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Abstract

This paper presents a newC++ framework,Delphes, performing a fast multipurpose detector response simulation. The simulation
includes a tracking system, embedded into a magnetic field, calorimeters and a muon system, and possible very forward detectors
arranged along the beamline. The framework is interfaced tostandard file formats (e.g. Les Houches Event File orHepMC) and
outputs observables such as isolated leptons, missing transverse energy and collection of jets which can be used for dedicated
analyses. The simulation of the detector response takes into account the effect of magnetic field, the granularity of the calorimeters
and subdetector resolutions. A simplified preselection canalso be applied on processed events for trigger emulation. Detection
of very forward scattered particles relies on the transportin beamlines with theHectorsoftware. Finally, the FROG 2D/3D event
display is used for visualisation of the collision final states.
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1. Introduction

Multipurpose detectors at high energy colliders are very
complex systems. Precise data analyses require a full detector
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simulation, including transport of the primary and secondary
particles through the detector material accounting for thevar-
ious detector inefficiencies, the dead material, the imperfec-
tions and the geometrical details. Their simulation is in gen-
eral performed by means of the GEANT [1] package and final
observables used for analyses usually require sophisticated re-
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construction algorithms.
This complexity can only be handled by large collabora-

tions. Phenomenological studies, looking for the observability
of given signals, require in general only fast but realistices-
timates of the expected signal signatures and their associated
backgrounds.

In this context, a new framework, calledDelphes[2], has
been developped, for a fast simulation of a general-purposecol-
lider experiment. Using this framework, observables such as
cross-sections and efficiencies after event selection can be esti-
mated for specific reactions. Starting from the output of event
generators, the simulation of the detector response takes into
account the subdetector resolutions, by smearing the kinemat-
ics of final-state particles (i.e. those considered as stable by the
event generator1).

Delphes includes the most crucial experimental features,
such as (Fig.1):

1. the geometry of both central and forward detectors,

2. the effect of magnetic field on tracks,

3. the reconstruction of photons, leptons, jets,b-jets, τ-jets
and missing transverse energy,

4. a lepton isolation,

5. a trigger emulation,

6. an event display.

Although Delphesyields much realistic results than a sim-
ple “parton-level” analysis, it has some limitations. Detec-
tor geometry is idealised, being uniform, symmetric around
the beam axis, and having no cracks nor dead material. Sec-
ondary interactions, multiple scatterings, photon conversion
and bremsstrahlung are also neglected.

Several common datafile formats can be used as input in
Delphes[a], in order to process events from many different gen-
erators.Delphescreates output data in a ROOT ntuple [3]. This
output contains a copy of the generator-level data, the analysis
data objects after reconstruction, and possibly the results of the
trigger emulation [b]. In optionDelphescan produce a reduced
output file in*.lhco text format, which is limited to the list of
the reconstructed high-level objects in the final states [c].

2. Simulation of the detector response

The overall layout of the multipurpose detector simulated by
Delphesis shown in Fig.2. It consists in a central tracking
system (TRACKER) surrounded by an electromagnetic and a
hadron calorimeters (ECAL and HCAL, each with a central re-
gion and two endcaps) and two forward calorimeters (FCAL).

1In the currentDelphesversion, particles other than electrons (e±), photons
(γ), muons (µ±), neutrinos (νe, νµ and ντ) and neutralinos are simulated as
hadrons for their interactions with the calorimeters. The simulation of stable
particles beyond the Standard Model should therefore be handled with care [d].

Table 1: Default extension in pseudorapidityη of the different subdetectors.
Full azimuthal (φ) acceptance is assumed.

η φ

TRACKER [−2.5; 2.5] [−π; π]
ECAL, HCAL [−1.7; 1.7] [−π; π]
ECAL, HCAL endcaps [−3;−1.7] & [1 .7; 3] [−π; π]
FCAL [−5;−3] & [3; 5] [−π; π]
MUON [−2.4; 2.4] [−π; π]

Finally, a muon system (MUON) encloses the central detector
volume.

A detector card [e] allows a large spectrum of running
conditions by modifying basic detector parameters, including
calorimeter and tracking coverage and resolution, thresholds
or jet algorithm parameters. Even ifDelpheshas been devel-
opped for the simulation of general-purpose detectors at the
LHC (namely, CMS and ATLAS), this input parameter file in-
terfaces a flexible parametrisation for other cases, e.g. atfuture
linear colliders [f]. The geometrical coverage of the various
subsystems used in the default configuration are summarisedin
Tab.1.

