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Abstract

It is always delicate to know whether theoretical predictions are visible and measurable in a
high energy experiment due to the complexity of the related detectors, data acquisition chain and
software. We introduce here a new framework, Delphes, for fast simulation of a general purpose
experiment. The simulation includes a tracking system, embedded into a magnetic field, calorimetry
and a muon system, and possible very forward detectors arranged along the beamline. The framework
is interfaced to standard file formats (e.g. Les Houches Event File) and outputs observable objects
for analysis, like missing transverse energy and collections of electrons or jets. The simulation of
detector response takes into account the detector resolution, and usual reconstruction algorithms,
like FastJet. A simplified preselection can also be applied on processed data for trigger emulation.
Detection of very forward scattered particles relies on the transport in beamlines with the Hector
software. Finally, the Frog 2D/3D event display is used for visualisation of the collision final states.
An overview of Delphes is given as well as a few use-cases for illustration.
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1 Introduction

Experiments at high energy colliders are very
complex systems for several reasons. Firstly,
in terms of the various detector subsystems,
including tracking, central calorimetry, forward
calorimetry, and muon chambers. These detec-
tors differ with their principles, technologies, ge-
ometries and sensitivities. Secondly, due to the re-
quirement of a highly effective online selection (i.e.
a trigger), subdivided into several levels for an op-
timal reduction factor, but based only on partially
processed data. Finally, in terms of the experi-
ment software, with different data formats (like
raw or reconstructed data), many reconstruction
algorithms and particle identification schemes.

This complexity is handled by large collabora-
tions of thousands of people, but the data and
the expertise are only available to their members.
Real data analyses require a full detector simu-
lation, including the various detector inefficien-
cies, the dead material, the imperfections and the
geometrical details. Moreover, detector calibra-
tion and alignment are crucial. Such simulation
is very complicated, technical and requires a large
CPU power. On the other hand, phenomenological
studies, looking for the observability of given sig-
nals, may require only fast but realistic estimates
of the observables.

A new framework, called Delphes [1], is intro-
duced here, for the fast simulation of a general
purpose collider experiment. Using the frame-
work, observables can be estimated for specific
signal and background channels, as well as their
production and measurement rates. Starting from
the output of event generators, the simulation of
the detector response takes into account the sub-
detector resolutions, by smearing the kinematic
properties of the final state particles1. Tracks of
charged particles and deposits of energy in calori-
metric cells (or calotowers) are then created.

1throughout the paper, final state particles refer as par-
ticles considered as stable by the event generator.

Delphes includes the most crucial experimen-
tal features, like

1. the geometry of both central or forward de-
tectors,

2. reconstruction of photons, leptons, jets, b-
jets, τ -jets and missing transverse energy,

3. lepton isolation,

4. trigger emulation,

5. an event display (Fig. 1, at the end).

Although this kind of approach yields much re-
alistic results than a simple “parton-level” anal-
ysis, a fast simulation comes with some limita-
tions. Detector geometry is idealised, being uni-
form, symmetric around the beam axis, and hav-
ing no cracks nor dead material. Secondary inter-
actions, multiple scatterings, photon conversion
and bremsstrahlung are also neglected.

Three formats of input files can be used as in-
put in Delphes2. In order to process events from
many different generators, the standard Monte
Carlo event structure StdHEP [2] can be used as
an input. Besides, Delphes can also provide de-
tector response for events read in “Les Houches
Event Format” (lhef [3]) and root files obtained
using the h2root utility from the root frame-
work [4].

Delphes uses the ExRootAnalysis utility [5]
to create output data in a *.root ntuple. This
output contains a copy of the generator level
data (gen tree), the analysis data objects after
reconstruction (Analysis tree), and possibly
the results of the trigger emulation (Trigger
tree). The program is driven by input cards.
The detector card (data/DataCardDet.dat)
allows a large spectrum of running conditions by
modifying basic detector parameters, including
calorimeter and tracking coverage and resolution,
thresholds or jet algorithm parameters. The

2[code] See the HEPEVTConverter, LHEFConverter and
STDHEPConverter classes.
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trigger card (data/trigger.dat) lists the user
algorithms for the simplified online preselection.

2 Detector simulation

The overall layout of the general purpose detec-
tor simulated by Delphes is shown in Fig. 2. A
central tracking system (tracker) is surrounded
by an electromagnetic and a hadron calorimeters
(ecal and hcal, resp.). Two forward calorime-
ters (fcal) ensure a larger geometric coverage for
the measurement of the missing transverse energy.
Finally, a muon system (muon) encloses the cen-
tral detector volume The fast simulation of the
detector response takes into account geometrical
acceptance of sub-detectors and their finite res-
olution, as defined in the smearing data card3.
If no such file is provided, predefined values are
used. The coverage of the various subsystems
used in the default configuration are summarised
in Tab. 1.

Magnetic field

In addition to the subdetectors, the effects of a
dipolar magnetic field is simulated for the charged
particles4. This affects the position at which
charged particles enter the calorimeters.

2.1 Tracks reconstruction

Every stable charged particle with a transverse
momentum above some threshold and lying in-
side the detector volume covered by the tracker
provides a track. By default, a track is assumed
to be reconstructed with 90% probability5 if its
transverse momentum pT is higher than 0.9 GeV
and if its pseudorapidity |η| ≤ 2.5.

3[code] See the RESOLution class.
4[code] See the TrackPropagation class.
5[code] The reconstruction efficiency is defined in the

smearing datacard by the TRACKING EFF term.

Figure 2: Profile of layout of the generic detector
geometry assumed in Delphes. The innermost
layer, close to the interaction point, is a central
tracking system (pink). It is surrounded by a cen-
tral calorimeter volume (green) with both electro-
magnetic and hadronic sections. The outer layer
of the central system (red) consist of a muon sys-
tem. In addition, two end-cap calorimeters (blue)
extend the pseudorapidity coverage of the central
detector. The detector parameters are defined in
the user-configuration card. The extension of the
various subdetectors, as defined in Tab. 1, are
clearly visible. The detector is assumed to be
strictly symmetric around the beam axis (black
line). Additional forward detectors are not de-
picted.

2.2 Simulation of calorimeters

The energy of each particle considered as stable
in the generator particle list is smeared, with a
Gaussian distribution depending on the calorime-
ter resolution. This resolution varies with the sub-
calorimeter (ecal, hcal, fcal) measuring the
particle. The response of each sub-calorimeter is
parametrised as a function of the energy:

σ

E
=

S√
E

⊕ N

E
⊕ C, (1)

where S, N and C are the stochastic, noise and
constant terms, respectively.

