Note written by E. Salvioni on June 29, 2016. Comparison of total cross section for $W^+b \rightarrow Zt$ computed

1. In MadGraph5 v2.2.2, using the UFO output of the HiggsTopCurrents model. Settings in param_card:

$\operatorname{cutoff} = 246.2206 \operatorname{GeV},$	MB = ymb = 4.7 GeV,	MT = ymt = 173 GeV
MZ = 91.1876 GeV,	(MW = 79.82436 GeV),	aEWM1 = 127.9,
Gf = 1.16637×10^{-5} ,	WT = WZ = WW = 0.	(1)

For each cross section 10000 events were generated.

2. Analytically, with the same input parameters.

The results are reported in Tables 1 and 2. Agreement within the statistical uncertainty is found in all cases.

	MadGraph5	Analytical
cL1 = cL3 = cR = 0	32.65 ± 0.03	32.66
cL1 = 1, cL3 = cR = 0	72.59 ± 0.03	72.61
cL3 = 1, cL1 = cR = 0	379.1 ± 0.4	379.3
cR = 1, cL1 = cL3 = 0	37.25 ± 0.04	37.29
cL1 = -cL3 = 0.3, cR = 0.5	17.54 ± 0.01	17.55

Table 1: $\sigma(W^+b \to Zt)$ in picobarns. The incoming energies are $E_W = 150$ GeV, $E_b = \sqrt{E_W^2 + m_b^2 - m_W^2} = 127.083$ GeV, therefore $\sqrt{s} = E_W + E_b = 277.083$ GeV.

	MadGraph5	Analytical
cL1 = cL3 = cR = 0	125.77 ± 0.23	125.78
cL1 = -1, cL3 = cR = 0	134.4 ± 0.2	134.2
cL3 = -1, cL1 = cR = 0	$2.87 \times 10^{-10} \pm 2 \times 10^{-13}$	0
cR = -1, cL1 = cL3 = 0	136.38 ± 0.30	136.25
cL1 = -cL3 = -0.4, cR = 0.5	1880.5 ± 1.7	1880.6

Table 2: $\sigma(W^+b \to Zt)$ in picobarns. The incoming energies are $E_W = 1000$ GeV, $E_b = \sqrt{E_W^2 + m_b^2 - m_W^2} = 996.82$ GeV, therefore $\sqrt{s} = E_W + E_b = 1996.82$ GeV. For cL3 = -1 the *Wtb* vertex vanishes, therefore the cross section is zero.