Figure 2: Profile of layout of the generic detector geometry assumed in
Delphes. The innermost layer, close to the interaction point, is a central track-
ing system (pink). It is surrounded by a central calorimetervolume (green)
with both electromagnetic and hadronic sections. The outerlayer of the cen-
tral system (red) is muon system. In addition, two end-cap calorimeters (blue)
extend the pseudorapidity coverage of the central detector. Additional forward
detectors are not depicted.

2.1. Magnetic field
In addition to the subdetectors, the effects of a solenoidal

magnetic field are simulated for the charged particles [h].
This affects the position at which charged particles enter the
calorimeters and their corresponding tracks. The field exten-
sion is limited to the tracker volume and is in particular notap-
plied for muon chambers. This is not a limiting factor since the
magnetic field is not used for the muon momentum smearing.

2.2. Tracks reconstruction
Every stable charged particle with a transverse momentum

above some threshold and lying inside the detector volume cov-
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Figure 1: Flow chart describing the principles behindDelphes. Event files coming from external Monte Carlo generators areread by a converter stage (top). The
kinematics variables of the final-state particles are then smeared according to the tunable subdetector resolutions. Tracks are reconstructed in a simulated solenoidal
magnetic field and calorimetric cells sample the energy deposits. Based on these low-level objects, dedicated algorithms are applied for particle identification,
isolation and reconstruction. The transport of very forward particles to the near-beam detectors is also simulated. Finally, an output file is written, including
generator-level and analysis-object data. If requested, afully parametrisable trigger can be emulated. Optionally,the geometry and visualisation files for the 3D
event display can also be produced. All user parameters are set in theDetector/Smearing Cardand theTrigger Card.

ered by the tracker provides a track. By default, a track is as-
sumed to be reconstructed with 90% probability if its transverse
momentumpT is higher than 0.9 GeV/c and if its pseudorapid-
ity |η| ≤ 2.5 [i]. No smearing is currently applied on track
parameters. For each track, the positions at vertex (η, φ) and at
the entry point in the calorimeter layers (η, φ)calo are available.

2.3. Calorimetric cells
The response of the calorimeters to energy deposits of incom-

ing particles depends on their segmentation and resolution, as

well as on the nature of the particles themselves. In CMS and
ATLAS detectors, for instance, the calorimeter characteristics
are not identical in every direction, with typically finer resolu-
tion and granularity in the central regions [5, 6]. It is thus very
important to compute the exact coordinates of the entry point of
the particles into the calorimeters, in taking the magneticfield
effect into account.

The smallest unit for geometrical sampling of the calorime-
ters is acell; it segments the (η, φ) plane for the energy mea-
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surement. No longitudinal segmentation is available in thesim-
ulated calorimeters.Delphesassumes that ECAL and HCAL
have the same segmentations and that the detector is symmetric
in φ and with respect to theη = 0 plane [l]. Fig. 3 illustrates the
default calorimeter segmentation.
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Figure 3: Default segmentation of the calorimeters in the (η, φ) plane. Only
the central detectors (ECAL, HCAL) and FCAL are considered.φ angles are
expressed in radians.

The calorimeter response is parametrised through a Gaussian
smearing of the accumulated cell energy with a varianceσ:

σ

E
=

S
√

E
⊕ N

E
⊕C, (1)

whereS, N andC are thestochastic, noiseandconstantterms,
respectively, and⊕ stands for quadratic additions [j].

In the default parametrisation, ECAL and HCAL are as-
sumed to cover the pseudorapidity range|η| < 3, and FCAL
between 3.0 and 5.0, with different response to electrons and
photons, or to hadrons. Muons and neutrinos are assumed not
to interact with the calorimeters [d]. The default values of the
stochastic, noise and constant terms are given in Tab.2.

Table 2: Default values for the resolution of the central andforward calorime-
ters (for both electromagnetic and hadronic parts). Resolution is parametrised
by thestochastic(S), noise(N) andconstant(C) terms (Eq.1) [g].

S (GeV1/2) N (GeV) C
ECAL 0.05 0.25 0.0055
ECAL, end caps 0.05 0.25 0.0055
FCAL, e.m. part 2.084 0 0.107
HCAL 1.5 0 0.05
HCAL, end caps 1.5 0 0.05
FCAL, had. part 2.7 0 0.13

Electrons and photons are assumed to leave their energy
in the electromagnetic parts of the calorimeters (ECAL and
FCAL, e.m.), while charged and neutral final-state hadrons are

assumed to leave their entire energy interactin the hadronic
parts (HCAL and FCAL, had.). Some long-living particles,
such as theK0

s andΛ’s, with lifetime cτ smaller than 10 mm
are considered as stable particles by the generators although
they may decay before reaching the calorimeters. The energy
smearing of such particles is therefore performed using theex-
pected fraction of the energy, determined according to their de-
cay products, that would be deposited into the ECAL (EECAL)
and into the HCAL (EHCAL). DefiningF as the fraction of the
energy leading to a HCAL deposit, the two energy values are
given by

{

EHCAL = E × F
EECAL = E × (1− F)

(2)

where 0 ≤ F ≤ 1. The resulting calorimetry energy mea-
surement given after the application of the smearing is then
E = EHCAL +EECAL. ForK0

S andΛ hadrons, the energy fraction
is F is assumed to be 0.7 [k].

