
Delphes, a framework for fast simulation

of a general purpose LHC detector

S. Ovyn and X. Rouby∗

Center for Particle Physics and Phenomenology (CP3)
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

severine.ovyn@uclouvain.be, xavier.rouby@cern.ch

Knowing whether theoretical predictions are visible and measurable in a high en-
ergy experiment is always delicate, due to the complexity of the related detectors, data
acquisition chain and software. We introduce here a new framework, Delphes, for fast
simulation of a general purpose experiment. The simulation includes a tracking system,
embedded into a magnetic field, calorimetry and a muon system, and possible very for-
ward detectors arranged along the beamline. The framework is interfaced to standard
file formats (e.g. Les Houches Event File) and outputs observable analysis data objects,
like missing transverse energy and collections of electrons or jets. The simulation of
detector response takes into account the detector resolution, and usual reconstruction
algorithms for complex objects, like FastJet. A simplified preselection can also be
applied on processed data for trigger emulation. Detection of very forward scattered
particles relies on the transport in beamlines with the Hector software. Finally, the
Frog 2D/3D event display is used for visualisation of the collision final states. An
overview of Delphes is given as well as a few use-cases for illustration.

Keywords: Delphes, fast simulation, LHC, smearing, trigger, FastJet, Hector,
Frog

1 Introduction

Experiments at high energy colliders are very complex systems, in several ways. First, in
terms of the various detector subsystems, including tracking, central calorimetry, forward
calorimetry, and muon chambers, with different principles, technologies, geometries and

∗Now in Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

1

sensitivities. Then, due to the requirement of a highly effective online selection (i.e. a
trigger) which is subdivided into several levels for an optimal reduction factor, but based
only on partial data. Finally, in terms of the experiment software with different data
format (like raw or reconstructed data), many reconstruction algorithms and particle
identification schemes.

This complexity is handled by large collaborations of thousands of people, which
restrict the availability of the data, software and documentation to their members. Real
data analyses require a full detector simulation, including the various detector inefficien-
cies, the dead material, the imperfections and the geometrical details. Moreover, detec-
tor calibration and alignment are crucial. Such simulation is very complicated, technical
and slow. On the other hand, phenomenological studies, looking for the observability of
given signals, may require only fast but realistic estimates of the observables.

A new framework, called Delphes [1], is introduced here, for the fast simulation
of a general purpose collider experiment. Using the framework, observables can be
estimated for specific signal and background channels, as well as their production and
measurement rates, under a set of assumptions. Starting from the output of event
generators, the simulation of the detector response takes into account the subdetector
resolutions, by smearing the kinematical properties of the visible final particles. Tracks
of charged particles and calorimetric towers are then created.

Delphes includes the most crucial experimental features, like (1) the geometry of
both central or forward detectors; (2) lepton isolation; (3) reconstruction of photons,
leptons, jets, b-jets, τ -jets and missing transverse energy; (4) trigger emulation and (5)
an event display (Fig. 1).

Although this kind of approach yields much realistic results than a simple “parton-
level” analysis, a fast simulation comes with some limitations. Detector geometry is
idealised, being uniform, symmetric around the beam axis, and having no craks nor
dead material. Secondary interactions, multiple scatterings, photon conversion and
bremsstrahlung are also neglected.

The simulation package proceeds in two stages. The first part is executed on the
generated events. “Particle-level” informations are read from input files and stored in a
gen root tree. Three varieties of input files can currently be used as input in Delphes.
In order to process events from many different generators, the standard Monte Carlo
event structure StdHep can be used as an input. Besides, Delphes can also provide
detector response for events read in ”Les Houches Event Format” (lhef) and root files
obtained using the h2root converter program. This first stage is performed using three
C++ classes: HEPEVTConverter, LHEFConverter and STDHEPConverter. Afterwards,
Delphes performs a simple trigger simulation and reconstruct ”high-level objects”.
These informations are organised in classes and each objects are ordered with respect to
the transverse momentum. The output of the various C++ classes is stored in the Anal-
ysis tree. The program is driven by a datacard (data/DataCardDet.dat) which allow a
large spectrum of running conditions by modifying basic detector parameters, including
calorimeter and tracking coverage and resolution, thresholds or jet algorithm parameters.