The particle four-momentum pµ are smeared
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Table 1: Default extension in pseudorapidity η of the different subdetectors. The corresponding
parameter name, in the smearing card, is given.

tracker CEN_max_tracker 0.0 ≤ |η| ≤ 2.5
ecal, hcal CEN_max_calo_cen 0.0 ≤ |η| ≤ 3.0
fcal CEN_max_calo_fwd 3.0 ≤ |η| ≤ 5.0
muon CEN_max_mu 0.0 ≤ |η| ≤ 2.4

with a parametrisation directly derived from
typical detector technical designs6. In the default
parametrisation, the calorimeter is assumed
to cover the pseudorapidity range |η| < 3 and
consists in an electromagnetic and an hadronic
part. Coverage between pseudorapidities of 3.0
and 5.0 is provided by forward calorimeters, with
different response to electromagnetic objects
(e±, γ) or hadrons. Muons and neutrinos are
assumed not to interact with the calorimeters7.
The default values of the stochastic, noisy and
constant terms are given in Tab. 2.

The energy of electrons and photons found in
the particle list are smeared using the ecal res-
olution terms. Charged and neutral final state
hadrons interact with the ecal, hcal and fcal.
Some long-living particles, such as the K0

s , pos-
sessing lifetime cτ smaller than 10 mm are consid-
ered as stable particles although they decay before
the calorimeters. The energy smearing of such
particles is performed using the expected fraction
of the energy, determined according to their decay
products, that would be deposited into the ecal
(Eecal) and into the hcal (Ehcal). Defining F
as the fraction of the energy leading to a hcal

6[code] [6, 7]. The response of the detector is applied
to the electromagnetic and the hadronic particles through
the SmearElectron and SmearHadron functions.

7In the current Delphes version, particles other than
electrons (e±), photons (γ), muons (µ±) and neutrinos (νe,
νµ and ντ ) are simulated as hadrons for their interactions
with the calorimeters. The simulation of stable particles
beyond the Standard Model should subsequently be han-
dled with care.

Table 2: Default values for the resolution of the
central and forward calorimeters. Resolution is
parametrised by the stochastic (S), noise (N) and
constant (C) terms (Eq. 1). The corresponding
parameter name, in the smearing card, is given.

Resolution Term Card flag Value

ecal
S ELG_Scen 0.05
N ELG_Ncen 0.25
C ELG_Ccen 0.0055

fcal, electromagnetic part
S ELG_Sfwd 2.084
N ELG_Nfwd 0
C ELG_Cfwd 0.107

hcal
S HAD_Shcal 1.5
N HAD_Nhcal 0
C HAD_Chcal 0.05

fcal, hadronic part
S HAD_Shf 2.7
N HAD_Nhf 0.
C HAD_Chf 0.13

deposit, the two energy values are given by
{

Ehcal = E × F
Eecal = E × (1 − F )

(2)

where 0 ≤ F ≤ 1. The electromagnetic part
is handled as the same way as the electrons.
The resulting energy measurement given af-
ter the application of the smearing is then
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E = Ehcal + Eecal. For K0
S and Λ hadrons, the

energy fraction is F is assumed to be worth 0.7.

2.3 Calorimetric towers

The smallest unit for geometrical sampling of the
calorimeters is a tower ; it segments the (η, φ)
plane for the energy measurement. No longi-
tudinal segmentation is available in the simu-
lated calorimeters. All undecayed particles, ex-
cept muons and neutrinos produce a calorimetric
tower, either in ecal, in hcal or fcal. As the
detector is assumed to be cylindical (e.g. symmet-
ric in φ and with respect to the η = 0 plane), the
smearing card stores the number of calorimetric
towers with φ = 0 and η > 0 (default: 40 towers).
For a given η, the size of the φ segmentation is
also specified. Fig. 3 illustrates the default seg-
mentation of the (η, φ) plane.
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Figure 3: Default segmentation of the calorime-
ters in the (η, φ) plane. Only the central detectors
(ecal, hcal and fcal) are considered.

The calorimetric towers directly enter in the
calculation of the missing transverse energy
(met), and as input for the jet reconstruction al-
gorithms. No sharing between neighbouring tow-
ers is implemented when particles enter a tower
very close to its geometrical edge.

2.4 Very forward detectors simulation

Most of the recent experiments in beam colliders
have additional instrumentation along the beam-
line. These extend the η coverage to higher values,
for the detection of very forward final-state parti-
cles. Zero Degree Calorimeters (zdc) are located
at zero angle, i.e. are aligned with the beamline
axis at the interaction point, and placed at the
distance where the paths of incoming and out-
going beams separate (Fig. 4). These allow the
measurement of stable neutral particles (γ and
n) coming from the interaction point, with large
pseudorapidities (e.g. |ηn,γ | > 8.3 in cms). For-
ward taggers (called here rp220 and fp420 as at
the lhc) are meant for the measurement of parti-
cles following very closely the beam path. To be
able to reach these detectors, such particles must
have a charge identical to the beam particles, and
a momentum very close to the nominal value for
the beam. These taggers are near-beam detectors
located a few millimetres from the true beam tra-
jectory and this distance defines their acceptance
(Tab. 3).

While neutral particles propagate along a
straight line to the zdc, a dedicated simulation
of the transport of charged particles is needed for
rp220 and fp420. This fast simulation uses the
Hector software [8], which includes the chro-
maticity effects and the geometrical aperture of
the beamline elements.

Some subdetectors have the ability to measure
the time of flight of the particle. This corresponds
to the delay after which the particle is observed in
the detector, after the bunch crossing. The time
of flight measurement of zdc and fp420 detector
is implemented here. For the zdc, the formula is
simply

t = t0 +
1

v
×

(s − z

cos θ

)

, (3)

where t is the time of flight, t0 is the true time
coordinate of the vertex from which the particle
originates, v the particle velocity, s is the zdc dis-
tance to the interaction point, z is the longitudinal
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Table 3: Default parameters for the forward detectors: distance from the interaction point and
detector acceptance. The lhc beamline is assumed around the fifth interaction point. For the zdc,
the acceptance depends only on the pseudorapidity η of the particle, which should be neutral and
stable. The tagger acceptance is fully determined by the distance in the transverse plane of the
detector to the real beam position [8]. It is expressed in terms of the particle energy.

Detector Distance Acceptance

zdc 140 m |η| > 8.3 for n and γ
rp220 220 m E ∈ [6100; 6880] (GeV) at 2 mm
fp420 420 m E ∈ [6880; 6980] (GeV) at 4 mm
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Figure 4: Default location of the very forward
detectors, including zdc, rp220 and fp420 in
the lhc beamline. Incoming (red) and outgo-
ing (black) beams on one side of the interaction
point (s = 0 m). The Zero Degree Calorimeter
is located in perfect alignment with the beam-
line axis at the interaction point, at 140 m, where
the beam paths are separated. The forward tag-
gers are near-beam detectors located at 220 m and
420 m. Beamline simulation with Hector [8].

coordinate of the vertex from which the particle
comes from, θ is the particle emission angle. This
assumes that the neutral particle observed in the
zdc is highly relativistic, i.e. travelling at the

speed of light c. We also assume that cos θ = 1,
i.e. θ ≈ 0 or equivalently η is large. As an exam-
ple, η = 5 leads to θ = 0.013 and 1−cos θ < 10−4.
The formula then reduces to

t =
1

c
× (s − z) (4)

For example, a photon takes 0.47 µs to reach a
zdc located at s = 140 m, neglecting z and θ, and
assuming that v = c. Only neutrons and photons
are currently assumed to be able to reach the zdc.
All other particles are neglected in the zdc.

