 = \frac{\sqrt{6s} \ m_t}{v^2}$

 $/6s m_t$ $\mathcal{M} \simeq \sqrt{6s} \ g_{tt\pi\pi}$ n^{2}

$$a_0 = \frac{1}{32\pi} \int_{-1}^{1} d\cos\theta \ \mathcal{M} < \frac{1}{2}$$
$$a_0 \sim \frac{m_t \sqrt{6s}}{16\pi v^2}$$
$$\sqrt{s} \lesssim \frac{8\pi v^2}{m_t \sqrt{6}} \sim 3.5 \text{TeV}$$

PRL **59**, 2405

- M. Golden: PLB **338**, 295 (1994)
 - Won't the fields that unitarize $W^+W^- \rightarrow W^+W^$ also unitarize $t\bar{t} \rightarrow W^+W^-$?

PLB 525, 175 (2002), PLB 532, 121 (2002), PLB 562, 109 (2003), IJMPA 20, 3362 (2005)

Phys. Rev. D 75, 073018 (2007)

$$\mathcal{L}_{\psi\Sigma} = -M_F \bigg[\epsilon_L \bar{\psi}_{L0} \Sigma_0 \psi_{R1} - \sum_j \bar{\psi}_{Lj} \psi_{Rj} + \sum_j \bar{\psi}_{Lj} \Sigma_j \psi_{R,j+1} + \bar{\psi}_{Ln} \epsilon_R \Sigma_n \psi_{R,n+1} + \text{H.c.} \bigg]$$

$$\Sigma_{\psi\Sigma} = -M_F \bigg[\epsilon_L \bar{\psi}_{L0} \Sigma_0 \psi_{R1} - \sum_j \bar{\psi}_{Lj} \psi_{Rj} + \sum_j \bar{\psi}_{Lj} \Sigma_j \psi_{R,j+1} + \bar{\psi}_{Ln} \epsilon_R \Sigma_n \psi_{R,n+1} + \text{H.c.} \bigg]$$

$$g_{RtF_k\pi} = -i \frac{\sqrt{2M_F}}{f} \bigg[\epsilon_L v_{LF_k}^0 v_{Rt}^1 v_{\pi}^{[0]} + \sum_i v_{LF_k}^i v_{Rt}^{i+1} v_{\pi}^{[i]} \\ + \epsilon_{Rt} v_{LF_k}^n v_{Rt}^{n+1} v_{\pi}^{[n]} \bigg] \\ = \frac{i \sqrt{2M_F} \epsilon_R}{\sqrt{2n+1}(n+1)\nu} \tan \bigg[\frac{(n-k+1)\pi}{2n+1} \bigg]$$

$$\psi \Sigma = -M_F \bigg[\epsilon_L \bar{\psi}_{L0} \Sigma_0 \psi_{R1} - \sum_j \bar{\psi}_{Lj} \psi_{Rj} + \sum_j \bar{\psi}_{Lj} \Sigma_j \psi_{R,j+1} + \bar{\psi}_{Ln} \epsilon_R \Sigma_n \psi_{R,n+1} + \text{H.c.} \bigg]$$

$$g_{tt\pi^{+}\pi^{-}} = \frac{M_{F}}{f^{2}} \bigg[\epsilon_{L} v_{Lt}^{0} v_{Rt}^{1} (v_{\pi}^{[0]})^{2} + \sum_{i} v_{Lt}^{i} v_{Rt}^{i+1} (v_{\pi}^{[i]})^{2} + \epsilon_{Rt} v_{Lt}^{n} v_{Rt}^{n+1} (v_{\pi}^{[n]})^{2} \bigg]$$
$$= \frac{m_{t}}{(n+1)v^{2}}.$$

$$\mathcal{M} = \sqrt{6s} \left(g_{tt\pi^{+}\pi^{-}} - \sum_{k} \frac{M_{F_{k}} g_{LtF_{k}\pi} g_{RtF_{k}\pi}}{t - M_{F_{k}}^{2}} \right)$$

$$\mathcal{M} = \sqrt{6s} \left(g_{tt\pi^+\pi^-} - \sum_k \frac{M_{F_k} g_{LtF_k\pi} g_{RtF_k\pi}}{t - M_{F_k}^2} \right)$$

$$a_0 = \frac{1}{32\pi} \int_{-1}^{1} d\cos\theta \mathcal{M}$$

= $\frac{\sqrt{6}}{16\pi} \left[g_{tt\pi^+\pi^-} \sqrt{s} + \sum_k g_{LtF_k\pi} g_{RtF_k\pi} g\left(\frac{\sqrt{s}}{M_{F_k}}\right) \right]$
 $g(x) = \frac{1}{x} \ln(1+x^2)$