Usual algorithms are applied for the reconstruction of complex objects, like the

2

Figure 1: Flow chart describing the principles behind Delphes.

missing transverse energy or the jets originating from b quarks or τ leptons.
A simplified preselection can also be applied on processed data for trigger emulation.

All detectors are assumed to be symmetric with respect to the beam axis

2 Central detector simulation

The overall layout of the general purpose detector simulated by Delphes is shown in
figure 2. A central tracking system surrounded by an electromagnetic and a hadron
calorimeters. A forward calorimeter ensures a larger geometric coverage for the mea-

3

Figure 2: Layout of the generic detector geometry assumed in Delphes. The innermost
layer, close to the interaction point, is a ce ntral tracking system (pink). It is surrounded
by a central calorimeter volume (green) with both electromagnetic and hadronic sections.
Th e outer layer of the central system (red) consist of a muon system. In addition, two
end-cap calorimeters (blue) extend the pseudorapidity coverage of the central detector.
The actual detector granularity and extension is defined in the user-configuration card.
The detector i s assumed to be strictly symmetric around the beam axis (black line).
Additional forward detectors are not depicted.

Figure 3: Profile of the layout assumed in Delphes. The extension of the various
subdetectors, as defined in Tab. 2 , are clearly visible. Same colour codes as for Fig. 2
are applied. Additional forward detectors are not depicted.

surement of the missing transverse energy. The fast simulation of the detector response
takes into account geometrical acceptance of sub-detectors and their finite resolution.

No smearing is applied on particle direction. (???)

Before starting to loop over events, the RESOLution class loads all sub-detector

4

Figure 4: Layout of the generic detector geometry assumed in Delphes. Open 3D-
view of the detector with solid volumes. Same colour codes as for Fig. 2 are applied.
Additional forward detectors are not depicted.

resolutions and coverage from the detector parameter file. If no such file is provided,
predifined values are used. The coverage of the various sub-systems used in the default
configuration are summarized in table 2.

Tracking CEN_max_tracker 2.5
Calorimeters CEN_max_calo_cen 3.0

CEN_max_calo_fwd 5.0
Muon CEN_max_mu 2.4

2.1 Simulation of calorimeters response

The energy of all particle considered as stable in the generator particle list are smeared
according to a resolution depending which sub-calorimeter is assumed to be used for the
energy measurement. For particles with a short lifetime such as the Ks, the fraction of
electromagnetic or hadronic energy is determined according to its decay products. The
response of the each sub-calorimeter is parametrized as a function of the energy

σ

E
=

S√
E

⊕ N

E
⊕ C, (1)

where S is the stochastic term, N the noise and C the constant term.

The response of the detector is applied to the electromagnetic and the hadronic
particles through the SmearElectronand SmearHadron functions. The 4-momentum pµ

are smeared with a parametrisation directly derived from the detector techinal designs.

5

In the default parametrisation, the calorimeter is assumed to cover the pseudorapidity
range |η| < 3 and consists in an electromagnetic and an hadronic part. Coverage be-
tween pseudorapidities of 3.0 and 5.0 is provided by a forward calorimeter. The response
of this calorimeter can be different for electrons and hadrons. The default values of the
stochastic, noisy and constant terms as well as the “Card flag” names used in the con-
figuration file are given in table 2.1.

Resolution Term Card flag Value

Central ecal S ELG_Scen 0.05
N ELG_Ncen 0.25
C ELG_Ccen 0.0055

Forward ecal S ELG_Sfwd 2.084
N ELG_Nfwd 0.0
C ELG_Cfwd 0.107

Central hcal S HAD_Shcal 1.5
N HAD_Nhcal 0.
C HAD_Chcal 0.05

Forward hcal S HAD_Shf 2.7
N HAD_Nhf 0.
C HAD_Chf 0.13

The energy of electron and photon particles found in the particle list are smeared
using the ecal resolution terms. Charged and neutral final state hadrons interact with
the ecal, hcal and the forward calorimeter. Some long-living particles, such as the Ks,
possessing lifetime cτ smaller than 10 mma are considering as stable particles although
they decay in the calorimeters. The energy smearing of such particles is performed using
the expected fraction of the energy, determined according to their decay products, that
whould be deposited into the ecal (Eecal) and into the hcal (Ehcal). Defining F as the
fraction of the energy leading to a hcal deposit, the two energy values are given by