3 High-level object reconstruc-

tion

Analysis object data contain the final collections
of particles (e±, µ±, γ) or objects (light jets, b-
jets, τ -jets, Emiss

T ) and are stored8 in the output
file created by Delphes. In addition, some de-
tector data are added: tracks, calorimetric towers
and hits in zdc, rp220 and fp420. While elec-
trons, muons and photons are easily identified,
some other objects are more difficult to measure,
like jets or missing energy due to invisible parti-
cles.

For most of these objects, their four-momentum
and related quantities are directly accessible in

8[code] All these processed data are located under the
Analysis tree.
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Delphes output (E, ~p, pT , η and φ). Additional
properties are available for specific objects (like
the charge and the isolation status for e± and µ±,
the result of application of b-tag for jets and time-
of-flight for some detector hits).

3.1 Photon and charged lepton recon-

struction

From here onwards, electrons refer to both
positrons (e+) and electrons (e−), and
charged leptons refer to electrons and muons
(µ±), leaving out the τ± leptons as they decay
before being detected.

Electrons and photons

Photon and electron (e±) candidates are recon-
structed if they fall into the acceptance of the
tracking system and have a transverse momen-
tum above a threshold (default pT > 10 GeV). A
calorimetric tower will be seen in the detector, an
electrons leave in addition a track. Consequently,
electrons and photons creates as usual a candidate
in the jet collection.

Muons

Generator level muons entering the detector ac-
ceptance are considered as candidates for the
analysis level. The acceptance is defined in terms
of a transverse momentum threshold to be over-
passed that should be computed using the chosen
geometry of the detector and the magnetic field
considered. (default : pT > 10 GeV) and of the
pseudorapidity coverage of the muon system of
the detector (default: −2.4 ≤ η ≤ 2.4). The ap-
plication of the detector resolution on the muon
momentum depends on a Gaussian smearing of
the pT variable9. Neither η nor φ variables are
modified beyond the calorimeters: no additional
magnetic field is applied. In addition, multiple
scattering is also neglected. This implies that low

9[code] See the SmearMuon method.

energy muons have in Delphes a better resolu-
tion than in a real detector. Moreover, muons
leave no deposit in calorimeters.

Charged lepton isolation

To improve the quality of the contents of the
charged lepton collections, additional criteria
can be applied to impose some isolation. This
requires that electron or muon candidates are
isolated in the detector from any other particle,
within a small cone. In Delphes, charged lepton
isolation demands that there is no other charged
particle with pT > 2 GeV within a cone of
∆R =

√

∆η2 + ∆φ2 < 0.5 around the lepton.
The result (i.e. isolated or not) is added to
the charged lepton measured properties10. No
calorimetric isolation is applied.

3.2 Jet reconstruction

A realistic analysis requires a correct treatment of
particles which have hadronised. Therefore, the
most widely currently used jet algorithms have
been integrated into the Delphes framework us-
ing the FastJet tools [9]. Six different jet re-
construction schemes are available11. The first
three belong to the cone algorithm class while the
last three are using a sequential recombination
scheme. For all of them, the towers are used as in-
put for the jet clustering. Jet algorithms also dif-
fer in their sensitivity to soft particles or collinear
splittings, and with their computing speed perfor-
mance.

Cone algorithms

1. CDF Jet Clusters [10]: Algorithm form-
ing jets by associating together towers lying
within a circle (default radius ∆R = 0.7) in

10[code] See the IsolFlag output of the Electron or
Muon collections in the Analysis tree.

11[code] The choice is done by allocating the
JET jetalgo input parameter in the smearing card.
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the (η, φ) space. This so-called Jetclu cone
jet algorithm is used by the cdf experiment
in Run II. All towers with a transverse en-
ergy ET higher than a given threshold (de-
fault: ET > 1 GeV) are used to seed the jet
candidates. The existing FastJet code has
been modified to allow easy modification of
the tower pattern in η, φ space. In the fol-
lowing versions of Delphes, a new dedicated
plug-in will be created on this purpose12.

2. CDF MidPoint [11]: Algorithm developed
for the cdf Run II to reduce infrared and
collinear sensitivity compared to purely seed-
based cone by adding ‘midpoints’ (energy
barycentres) in the list of cone seeds.

3. Seedless Infrared Safe Cone [12]: The SIS-
Cone algorithm is simultaneously insensitive
to additional soft particles and collinear split-
tings, and fast enough to be used in experi-
mental analysis.

Recombination algorithms

The three following jet algorithms are safe for
soft radiations (infrared) and collinear split-
tings. They rely on recombination schemes where
calorimeter tower pairs are successively merged.
The definitions of the jet algorithms are similar
except for the definition of the distances d used
during the merging procedure. Two such vari-
ables are defined: the distance dij between each
pair of towers (i, j), and a variable diB (beam dis-
tance) depending on the transverse momentum of
the tower i.

The jet reconstruction algorithm browses the
calotower list. It starts by finding the minimum
value dmin of all the distances dij and diB . If dmin

is a dij , the towers i and j are merged into a single
tower with a four-momentum pµ = pµ(i) + pµ(j)
(E-scheme recombination). If dmin is a diB , the

12[code] JET coneradius and JET seed variables in the
smearing card.

tower is declared as a final jet and is removed
from the input list. This procedure is repeated
until no towers are left in the input list. Further
information on these jet algorithms is given here
below, using kti, yi and φi as the transverse mo-
mentum, rapidity and azimuth of calotower i and
∆Rij =

√

(yi − yj)2 + (φi − φj)2 as the jet-radius
parameter:

4. Longitudinally invariant kt jet [13]:

dij = min(k2
ti, k

2
tj)∆R2

ij/R
2

diB = k2
ti

(5)

5. Cambridge/Aachen jet [14]:

dij = ∆R2
ij/R

2

diB = 1
(6)

6. Anti kt jet [15]: where hard jets are exactly
circular in the (y, φ) plane

dij = min(1/k2
ti, 1/k

2
tj)∆R2

ij/R
2

diB = 1/k2
ti

(7)

By default, reconstruction uses a cone algo-
rithm with ∆R = 0.7. Jets are stored if their
transverse energy is higher13 than 20 GeV.