 $M_{F1} \ll 4.5 \text{TeV}$

$$a_0 \simeq \frac{\sqrt{6s}m_t}{16\pi v^2(n+1)} \lesssim \frac{1}{2}$$

 $\sqrt{s} \leq (n+1)3.5 \text{ TeV}$

$$\begin{array}{rccc} W_0 & : & (3,1)_0 \\ W_1 & : & (1,3)_0 \\ W_2 & : & (1,1)_0 \end{array}$$

$$\mathcal{L} = -\frac{1}{4} F_{0\mu\nu} F_0^{\mu\nu} - \frac{1}{4} F_{1\mu\nu} F_1^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_2^{\mu\nu}$$

 $-(SU(2)_1)$ $U(1)_2$ SU(2)0

 $\begin{array}{rccc} \Sigma_{01} & : & (2,\bar{2})_0 \\ \Sigma_{12} & : & (1,2)_{\pm\frac{1}{2}} \end{array}$

 $\mathcal{L} = \frac{f^2}{\Lambda} \operatorname{Tr} \left[\left(D_\mu \Sigma_{01} \right)^\dagger D^\mu \Sigma_{01} + \left(D_\mu \Sigma_{12} \right)^\dagger D^\mu \Sigma_{12} \right]$ $+\frac{F^2}{\Lambda} \operatorname{Tr} \left[\left(D_{\mu} \left(\Sigma_{01} \Sigma_{12} \right) \right)^{\dagger} D^{\mu} \left(\Sigma_{01} \Sigma_{12} \right) \right]$

 $\mathcal{L} = i\bar{\psi}_{L0} \not\!\!\!D \psi_{L0} + i\bar{\psi}_{L1} \not\!\!\!D \psi_{L1} + i\bar{\psi}_{R1} \not\!\!\!D \psi_{R1} + i\bar{\psi}_{R2} \not\!\!\!D \psi_{R2}$

$$\mathcal{L} = -M_F \left(\epsilon_L \bar{\psi}_{L0} \Sigma_{01} \psi_{R1} + \bar{\psi}_{L1} \psi_{R1} + \bar{\psi}_{L1} \epsilon_R \Sigma_{12} \psi_{R2} \right)$$

$$g_{We\nu} = g_0 v_W^0 \left(v_L^0 \right)^2 + g_1 v_W^1 \left(v_L^1 \right)^2$$

Ideal Fermion Delocalization

 $g_i \left(v_L^i \right)^2 \propto v_W^i$

Ideal Fermion Delocalization

 $g_i \left(v_L^i \right)^2 \propto v_W^i$

$$g_{f_L f_L W'} = \sum_{i} g_i \left(v_L^i \right)^2 v_{W'}^i$$
$$= \sum_{i} v_W^i v_{W'}^i$$
$$= 0$$

W' and Z' are "fermiophobic"! W and Z are SM like.

CalcHEP

MadGraph

Herwig

Sherpa

Whizard

FeynArts

Problem 1:

Implementing a model was often tedious and error prone.

$Terminal-less-82 \times 38$

A Y

######################################										
<pre># FFV (qqZ) dp dp z GZDp QED-HF up up z GZUp QED-HF sp sp z GZDp QED-HF cp cp z GZUp QED-HF bp bp z GZDp QED-HF tp tp z GZTp QED-HF</pre>										
<pre># FFV (llZ) ep- ep- z GZLp QED-HF mup- mup- z GZLp QED-HF tap- tap- z GZLp QED-HF vep vep z GZNp QED-HF vmp vmp z GZNp QED-HF vtp vtp z GZNp QED-HF</pre>										
<pre># FFV (qq'W) - diagonal CKM dp up w- GWFp QED-HF sp cp w- GWFp QED-HF bp tp w- GWTp QED-HF up dp w+ GWFp QED-HF cp sp w+ GWFp QED-HF tp bp w+ GWTp QED-HF</pre>										
<pre># FFV (ll'W) vep ep- w+ GWFp QED-HF vmp mup- w+ GWFp QED-HF vtp tap- w+ GWFp QED-HF ep- vep w- GWFp QED-HF mup- vmp w- GWFp QED-HF tap- vtp w- GWFp QED-HF</pre>										