Ehcal = E × F and Eecal = E × (1 − F), (2)

where 0 ≤ F ≤ 1. The electromagnetic part is handled as the electrons, while the reso-
lution terms used for the hadronic part are HAD_Shcal, HAD_Nhcal and HAD_Chcal. The
resulting final energy given after the application of the smearing is then E = Ehcal+Eecal.

2.2 Muon smearing

Muons candidates are searched The smearing ot the muon 4-momentum pµ is given by
a Gaussian smearing of the pT function SmearMuon. Only the pT is smeared, but neither
η nor φ.

6

2.3 Tracks reconstruction

All stable charged particles lying inside the fiducial volume of the tracking coverage pro-
vide a track. The reconstructio efficiency is manageable in the input datacard through
the TRACKING_EFF term. By default, a track is assumed to be reconstructed with 90%
probability.

2.4 Calorimetric towers

All undecayed particles, except muons and neutrinos are producing a calorimetric tower.
The same particles enter in the calculation of the missing transverse energy. what is used
is the particle smeared momentum, not the calorimetric towers!

2.5 Isolated lepton reconstruction

Photon and electron candidates are reconstructed if they fall into the acceptance of the
tracking system and have a transverse momentum above the ELEC_pt value (10 GeV by
default). Muons candidates are searched

Lepton isolation demands that there is no other charged particles with pT > 2 GeV
within a cone of ∆R < 0.5 around the lepton.

2.6 Very forward detectors simulation

Some subdetectors have the ability to measure the time of flight of the particle. This cor-
respond to the delay after which the particle is observed in the detector, after the bunch
crossing. The time of flight measurement of ZDC and FP420 detector is implemented
here. For the ZDC, the formula is simply

t2 = t1 +
1

v
×

(s − z

cos θ

)

, (3)

where t2 is the time of flight, t1 is the true time coordinate of the vertex from which
the particle originates, v the particle velocity, s is the ZDC distance to the interaction
point, z is the longitudinal coordinate of the vertex from which the particle comes from,
theta is the particle emission angle. This assumes that the neutral particle observed in
the ZDC is highly relativistic, i.e. travelling at the speed of light c. We also assume that
cos θ = 1, i.e. θ ≈ 0 or equivalently η is large. As an example, η = 5 leads to θ = 0.013
and 1 − cos θ < 10−4. The formula then reduces to

t2 =
1

c
× (s − z) (4)

NB : for the moment, only neutrons and photons are assumed to be able to reach the
ZDC. All other particles are neglected

To fix the ideas, if the ZDC is located at s = 140 m, neglecting z and θ, and assuming
that v = c, one gets t = 0.47 µs.

7

3 “High-level” objects reconstruction

3.1 Jet reconstruction

Jets are reconstructed using a cone algorithm with R = 0.7 and make only use of the
smeared particle momenta. The reconstructed jets are required to have a transverse
momentum above 20 GeV and |η| < 3.0. A jet is tagged as b-jets if its direction lies in
the acceptance of the tracker, |η| < 0.5, and if it is associated to a parent b-quark. A
b-tagging efficiency of 40% is assumed if the jet has a parent b quark. For c-jets and
light/gluon jets, a fake b-tagging efficiency of 10% and 1% respectively is assumed.

3.2 b-tagging

The simulation of the b-tagging is based on the detector efficiencies assumed (1) for the
tagging of a b-jet and (2) for the mis-identification of other jets as b-jets. This relies on
the TAGGING B, MISTAGGING C and MISTAGGING L constants, for (respectively)
the efficiency of tagging of a b-jet, the efficiency of mistagging a c-jet as a b-jet, and the
efficiency of mistatting a light jet (u,d,s,g) as a b-jet. The (mis)tagging relies on the
particle ID of the most energetic particle within a cone around the observed (eta,phi)
region, with a radius CONERADIUS.