3.3 b-tagging

A jet is tagged as b-jets if its direction lies in the
acceptance of the tracker and if it is associated to
a parent b-quark. A b-tagging efficiency of 40% is
assumed if the jet has a parent b quark. For c-jets
and light jets (i.e. originating in u,d,s quarks or
in gluons), a fake b-tagging efficiency of 10% and
1% respectively is assumed14 . The (mis)tagging
relies on the true particle identity (pid) of the

13[code] PTCUT jet variable in the smearing card.
14[code] Corresponding to the TAGGING B,

MISTAGGING C and MISTAGGING L constants, for (re-
spectively) the efficiency of tagging of a b-jet, the efficiency
of mistagging a c-jet as a b-jet, and the efficiency of
mistagging a light jet (u,d,s,g) as a b-jet.
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most energetic particle within a cone around the
observed (η, φ) region, with a radius equal to the
one used to reconstruct the jet (default: ∆R of
0.7).

3.4 τ identification

Jets originating from τ -decays are identified us-
ing an identification procedure consistent with the
one applied in a full detector simulation [6]. The
tagging relies on two properties of the τ lepton.
First, 77% of the τ hadronic decays contain only
one charged hadron associated to a few neutrals
(Tab. 4). Tracks are useful for this criterion. Sec-
ondly, the particles arisen from the τ lepton pro-
duce narrow jets in the calorimeter (this is defined
as the jet collimation).

Table 4: Branching rations for τ− lepton [16].
h± and h0 refer to charged and neutral hadrons,
respectively. n ≥ 0 and m ≥ 0 are integers.

Leptonic decays
τ− → e− ν̄e ντ 17.9%
τ− → µ− ν̄µ ντ 17.4%
Hadronic decays
τ− → h− n × h± m × h0 ντ 64.7%
τ− → h− m × h0 ντ 50.1%
τ− → h− h+h−m × h0 ντ 14.6%

Electromagnetic collimation

To use the narrowness of the τ -jet, the electro-
magnetic collimation Cem

τ is defined as the sum
of the energy of towers in a small cone of radius
Rem around the jet axis, divided by the energy of
the reconstructed jet. To be taken into account, a
calorimeter tower should have a transverse energy
Etower

T above a given threshold. A large fraction
of the jet energy is expected in this small cone.
This fraction, or collimation factor, is represented
in Fig. 6 for the default values (see Tab. 5).

Figure 5: Illustration of the identification of τ -
jets. The jet cone is narrow and contains only
one track. The small cone shown as the red one is
used for the electromagnetic collimation, while the
green cone is the cone radius used to reconstruct
the jet originating from the τ -decay.

Tracking isolation

The tracking isolation for the τ identification re-
quires that the number of tracks associated to a
particle with a significant transverse momentum
is one and only one in a cone of radius Rtracks

(3-prong τs are dropped). This cone should be
entirely incorporated into the tracker to be taken
into account. Default values of these parameters
are given in Tab. 5.

Purity

Once both electromagnetic collimation and track-
ing isolation are applied, a threshold on the pT of
the τ -jet candidate is requested to purify the col-
lection. This procedure selects τ leptons decaying
hadronically with a typical efficiency of 60%.
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Figure 6: Distribution of the electromagnetic col-
limation Cτ variable for true τ -jets, normalised to
unity. This distribution is shown for associated
WH photoproduction [17], where the Higgs boson
decays into a W +W− pair. Each W boson decays
into a `ν` pair, where ` = e, µ, τ . Events gener-
ated with MadGraph/MadEvent [18]. Final
state hadronisation is performed by Pythia [19].
Histogram entries correspond to true τ -jets,
matched with generator level data.

3.5 Missing transverse energy

In an ideal detector, momentum conservation im-
poses the transverse momentum of the observed
final state −→pT

obs to be equal to the −→pT vector sum
of the invisible particles, written −→pT

miss.

−→pT =

(

px

py

)

and

{

pmiss
x = −pobs

x

pmiss
y = −pobs

y
(8)

The true missing transverse energy, i.e. at
generator-level, is calculated as the opposite of
the vector sum of the transverse momenta of all
visible particles – or equivalently, to the vector
sum of invisible particle transverse momenta. In
a real experiment, calorimeters measure energy
and not momentum. Any problem affecting the
detector (dead channels, misalignment, noisy tow-
ers, cracks) worsens directly the measured miss-

ing transverse energy
−→
ET

miss. In this document,

tracksN
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Figure 7: Distribution of the number of tracks
N tracks within a small jet cone for true τ -jets,
normalised to unity. Photoproduced WH events,
where W bosons decay leptonically (e, µ, τ), as in
Fig. 6. Histogram entries correspond to true τ -
jets, matched with generator level data.

met is based on the calorimetric towers and only
muons and neutrinos are not taken into account
for its evaluation:

−→
ET

miss = −
towers
∑

i

−→
ET (i) (9)

4 Trigger emulation

New physics in collider experiment are often char-
acterised in phenomenology by low cross-section
values, compared to the Standard Model (sm)
processes.

As only a tiny fraction of the observed events
can be stored for subsequent offline analyses, a
very large data rejection factor should be applied
directly as the events are produced. This data se-
lection is supposed to reject only well-known sm
events15. Dedicated algorithms of this online se-

15However, some bandwidth is allocated to random trig-
gers that stores a small fraction of the events without any
selection criteria.
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Table 5: Default values for parameters used in
τ -jet reconstruction algorithm. Electromagnetic
collimation requirements involve the inner small
cone radius Rem, the minimum transverse energy
for calotowers Etower

T and the collimation factor
Cτ . Tracking isolation constrains the number of
tracks with a significant transverse momentum
ptracks

T in a cone of radius Rtracks. Finally, the
τ -jet collection is purified by the application of a
cut on the pT of τ -jet candidates.

Parameter Card flag Value

Electromagnetic collimation
Rem TAU energy scone 0.15
min Etower

T JET_M_seed 1.0 GeV
Cτ TAU energy frac 0.95
Tracking isolation
Rtracks TAU track scone 0.4
min ptracks

T PTAU track pt 2 GeV
τ-jet candidate
min pT TAUJET pt 10 GeV

lection, or trigger, should be fast and very efficient
for data rejection, in order to preserve the exper-
iment output bandwidth. They must also be as
inclusive as possible to avoid loosing interesting
events.

Most of the usual trigger algorithms select
events containing objects (i.e. jets, particles,
met) with an energy scale above some threshold.
This is often expressed in terms of a cut on the
transverse momentum of one or several objects of
the measured event. Logical combinations of sev-
eral conditions are also possible. For instance, a
trigger path could select events containing at least
one jet and one electron such as pjet

T > 100 GeV
and pe

T > 50 GeV.