:

```
Terminal — bash — 82×38
                                                                                  V-light
           F-heavy
                       F-heavy
 GZDpL =
- -1d0/2d0*gf(-ee,WMASS,ZMASS,MWP)

    +vZ0f(WMASS,ZMASS,MWP)*vLP0f(WMASS,MWP)**2

    - 1d0/2d0*gtf(-ee,WMASS,ZMASS,MWP)

    +VZ1f(WMASS,ZMASS,MWP)*vLP1f(WMASS,MWP)**2

- +1d0/6d0*gpf(-ee,WMASS,ZMASS,MWP)

    +vZ2f(WMASS,ZMASS,MWP)

   GZDpR =
- -1d0/2d0*gtf(-ee,WMASS,ZMASS,MWP)

    +VZ1f(WMASS,ZMASS,MWP)

- +1d0/6d0*gpf(-ee,WMASS,ZMASS,MWP)

    +vZ2f(WMASS,ZMASS,MWP)

 GZDp(1)=dcmplx(GZDpL,Zero)
 GZDp(2)=dcmplx(GZDpR,Zero)
 write(*,10) 'GZDpL = ',GZDpL
 write(*,10) 'GZDpR = ',GZDpR
 GZUpL =
- 1d0/2d0*qf(-ee,WMASS,ZMASS,MWP)

    +vZ0f(WMASS,ZMASS,MWP)*vLP0f(WMASS,MWP)**2

- +1d0/2d0*gtf(-ee,WMASS,ZMASS,MWP)

    +VZ1f(WMASS,ZMASS,MWP)*vLP1f(WMASS,MWP)**2

- +1d0/6d0*qpf(-ee,WMASS,ZMASS,MWP)

    +vZ2f(WMASS,ZMASS,MWP)

   GZUpR =
- 1d0/2d0*gtf(-ee,WMASS,ZMASS,MWP)

    +VZ1f(WMASS,ZMASS,MWP)

- +1d0/6d0*gpf(-ee,WMASS,ZMASS,MWP)

    +vZ2f(WMASS,ZMASS,MWP)

 GZUp(1)=dcmplx(GZUpL,Zero)
 GZUp(2)=dcmplx(GZUpR,Zero)
 write(*,10) 'GZUpL = ',GZUpL
 write(*,10) 'GZUpR = ',GZUpR
```

Problem 2:

Each matrix element generator has its strengths. What if you need more than one? In the past you had to start over.

© C. Degrande

Problem 3:

Implementations often did not transfer well to experimentalists.

Problem 3:

Implementations often did not transfer well to experimentalists. It often required modifying the code of the matrix element generator.

FeynRules

In collaboration with: Claude Duhr, Benjamin Fuks, de Aquino, C. Degrande, D. Grellscheid, W. I.

P. de Aquino, C. Degrande, D. Grellscheid, W. Link, F. Maltoni, O. Mattelaer, T. Reiter, C. Speckner, S. Schumann, M. Wiebusch

L =

- -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
- + I qbar.Ga[mu].del[q,mu]
- + gs qbar.Ga[mu].T[a].q G[mu,a]
- MQ qbar.q

```
3-Site-lagrangian.fr
                                                ************************
                         Gauge Bosons kinetic terms **********
LGauge := Module[{FGlue,F0,F1,F2,LGlue,L0,L1,L2},
       (********** Glue*)
       FGlue[mu_,nu_,a_] := Module[{b,c},
               del[G[nu, a], mu] - del[G[mu, a], nu] - gs f[a,b,c] G[mu, b] G[nu, c]
               ];
       LGlue := -1/4 FGlue[mu,nu,a]FGlue[mu,nu,a];
       (********** Site 0*)
       F0[mu_,nu_,a_] := Module[{b,c},
               del[W0[nu,a],mu]-del[W0[mu,a],nu] - g*ep0[a,b,c]*W0[mu,b]*W0[nu,c]
               1:
       L0 := -1/4 F0[mu,nu,a]F0[mu,nu,a];
       (*********** Site 1*)
       F1[mu_,nu_,a_] := Module[{b,c},
               del[W1[nu,a],mu]-del[W1[mu,a],nu] - gt*ep1[a,b,c]*W1[mu,b]*W1[nu,c]
               1:
       L1 := -1/4 F1[mu,nu,a]F1[mu,nu,a];
       (********** Site 2*)
       F2[mu_,nu_] := Module[{tmp},
               del[W23[nu],mu]-del[W23[mu],nu]
               1:
       L2 := -1/4 F2[mu,nu]F2[mu,nu];
       LGlue+L0+L1+L2
```

-:-- 3-Site-lagrangian.fr 9% (22,51) (Fundamental)

];

© C. Degrande

Celine Sasha Priscila Martin Benj Christian Claude Will Olivier David Neil Thomas

Development

- Superfield Formalism (B. Fuks)
- New FeynArts Interface (C. Degrande, C. Duhr)
- Automatic Mass Matrix Diagonalization (M.Wiebusch, NDC)
- New MadGraph5/Herwig Interface (P. de Aquino, C. Duhr, D. Grellscheid, W. Link, O. Mattelaer, T. Reiter)
- New Whizard Interface (arXiv:1010.325) (NDC, C. Duhr, B. Fuks, J. Rueter, C. Speckner)
- Model Database (all)
- New automatized Web Validation (NDC)

+ Ohttp://localhost:8080/author/validation?vdtnld=118

C Q- Google

é.