3.3 Tau identification

Figure 5: detectorAng.eps

Jets originating from τ -decay are identified using an identi-
fication procedure consistent with the one applied in a full
detector simulation. The tagging rely on two tau proper-
ties. First, in roughly 75% of the time, the hadronic τ -decay
products contain only one charged hadron and a number of
π0. Second, the particles arisen from the τ -lepton produce
narrow jets in the calorimeter.

Electromagnetic collimation

To use the narrowness of the τ -jet, the electromagnetic col-
limation (Cem

τ) is defined as the sum of the energy in a
cone with ∆R =TAU_energy_scone around the jet axis di-
vided by the energy of the reconstructed jet. The energy
in the small cone is calculated using the towers objects.
To be taken into account a calorimeter tower should have
a transverse energy above a given threshold JET_M_seed.
A large fraction of the jet energy, denominated here with
TAU_energy_frac is expected in this small cone. The quan-

tity is represented in figure 6 for the default values (see table 3.3).

8

Figure 6:

τ selection using tracks

Figure 7:

The tracking isolation for the τ identification requires that the number of tracks as-
sociated to a particle with pT > TAU_track_pt is one and only one in a cone with ∆R =
TAU_track_scone. This cone should be entirely included in the tracker to be taken into
account. This procedure selects taus decaying hadronically with a typical efficiency of
60%. Moreover, the minimal pT of the τ -jet is required to be TAUJET_pt(default value:
10 GeV).

Tau definition Card flag Value

∆Rfor em TAU_energy_scone 0.15
min Etower

T JET_M_seed 1.0 GeV
Cem

τ TAU_energy_frac 0.95.
∆Rfor tracks TAU_track_scone 0.4
min ptracks

T PTAU_track_pt 2 GeV

3.4 Transverse missing energy

4 Trigger emulation

5 Validation

6 Visualisation

As an illustration, an associated photoproduction of a W boson and a t quark is shown
in Fig. 8. This corresponds to a pp → Wt + p + X process, where the Wt couple is
induced by an incoming photon emitted by one interacting proton. This leading proton
survives from the photon emission and subsequently from the pp interaction, and is
present in the final state. The experimental signature is a lack of hadronic activity in
one forward hemisphere, where the surviving proton escapes. The t quark decays into a
W and a b. Both W bosons decay into leptons (W → µνµ and W → τντ).

9

Figure 8: Example of pp(γp → Wt)pY event. One W boson decays into a µ νµ pair
and the second one into a τ ντ pair. The surviving proton leaves a forward hemisphere
with no hadronic activity. The isolated muon is shown as the blue vector. The τ -jet is
the cone around the green vector, while the reconstructed missing energy is shown in
gray. One jet is visible in one forward region, along the beamline axis, opposite to the
direction of the escaping proton.

7 Conclusion and perspectives

10

A User manual

The available code is a tar file which comes with everything you need to run the Delphes

package. Nevertheless in order to visualise the events with the Frog program, you need
to install libraries as explained in href=”http://projects.hepforge.org/frog/

A.1 Getting started

In order to run Delphes on your system, first download is sources and compile it:

me@mylaptop:~$ wget http://www.fynu.ucl.ac.be/users/s.ovyn/files/Delphes_V_*.*.tar

me@mylaptop:~$ tar -xvf Delphes_V_*.*. tar

me@mylaptop:~$ cd Delphes_V_*.*

me@mylaptop:~$./genMakefile.tcl >; Makefile

me@mylaptop:~$ make

A.2 Running Delphes on your events

A.2.1 Setting the run configuration

The program is driven by two datacards (default cards are data/DataCardDet.dat and
data/trigger.dat) which allow a large spectrum of running conditions. T

¯
he run card

Contains all needed information to run Delphes

• The following parameters are available: detector parameters, including calorimeter
and tracking coverage and resolution, transverse energy thresholds allowed for
reconstructed objects, jet algorithm to use as well as jet parameters.