A trigger emulation is included in Delphes, us-
ing a fully parametrisable trigger table16. When
enabled, this trigger is applied on analysis object

16[code] The trigger card is the data/trigger.dat file.

data. In a real experiment, the online selection is
often divided into several steps (or levels). This
splits the overall reduction factor into a product
of smaller factors, corresponding to the different
trigger levels. This is related to the architecture of
the experiment data acquisition chain, with lim-
ited electronic buffers requiring a quick decision
for the first trigger level. First level triggers are
then fast and simple but based only on partial
data as not all detector front-ends are readable
within the decision latency. Later levels are more
complex, of finer-but-not-final quality and based
on full detector data.

Real triggers are thus intrinsically based on re-
constructed data with a worse resolution than fi-
nal analysis data. On the contrary, same data are
used in Delphes for trigger emulation and for fi-
nal analyses.

5 Validation

Delphes performs a fast simulation of a collider
experiment. Its quality and validity are assessed
by comparing to resolution of the reconstructed
data to the cms detector expectations.

Electrons and muons are by construction equal
to the experiment designs, as the Gaussian smear-
ing of their kinematics properties is defined ac-
cording to their resolutions. Similarly, the b-
tagging efficiency (for real b-jets) and misidenti-
fication rates (for fake b-jets) are taken from the
expected values of the experiment. Unlike these
simple objects, jets and missing transverse energy
should be carefully cross-checked.

5.1 Jet resolution

The majority of interesting processes at the lhc
contain jets in the final state. The jet resolu-
tion obtained using Delphes is therefore a crucial
point for its validation. Even if Delphes contains
six algorithms for jet reconstruction, only the jet
clustering algorithm (jetclu) with R = 0.7 is
used to validate the jet collection.
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This validation is based on pp → gg events pro-
duced with MadGraph/MadEvent and hadro-
nised using Pythia [18, 19]. The events were
arranged in 14 bins of gluon transverse momen-
tum p̂T . In each p̂T bin, every jet in Delphes is
matched to the closest jet of generator-level parti-
cles, using the spatial separation between the two
jet axes

∆R =

√

(

ηrec − ηMC
)2

+
(

φrec − φMC
)2

< 0.25.
(10)

The jets made of generator-level particles, here
refered as MC jets, are obtained by applying the
same clustering algorithm to all particles consid-
ered as stable after hadronisation. Jets produced
by Delphes and satisfying the matching criterion
are called hereafter reconstructed jets.

The ratio of the transverse energies of every re-
constructed jet Erec

T and its corresponding mc jet
EMC

T is calculated in each p̂T bin. The Erec
T /EMC

T

histogram is fitted with a Gaussian distribution
in the interval ±2 rms centred around the mean
value. The resolution in each p̂T bin is obtained
by the fit mean 〈x〉 and variance σ2(x):

σ
(

Erec
T

EMC
T

)

fit
〈

Erec
T

EMC
T

〉

fit

(

p̂T (i)
)

, for all i. (11)

The resulting jet resolution as a function of
EMC

T is shown in Fig. 8. This distribution is fitted
with a function of the following form:

a

EMC
T

⊕ b
√

EMC
T

⊕ c, (12)

where a, b and c are the fit parameters. It is
then compared to the resolution published by the
cms collaboration [6]. The resolution curves from
Delphes and cms are in good agreement.

5.2 MET resolution

All major detectors at hadron colliders have been
designed to be as much hermetic as possible in or-
der to detect the presence of one or more neutrinos
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Figure 8: Resolution of the transverse energy of
reconstructed jets Erec

T as a function of the trans-
verse energy of the closest jet of generator-level
particles EMC

T . The maximum separation between
the reconstructed and mc jets is ∆R = 0.25. Pink
line is the fit result for comparison to the cms res-
olution [6], in blue.

through apparent missing transverse energy. The

resolution of the
−→
ET

miss variable, as obtained with
Delphes, is then crucial.

The samples used to study the met perfor-
mance are identical to those used for the jet val-
idation. It is worth noting that the contribution
to Emiss

T from muons is negligible in the studied
sample. The input samples are divided in five bins
of scalar ET sums (ΣET ). This sum, called total
visible transverse energy, is defined as the scalar
sum of transverse energy in all towers. The qual-
ity of the met reconstruction is checked via the
resolution on its horizontal component Emiss

x .

The Emiss
x resolution is evaluated in the follow-

ing way. The distribution of the difference be-
tween Emiss

x in Delphes and at generator-level
is fitted with a Gaussian function in each (ΣET )
bin. The fit rms gives the met resolution in each
bin. The resulting value is plotted in Fig. 9 as a
function of the total visible transverse energy.

The resolution σx of the horizontal component
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Figure 9: σ(Emiss
x ) as a function on the scalar sum

of all towers (ΣET ) for pp → gg events.

of met is observed to behave like

σx = α
√

(ET ) (GeV1/2), (13)

where the α parameter is depending on the reso-
lution of the calorimeters.

The met resolution expected for the cms
detector for similar events is σx = (0.6 −
0.7)

√

(ET ) GeV1/2 with no pile-up17 [6], which
compares very well with the α = 0.68 obtained
with Delphes.

5.3 τ-jet efficiency

Due to the complexity of their reconstruc-
tion algorithm, τ -jets have also to be checked.
Tab. 6 lists the reconstruction efficiencies for the
hadronic τ -jets in the cms experiment and in
Delphes. Agreement is good enough to validate
this reconstruction.

6 Visualisation

When performing an event analysis, a visualisa-
tion tool is useful to convey information about

17Pile-up events are extra simultaneous pp collision oc-
curring at the same bunch crossing.

Table 6: Reconstruction efficiencies of τ -jets in
decays from Z or H bosons, in Delphes and in
the cms experiment [20].

cms
Z → τ+τ− 38%
H → τ+τ− 36% mH = 150 GeV
H → τ+τ− 47% mH = 300 GeV

Delphes
H → τ+τ− 42% mH = 140 GeV

the detector layout and the event topology in a
simple way. The Fast and Realistic OpenGL Dis-
player frog [21] has been interfaced in Delphes,
allowing an easy display of the defined detector
configuration18.

Two and three-dimensional representations of
the detector configuration can be used for com-
munication purpose, as it clearly shows the geo-
metric coverage of the different detector subsys-
tems. As an illustration, the generic detector ge-
ometry assumed in this paper is shown in Fig. 2
and 10. As pointed before, the detector is as-
sumed to be strictly symmetric around the beam
axis. The extensions of the central tracking sys-
tem, the central calorimeters and both forward
calorimeters are visible. Nevertheless, it should
be noticed that only the geometrical coverage is
depicted and that the calorimeter segmentation is
not taken into account in the drawing of the de-
tector. Moreover, both the radius and the length
of each sub-detectors are just display parameters
and are insignificant for the physics simulation.