Start Fresh Validations Finish Validations

48 pr	ocesses : 48	agree, 0 o	questionable,	0 disagree,	0 not	finished
-------	--------------	------------	---------------	-------------	-------	----------

						√s	p _{Tcut}	CH(F)	CH(u)	MG4	WO1(F)	WO1(u)	WO2(F)	WO2(u)	WO-ST		Δ	
Z	,	W+	→	~Z	, ~W+	4693.0	1173.25	102.67	102.67	102.4	102.672	102.679	102.691	102.682	102.676	•	0.24%	
W+	,	W+	→	W+	, ~W+	2965.0	741.25	2.4203	2.4203	2.4141	2.42005	2.41998	2.42014	2.41914	2.42078	•	0.22%	
W+	,	~W+	-	~W+	, ~W+	6322.0	1580.5	3.3141	3.3141	3.3217	3.31304	3.31371	3.31373	3.31409	3.31557	•	0.2%	
W+	,	W+	→	W+	, W+	1286.0	321.5	76.03	76.03	76.188	76.0095	76.0285	76.0867	75.9919	76.0325	r	0.18%	
~W+	,	~W+	-	~W+	, ~W+	8000.0	2000.0	567.33	567.33	566.24	567.314	567.18	567.244	567.249	567.35	•	0.16%	
~Z	,	~Z	→	~W+	, ~W-	8013.0	2003.25	1133.9	1133.9	1131.7	1133.48	1133.53	1133.76	1133.73	1133.59	•	0.15%	
Α	,	Α	→	W+	, W-	643.0	160.75	16.11	16.11	16.108	16.111	16.1075	16.1075	16.0846	16.1064	•	0.13%	
Ζ	,	Z	→	W+	, W-	1373.0	343.25	130.02	130.02	130.21	129.98	130.079	130.023	130.035	129.965	•	0.13%	
Z	,	Z	→	~W+	, ~W-	4730.0	1182.5	313.8	313.8	313.42	313.828	313.791	313.759	313.955	313.862	•	0.11%	U
G	,	G	→	G	, G	200.0	50.0	18835.0	18835.0	18816.0	18831.7	18831.2	18842.3	18845.4	18841.9	•	0.1%	
Α	,	Α	→	~W+	, ~W-	8000.0	2000.0	0.12636	0.12636	0.1265	0.126312	0.12635	0.126452	0.126347	0.12637	•	0.09%	
Z	,	Z	→	W+	, ~W-	3051.0	762.75	1.1376	1.1376	1.138	1.13758	1.13784	1.13857	1.13718	1.13735	•	0.08%	
Α	,	Z	→	~W+	, ~W-	8730.0	2182.5	0.041172	0.041172	0.041175	0.0411638	0.0411898	0.0411888	0.0411406	0.0411586	•	0.07%	
Α	,	~Z	→	~W+	, ~W-	6007.0	1501.75	6.3818	6.3818	6.3866	6.38627	6.38614	6.38229	6.38421	6.37878	•	0.07%	
Α	,	Z	→	W+	, W-	1008.0	252.0	20.969	20.969	20.961	20.9732	20.9758	20.9558	20.9718	20.9649	•	0.06%	
W+	,	W+	→	~W+	, ~W+	4643.0	1160.75	150.92	150.92	150.79	150.942	150.919	150.815	150.875	150.921	•	0.06%	
Α	,	W+	→	W+	, ~Z	2650.0	662.5	0.16856	0.16856	0.16866	0.168592	0.168542	0.168497	0.168558	0.168573	•	0.05%	
Α	,	W+	→	~Z	, ~W+	8656.0	2164.0	0.034886	0.034886	0.034866	0.034879	0.034886	0.0348662	0.034893	0.034872	•	0.04%	¥
Z	,	W+	->	W+	, ~Z	3015.0	753.75	0.7552	0.7552	0.75509	0.755298	0.755141	0.755171	0.755301	0.755573	~	0.04%	¥

 $p,p \rightarrow Z' \rightarrow l,l$

 $p,p\rightarrow Z'\rightarrow l,l$

 $p,p \rightarrow W', Z \rightarrow W, Z, Z \rightarrow j, j, l, l, l, l$

Build MHM: Minimal Higgsless Model

