Photon Conversions in Delphes

Michele Selvaggi

April 27, 2015

1

Photon in matter

- number of photons surviving by traveling a distance "x" in material is given by:

$$N_{\gamma}(x) = N_{0} \exp(-x / \lambda)$$

 $= \exp(-x/\lambda)$

where " λ " is the mean free path.

- probability of **NOT** converting after distance "x"

P (not conv. after x) = $N_v(x) / N_0$

Poisson Law p(n=0,x/**λ**)

Algo ingredients

- probability of converting after distance " Δx "

P (conv. after
$$\Delta x$$
) = 1 - exp (- $\Delta x / \lambda$)

1) the material budget map can be provided via

$$\begin{split} \lambda^{\text{-1}}(\text{ r , z , phi}) &= \text{average conversion rate per unit} \\ & \text{length}(\text{m}^{\text{-1}}) \\ &= 7 \,/\,9 * \rho \,/\,X_0 \end{split}$$

2) the step length " Δx "

Algo (I)

- 1) propagate initial photon (at \mathbf{x}_0) for a length Δx , and find coordinates of the position x_1
- 2) read value of $\lambda^{-1}(x_1)$, and compute p_{conv} 3) throw random number p in [0, 1]
- 4) if $p > p_{conv}$ keep propagating by starting again from 1) if not, convert photon is converted in e^+e^- pair.

At E >> $\rm m_{_e}$, electron and positron are emitted colinear to initial photon

Algo (II)

5) At E >> m_e , electron and positron are emitted colinear to initial photon.

Only need to generate the energy fraction "x" that goes into each:

$$d\sigma/dx \sim 1 - 4/3 \times (1 - x)$$

$$\rightarrow$$
 generate x = x₁, x₂ = 1 - x₁

6) add new e⁺ e⁻ to event record... That's it! Let Delphes do the propagation in magnetic field from now...

In practice

***	****	***	
# Order of execution of various modules ####################################	# Propagate particles in cyl ####################################	linder ######	
	module PhotonConversions Pho	otonConversions {	
set ExecutionPath {	set InputArray Delphes/sto	ableParticles	
PhotonConversions	set OutputArray stableParticles		
ParticlePropagator	<pre># radius of the magnetic field coverage, in m</pre>		
A state of the second s	set Radius 1.29		
	set HalfLength 3.0		
	set EtaMin -2.5		
	set EtaMax 2.5		
	<pre># material budget map: (un # distribution of the deta # conversion rate per meta</pre>	niform for now) ector mass (density / X0), can be er function of r,phi,z	thought as
	# unit: m-1		
	and Shan 0 001		
	Set Step 0.001		
$\wedge \vee$	<pre>set ConversionMap {</pre>		
$\Delta \lambda$			0.0000 + (1.000
		(abs(z) < 0.3 && r < 0.035 && (abs(z) < 0.3 && r < 0.065 &&	r > 0.030) * (1.00) + r > 0.060) * (1.00) +
		(abs(z) < 0.3 && r < 0.100 &&	r > 0.095) * (1.00) +
		(abs(z) < 0.355 && abs(z) > 0. (abs(z) < 0.455 && abs(z) > 0.	345 && r < 0.150 && r > 0.050) * (1.00) + 445 && r < 0.150 && r > 0.050) * (1.00) +
) -1 ((abs(x) < 0.7 % $x < 0.205$ %	n > 0 1952 * (1 00) +
$\Lambda^{-+}(r, Z,$	(Ψ)	(abs(z) < 0.7 && r < 0.305 &&	r > 0.295) * (1.00) +
	 Schutz Arts wilde annur 200 softer 1 softer at 	(abs(z) < 0.7 && r < 0.405 && (abs(z) < 0.7 && r < 0.505 &&	r > 0.395) * (1.00) + r > 0.495) * (1.00) +
		(abs(z) < 0.805.88 abs(z) > 0.500	795 & $r < 0.500$ & $r > 0.200$ * (1.00) +
		(abs(z) < 0.905 & abs(z) > 0.	895 && $r < 0.500$ && $r > 0.200$ * (1.00) +
		(abs(z) < 1.005 && abs(z) > 0.	995 && $r < 0.500$ && $r > 0.200$) * (1.00) +

Display (I)

Display (II)

Conversion Map

hConvZR

Validation (LHCb)

- LHCb is good playground for conversions, because of non ermetic acceptance:

 \rightarrow expect low momentum e⁺e⁻ pairs from conversions in early stages of the tracker, to not make it to the calorimeters.

Validation (LHCb)

- if assume flat calo photon efficiency, this is basically eff(e⁺e⁻)
- reproduce efficiency loss at low $p_{\scriptscriptstyle T}$
 - \rightarrow magnetic field drives ele. out of acceptance
 - \rightarrow less material, so less conversions overall (very small)
- convexity is wrongly reporduced ...

Validation (LHCb)

- converted photons can be used to improve photon momentum resolution
- useful for resolving overlapping resonance (χ_{c1} , χ_{c2})

Conclusion

- basic ingredients are there ...
- to have a more complete description we still need to account for a decrease in performance in the ele pairs reconstruction as a function of where the conversion occured:

 \rightarrow a possible approach would be to paramterize electron efficiency and resolution as a function of the track impact parameter (cf. Christophe).

We have all ingredients for that, but there are no public plots from collaboration for such parametrization.