Deeper understanding of interesting physics
processes is possible by displaying the events
themselves. The visibility of each set of objects
(e±, µ±, τ±, jets, transverse missing energy) is
enhanced by a colour coding. Moreover, kine-
matics information of each object is visible by a

18[code] To prepare the visualisation, the FLAG frog

parameter should be equal to 1.
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Figure 10: Layout of the generic detector geom-
etry assumed in Delphes. Open 3D-view of the
detector with solid volumes. Same colour codes
as for Fig. 2 are applied. Additional forward de-
tectors are not depicted.

simple mouse action. As an illustration, an as-
sociated photoproduction of a W boson and a t
quark is shown in Fig. 11. This corresponds to
a pp(γp → Wt)pX process, where the Wt couple
is induced by an incoming photon emitted by one
interacting proton [22]. This leading proton sur-
vives from the photon emission and subsequently
from the pp interaction, and is present in the final
state. As the energy and virtuality of the emit-
ted photon are low, the surviving proton does not
leave the beam and escapes from the central de-
tector without being detected. The experimental
signature is a lack of hadronic activity in one for-
ward hemisphere, where the surviving proton es-
capes. The t quark decays into a W boson and
a b quark. Both W bosons decay into leptons
(W → µνµ and W → eνe). The balance between
the missing transverse energy and the charged lep-
ton pair is clear, as well as the presence of an
empty forward region. It is interesting to notice
that the reconstruction algorithms build a fake τ -
jet around the electron.

For the comparison, Fig. 12 depicts an inclu-
sive gluon pair production pp → ggX. The event

Figure 11: Example of pp(γp → Wt)pY event,
with t → Wb. One W boson decays into a µνµ

pair and the second one into a eνe pair. The sur-
viving proton leaves a forward hemisphere with
no hadronic activity. The isolated muon is shown
as the dark blue vector. Around the electron, in
red, is reconstructed a fake τ -jet (green vector sur-
rounded by a blue cone), while the reconstructed
missing energy (in grey) is very small. One jet
is visible in one forward region, along the beam-
line axis, opposite to the direction of the escaping
proton.

final state contains more jets, in particular along
the beam axis, which is expected as the interact-
ing protons are destroyed by the collision. Two
muon candidates and large missing transverse en-
ergy are also visible.

7 Conclusion and perspectives

We have described here the major features of
the Delphes framework, introduced for the fast
simulation of a collider experiment. This frame-
work is a tool meant for feasibility studies in phe-
nomenology, probing the observability of models
in collider experiments. It has already been used
for several analyses, in particular in photon inter-
actions at the lhc [22, 23, 24].

Delphes takes the output of event generators
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Figure 12: Example of inclusive gluon pair pro-
duction pp → ggX. Many jets are visible in the
event, in particular along the beam axis. Two
muons (in blue) are produced and the missing
transverse energy is significant in this event (grey
vector).

and yields analysis object data. The simulation
includes central and forward detectors to produce
realistic observables using standard reconstruc-
tion algorithms. Moreover, the framework allows
trigger emulation and 3D event visualisation.

Delphes has been developed using the param-
eters of the cms experiment but can be easily ex-
tended to atlas and other non-lhc experiments,
as at Tevatron or at the ilc. Further develop-
ments include a more flexible design for the sub-
detector assembly and possibly the implementa-
tion of an event mixing module for pile-up event
simulation.
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Figure 1: Flow chart describing the principles behind Delphes. Event files coming from external
Monte Carlo generators are read by a converter stage. The kinematics variables of the final state
particles are then smeared according to the subdetector resolutions. Tracks are reconstructed in
a simulated dipolar magnetic field and calorimetric towers sample the energy deposits. Based on
these, dedicated algorithms are applied for particle identification, isolation and reconstruction. The
transport of very forward particle to the near-beam detectors is also simulated. Finally, an output
file is written, including generator level and analysis object data. If requested, a fully parametrisable
trigger can be emulated. Optionally, the geometry and visualisation files for the 3D event display can
also be produced. All user parameters are set in the Smearing Card and the Trigger Card.
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A User manual

The available code is a zipped tar file which comes with everything needed to run the Delphes pack-
age, assuming a running root installation. The package includes ExRootAnalysis [5], Hector [8],
FastJet [9], and Frog [21], as well as the conversion codes to read standard stdhep input files
(mcfio and stdhep) [25]. Nevertheless in order to visualise the events with the Frog software, some
external libraries may be required, as explained in http://projects.hepforge.org/frog/.

A.1 Getting started

In order to run Delphes on your system, first download its sources and compile it:
wget http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/files/Delphes V *.tar.gz

Replace the * symbol by the proper version number19.

me@mylaptop:~$ tar -xvf Delphes_V_*.tar.gz

me@mylaptop:~$ cd Delphes_V_*.*

me@mylaptop:~$ ./genMakefile.tcl > Makefile

me@mylaptop:~$ make

Due to the large number of external utilities, the number of printed lines during the compilation
can be high. The user should not pay attention to possible warning messages. When compilation is
completed, the following message is printed:

me@mylaptop:~$ Delphes has been compiled

me@mylaptop:~$ Ready to run

A.2 Running Delphes on your events

In this chapter, we will explain how to use Delphes to perform a fast simulation of a general purpose
detector on your event files. The first step to use Delphes is to create the list of input event files
(e.g. inputlist.list). As an important comment, don’t forget that all the files comprised in the list
file should have the same type (*.hep, *.lhe or *.root). In the simplest way of running Delphes,
you need this input file and you need to specify the name of the output file that will contain the
generator-level data (GEN tree), the analysis data objects after reconstruction (Analysis tree), and
the results of the trigger emulation (Trigger tree).

me@mylaptop:~$ ./Delphes inputlist.list OutputRootFileName.root

A.2.1 Setting up the configuration

The program is driven by two datacards (default cards are data/DataCardDet.dat and
data/trigger.dat) which allow a large spectrum of running conditions. Please note that either
the user provides these two datacards, either the running will be done using the default parameters
defined in the constructor of the class RESOLution. If you choose a different detector or running
configuration, you will need to edit the datacards accordingly.

19Refer to the download page on the Delphes website http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/download.html.
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1. The smearing card

The smearing or run card is by default data/DataCard.dat. It contains all pieces of information
needed to run Delphes:

• detector parameters, including calorimeter and tracking coverage and resolution, transverse
energy thresholds for object reconstruction and jet algorithm parameters.

• four flags (FLAG_bfield, FLAG_vfd, FLAG_trigger and FLAG_frog), which should be as-
signed if the magnetic field propagation, the very forward detectors simulation, the trigger
selection and the preparation for Frog display (respectively) have to be run by Delphes.