• Four flags, FLAG_bfield, FLAG_vfd, FLAG_trigger and FLAG_frog should be as-
signed to decide if the magnetic field propagation, the very forward detectors ac-
ceptance, the trigger selection and the preparation for Frog display respectively
are running by Delphes.

• An example (the default detector card) can be found in files/DataCardDet.dat

T
¯
he trigger card

Contains the definition of all trigger bits

• Cuts can be applied on the transverse momentum of electrons, muons, jets, tau-
jets, photons and transverse missing energy.

• Be careful that the following structured should be used:

1. One trigger bit per line, the first entry in the line is the name of the trigger
bit

11

2. If the trigger bit uses the presence of multiple identical objects, their trans-
verse momentum thresholds must be defined in decreasing order

3. The different object requirements must be separated by a && flag

4. Example of a trigger bit line:

DoubleElec >> ELEC1_PT: ’20’ && ELEC2_PT: ’10’

• An example (the default trigger card) can be found ¡a href=”files/trigger.dat”
title=”Home”¿here¡/a¿¡/li¿

A.2.2 Running the code

Create the above cards (data/mydetector.dat and data/mytrigger.dat) Create a text file
containing the list of input files that will be used by Delphes (with extension *.lhe,
*.root or *.hep) To run the code, type the following

me@mylaptop:~$./Delphes inputlist.list OutputRootFileName.root data/mydetector.dat data/mytrigger.dat

A.3 Running an analysis on your Delphes events

Two examples of codes running on the output root file of Delphes are coming with the
package

1. The Examples/Analysis_Ex.cpp code shows how to access the available recon-
structed objects and the trigger information The two following arguments are
required: a text file containing the input Delphes root files to run, and the name
of the output root file. To run the code:

./Analysis_Ex input_file.list output_file.root

2. The Examples/Trigger_Only.cpp code permits to run the trigger selection sep-
arately from the general detector simulation on output Delphes root files. An
input Delphes root file is mandatory as argument. The new tree containing
the trigger information will be added in these file. The trigger datacard is also
necessary. To run the code:

./Trigger_Only input_file.root data/trigger.dat

A.4 Running the Frog event display

• If the FLAG_frog was switched on, two files were created during the run of
Delphes: DelphesToFrog.vis and DelphesToFrog.geom. They contain all the
needed information to run frog.

• To display the events and the geometry, you first need to compile Frog. Go to
the Utilities/FROG and type make.

• Go back into the main directory and type ./Utilities/FROG/frog.

12

References

[1] Delphes, hepforge:

[2] Fast-Jet,

[3] Frog,

Attention : in SmearUtil::NumTracks, the function arguments ’Eta’ and ’Phi’ have
been switched. Previously, ’Phi’ was before ’Eta’, now ’Eta’ comes in front. This is
for consistency with the other functions in SmearUtil. Check your routines, when using
NumTracks !

In the list of input files, all files should have the same type
Attention : in SmearUtil::RESOLution::BJets, the maximal energy was looked in

CONERADIUS/2 instead of CONERADIUS. This bug has been removed.
Attention : for the tau-jet identification : CONERADIUS /2 was used instead of

CONERADIUS !
in other words, the effect related to the particle showers that would happen in the

calorimeters are not taken into account. We took the hypothesis that stable particles
interacting electromagneticaly deposit their energies in the ECAL calorimeter and that
the hadrons just interact with the HCAL

13

	Introduction
	Central detector simulation
	Simulation of calorimeters response
	Muon smearing
	Tracks reconstruction
	Calorimetric towers
	Isolated lepton reconstruction
	Very forward detectors simulation

	``High-level" objects reconstruction
	Jet reconstruction
	b-tagging
	Tau identification
	Transverse missing energy

	Trigger emulation
	Validation
	Visualisation
	Conclusion and perspectives
	User manual
	Getting started
	Running Delphes on your events
	Setting the run configuration
	Running the code

	Running an analysis on your Delphes events
	Running the Frog event display