If no datacard is provided by the user, the default smearing and running parameters are used:

# Detector extension, in pseudorapidity units

CEN_max_tracker 2.5 // Maximum tracker coverage

CEN_max_calo_cen 3.0 // central calorimeter coverage

CEN_max_calo_fwd 5.0 // forward calorimeter pseudorapidity coverage

CEN_max_mu 2.4 // muon chambers pseudorapidity coverage

# Energy resolution for electron/photon

# \sigma/E = C + N/E + S/\sqrt{E}, E in GeV

ELG_Scen 0.05 // S term for central ECAL

ELG_Ncen 0.25 // N term for central ECAL

ELG_Ccen 0.005 // C term for central ECAL

ELG_Cfwd 0.107 // S term for FCAL

ELG_Sfwd 2.084 // C term for FCAL

ELG_Nfwd 0.0 // N term for FCAL

# Energy resolution for hadrons in ecal/hcal/hf

# \sigma/E = C + N/E + S/\sqrt{E}, E in GeV

HAD_Shcal 1.5 // S term for central HCAL

HAD_Nhcal 0. // N term for central HCAL

HAD_Chcal 0.05 // C term for central HCAL

HAD_Shf 2.7 // S term for FCAL

HAD_Nhf 0. // N term for FCAL

HAD_Chf 0.13 // C term for FCAL

# Muon smearing

MU_SmearPt 0.01 // transverse momentum Pt in GeV

# Tracking efficiencies

TRACK_ptmin 0.9 // minimal pT

TRACK_eff 100 // efficiency associated to the tracking (%)
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# Calorimetric towers

TOWER_number 40

### list of the edges of each tower in eta for eta>0 assuming

###a symmetric detector in eta<0

### the list starts with the lower edge of the most central tower

### the list ends with the higher edged of the most forward tower

### there should be NTOWER+1 values

TOWER_eta_edges 0. 0.087 0.174 0.261 0.348 0.435 0.522 0.609 0.696 0.783

0.870 0.957 1.044 1.131 1.218 1.305 1.392 1.479 1.566 1.653

1.740 1.830 1.930 2.043 2.172 2.322 2.500 2.650 2.868 2.950

3.125 3.300 3.475 3.650 3.825 4.000 4.175 4.350 4.525 4.700

5.000

### list of the tower size in phi (in degrees), assuming that all

### towers are similar in phi for a given eta value

### the list starts with the phi-size of the most central tower (eta=0)

### the list ends with the phi-size of the most forward tower

### there should be NTOWER values

#TOWER_dphi 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 20

# Thresholds for reconstructed objects, in GeV

PTCUT_elec 10.0

PTCUT_muon 10.0

PTCUT_jet 20.0

PTCUT_gamma 10.0

PTCUT_taujet 10.0

# General jet variable

JET_coneradius 0.7 // generic jet radius

JET_jetalgo 1 // Jet algorithm selection

JET_seed 1.0 // minimum seed to start jet reconstruction, in GeV

# Tagging definition

BTAG_b 40 // b-tag efficiency (%)

BTAG_mistag_c 10 // mistagging (%)

BTAG_mistag_l 1 // mistagging (%)

# FLAGS

FLAG_bfield 0 // 1 to run the bfield propagation else 0

FLAG_vfd 1 // 1 to run the very forward detectors else 0

FLAG_trigger 1 // 1 to run the trigger selection else 0

FLAG_frog 1 // 1 to run the FROG event display
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# In case BField propagation allowed

TRACK_radius 129 // radius of the BField coverage, in cm

TRACK_length 300 // length of the BField coverage, in cm

TRACK_bfield_x 0 // X composant of the BField, in T

TRACK_bfield_y 0 // Y composant of the BField, in T

TRACK_bfield_z 3.8 // Z composant of the BFieldn in T

# Very forward detector extension, in pseudorapidity

# if allowed

VFD_min_calo_vfd 5.2 // very forward calorimeter (if any) like CASTOR

VFD_max_calo_vfd 6.6

VFD_min_zdc 8.3

VFD_s_zdc 140 // distance of the ZDC, from the IP, in [m]

RP_220_s 220 // distance of the RP to the IP, in meters

RP_220_x 0.002 // distance of the RP to the beam, in meters

RP_420_s 420 // distance of the RP to the IP, in meters

RP_420_x 0.004 // distance of the RP to the beam, in meters

# In case FROG event display allowed

NEvents_Frog 100

In general, energies and momenta are expressed in GeV, and magnetic fields in T. Geometrical
extension are often referred in terms of pseudorapidity η, as the detectors are supposed to be
symmetric in φ.

2. The trigger card

This card contains the definitions of all trigger bits. Cuts can be applied on the transverse
momentum pT of electrons, muons, jets, τ -jets, photons and the missing transverse energy. The
following codes should be used so that Delphes can correctly translate the input list of trigger
bits into selection algorithms:

Trigger code Corresponding object
ELEC_PT electron
MUON_PT muon
JET_PT jet
TAUJET_PT τ -jet
ETMIS_PT missing transverse energy
GAMMA_PT photon

Each line in the trigger datacard is allocated to exactly one trigger bit and starts with the name
of the corresponding trigger. Logical combination of several conditions is also possible. If the
trigger bit requires the presence of multiple identical objects, the order of their pT thresholds is
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very important: they must be defined in decreasing order. Finally, the different requirements on
the objects must be separated by a && flag. The default trigger card can be found in the data
repository of Delphes (data/trigger.dat). An example of trigger table consistent with the
previous rules is given here:

SingleJet >> JET_PT: ’200’

DoubleElec >> ELEC_PT: ’20’ && ELEC_PT: ’10’

SingleElec and Single Muon >> ELEC_PT: ’20’ && MUON_PT: ’15’

A.2.2 Running the code

First, create the smearing and trigger cards (data/mydetector.dat and data/mytrigger.dat).
Then, create a text file containing the list of input files that will be used by Delphes (with extension
*.lhe, *.root or *.hep). To run the code, type the following command (in one line)

me@mylaptop:~$ ./Delphes inputlist.list OutputRootFileName.root

data/mydetector.dat data/mytrigger.dat

As a reminder, typing the ./Delphes command simply displays the correct usage:

me@mylaptop:~$ ./Delphes

Usage: ./Delphes input_file output_file [detector_card] [trigger_card]

input_list - list of files in Ntpl, StdHep of LHEF format,

output_file - output file.

detector_card - Card containing resolution variables for detector simulation (optional)

trigger_card - Card containing the trigger algorithms (optional)

A.3 Getting the Delphes information

A.3.1 Contents of the Delphes ROOT trees

The Delphes output file (*.root) is subdivided into three trees, corresponding to generator-level
data, analysis object data and trigger output. These trees are structures that organise the output
data into branches containing data (or leaves) related with each others, like the kinematics properties
(E, px, η, . . .) of a given particle.

Here is the exhaustive list of branches availables in these trees, together with their corresponding
physical objet and ExRootAnalysis class:

GEN tree
Particle generator particles from hepevt TRootGenParticle

Trigger
TrigResult Acceptance of different trigger bits TRootTrigger
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Analysis tree
Tracks Collection of tracks TRootTracks

CaloTower Calorimetric towers TRootCalo

Electron Collection of electrons TRootElectron

Photon Collection of photons TRootPhoton

Muon Collection of muons TRootMuon

Jet Collection of jets TRootJet

TauJet Collection of jets tagged as τ -jets TRootTauJet

ETmis Transverse missing energy information TRootETmis

ZDChits Hits in the Zero Degree Calorimeters TRootZdcHits

RP220hits Hits in the first proton taggers TRootRomanPotHits

FP420hits Hits in the next proton taggers TRootRomanPotHits

The third column shows the names of the corresponding classes to be written in a root tree.
All classes except TRootTrigger, TRootETmis and TRootRomanPotHits inherit from the class
TRootParticle which includes the following data members (stored as leaves in branches of the trees):

Most common leaves
float E; // particle energy in GeV

float Px; // particle momentum vector (x component) in GeV

float Py; // particle momentum vector (y component) in GeV

float Pz; // particle momentum vector (z component) in GeV

float PT; // particle transverse momentum in GeV

float Eta; // particle pseudorapidity

float Phi; // particle azimuthal angle in rad

In addition to their kinematics, some additional properties are available for specific objects:

Leaves in the Particle branch
int PID; // particle HEP ID number

int Status; // particle status

int M1; // particle 1st mother

int M2; // particle 2nd mother

int D1; // particle 1st daughter

int D2; // particle 2nd daughter

float Charge; // electrical charge in units of e

float T; // particle vertex position (t component, in mm/c)

float X; // particle vertex position (x component, in mm)

float Y; // particle vertex position (y component, in mm)

float Z; // particle vertex position (z component, in mm)

float M; // particle mass in GeV
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Additional leaves in Electron and Muon branches
int Charge

bool IsolFlag

Additional leaf in the Jet branch
bool Btag

Additional leaves in the ZDChits branch
float T; // time of flight in s

int side; // -1 or +1

A.4 Running an analysis on your Delphes events

To analyse the root ntuple produced by Delphes, the simplest way is to use the Analysis_Ex.cpp

code which is coming in the Examples repository of Delphes. Note that all of this is optional
and done to facilitate the analyses, as the output from Delphes is viewable with the standard root
TBrowser and can be analysed using the MakeClass facility. As an example, here is a simple overview
of a myoutput.root file created by Delphes:

me@mylaptop:~$ root -l myoutput.root

root [0]

Attaching file myoutput.root as _file0...

root [1] .ls

TFile** myoutput.root

TFile* myoutput.root

KEY: TTree GEN;1 Analysis tree

KEY: TTree Analysis;1 Analysis tree

KEY: TTree Trigger;1 Analysis tree

root [2] TBrowser t;

root [3] Analysis->GetEntries()

(const Long64_t)200

root [4] GEN->GetListOfBranches()->ls()

OBJ: TBranchElement Event Event_ : 0 at: 0x9108f30

OBJ: TBranch Event_size Event_size/I : 0 at: 0x910cfd0

OBJ: TBranchElement Particle Particle_ : 0 at: 0x910c6b0

OBJ: TBranch Particle_size Particle_size/I : 0 at: 0x9111c58

root [5] Trigger->GetListOfLeaves()->ls()

OBJ: TLeafElement TrigResult_ TrigResult_ : 0 at: 0x90f90a0

OBJ: TLeafElement TrigResult.Accepted Accepted[TrigResult_] : 0 at: 0x90f9000

OBJ: TLeafI TrigResult_size TrigResult_size : 0 at: 0x90fb860

The .ls command lists the current keys available and in particular the three tree names. TBrowser t

launches a browser and the GetEntries() method outputs the number of data in the correspond-
ing tree. The list of branches or leaves can be displayed with the GetListOfBranches() and
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GetListOfLeaves() methods, pointing to the ls() one. In particular, it is possible to shown only
parts of the output, using wildcard characters (*):

root [6] Analysis->GetListOfLeaves()->ls("*.E")

OBJ: TLeafElement Jet.E E[Jet_] : 0 at: 0xa08bc68

OBJ: TLeafElement TauJet.E E[TauJet_] : 0 at: 0xa148910

OBJ: TLeafElement Electron.E E[Electron_] : 0 at: 0xa1d8a50

OBJ: TLeafElement Muon.E E[Muon_] : 0 at: 0xa28ac80

OBJ: TLeafElement Photon.E E[Photon_] : 0 at: 0xa33cd88

OBJ: TLeafElement Tracks.E E[Tracks_] : 0 at: 0xa3cced0

OBJ: TLeafElement CaloTower.E E[CaloTower_] : 0 at: 0xa4ba188

OBJ: TLeafElement ZDChits.E E[ZDChits_] : 0 at: 0xa54a3c8

OBJ: TLeafElement RP220hits.E E[RP220hits_] : 0 at: 0xa61e648

OBJ: TLeafElement FP420hits.E E[FP420hits_] : 0 at: 0xa6d0920

To draw a particular leaf, either double-click on the corresponding name in the TBrowser or use
the Draw method of the corresponding tree.

root [7] Trigger->Draw("TrigResult.Accepted");

Mathematical operations on several leaves are possible within a given tree:

root [8] Analysis->Draw("Muon.Px * Muon.Px");

root [9] Analysis->Draw("sqrt(pow(Muon.E,2) - pow(Muon.Pz,2) + pow(Muon.PT,2))");

Finally, to prepare an deeper analysis, the MakeClass method is useful:

root [10] Trigger->MakeClass()

Info in <TTreePlayer::MakeClass>: Files: Trigger.h and

Trigger.C generated from TTree: Trigger

To run the Examples/Analysis Ex.cpp code, the two following arguments are required: a text file
containing the input Delphes root files to run, and the name of the output root file.

me@mylaptop:~$ ./Analysis_Ex input_file.list output_file.root

A.4.1 Adding the trigger information

The Examples/Trigger Only.cpp code permits to run the trigger selection separately from the gen-
eral detector simulation on output Delphes root files. A Delphes root file is mandatory as an
input argument for the Trigger Only routine. The new tree containing the trigger result data will
be appended to this file. The trigger datacard is also necessary. To run the code:

me@mylaptop:~$ ./Trigger_Only input_file.root data/trigger.dat
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A.5 Running the FROG event display

• If the FLAG_frog was switched on in the smearing card, two files have been created during
the running of Delphes: DelphesToFrog.vis and DelphesToFrog.geom. They contain all the
needed pieces of information to run frog.

• To display the events and the geometry, you first need to compile Frog. Go to the
Utilities/FROG and type make. This compilation is done once for all, with this geometry
(i.e. as long as the *vis and *geom files do not change).

• Go back into the main directory and type

me@mylaptop: $ ./Utilities/FROG/frog.
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