No sharing between neighbouring cells is implemented when
particles enter a cell very close to its geometrical edge. Due to
the finite segmentation, the smearing, as defined in Eq.1, is ap-
plied directly on the accumulated electromagnetic and hadronic
energies of each calorimetric cell. The calorimetric cellsenter
in the calculation of the missing transverse energy (MET), and
are used as input for the jet reconstruction algorithms.

The output file created byDelphes[m] stores the final collec-
tions of particles (e±, µ±, γ) and objects (light jets,b-jets,τ-jets,
Emiss

T ). In addition, collections of tracks, calorimetric cells and
hits in the very forward detectors (ZDC, RP220 and FP420, see
Sec.5) are added.

3. High-level reconstruction

While electrons, muons and photons are easily identified,
other quantities are more difficult to evaluate as they rely on
sophisticated algorithms (e.g. jets or missing energy).

For most of these objects, their four-momentum and related
quantities are directly accessible inDelphesoutput (E, ~p, pT , η
andφ). Additional properties are available for specific objects
(like the charge and the isolation status fore± andµ±, the re-
sult of application ofb-tag for jets and time-of-flight for some
detector hits).

3.1. Photon and charged lepton

From here onwards,electronsrefer to both positrons (e+) and
electrons (e−), andcharged leptonsrefer to electrons and muons
(µ±), leaving out theτ± leptons as they decay before being de-
tected.

The electron, muon and photon collections contains only the
true final-state particles identified via the generator-data. In ad-
dition, these particles must pass fiducial cuts taking into account
the magnetic field effects and some additional reconstruction
cuts.

Consequently, no fake candidates enter these collections.
However, when needed, fake candidates can be added into the
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collections at the analysis level, when processingDelphesout-
put data. As effects like bremsstrahlung are not taken into ac-
count along the lepton propagation in the tracker, no clustering
is needed for the electron reconstruction inDelphes.

Electrons and photons
Real electron (e±) and photon candidates are associated to

the final-state collections if they fall into the acceptanceof the
tracking system and have a transverse momentum above some
threshold (default:pT > 10 GeV/c). Delphesassumes a perfect
algorithm for clustering and Brehmstrahlung recovery. Electron
energy is smeared according to the resolution of the calorimet-
ric cell where it points to, but independently from any other
deposited energy in this cell. Electrons and photons may create
a candidate in the jet collection. The (η, φ) position at vertex
corresponds to corresponding track vertex.

Muons
Generator-level muons entering the muon detector accep-

tance (default:−2.4 ≤ η ≤ 2.4) and overpassing some thresh-
old (default: pT > 10 GeV/c) are considered as good candi-
dates for analyses. The application of the detector resolution
on the muon momentum depends on a Gaussian smearing of
the pT [n]. Neitherη nor φ variables are modified beyond the
calorimeters. Multiple scattering is neglected. This implies that
low energy muons have inDelphesa better resolution than in
a real detector. At last, the particles which might leak out of
the calorimeters into the muon systems (punch-through) are not
considered as muon candidates inDelphes.

Charged lepton isolation
To improve the quality of the contents of the charged lep-

ton collections, isolation criteria can be applied. This requires
that electron or muon candidates are isolated in the detector
from any other particle, within a small cone. InDelphes,
charged lepton isolation demands by default that there is no
other charged particle withpT > 2 GeV/c within a cone of
∆R =

√

∆η2 + ∆φ2 < 0.5 centered on the cell associated to
the charged leptonℓ, obviously taking the magnetic field into
account.

The result (i.e.isolatedor not) is added to the charged lepton
measured properties. In addition, the sumPT of the transverse
momenta of all tracks but the lepton one within the isolation
cone is provided [o]:

PT =

tracks
∑

i,ℓ

pT(i)

No calorimetric isolation is applied, but the charged lepton
collections contain also the ratioρℓ between (1) the sum of
the transverse energies in all calorimetric cells in aN × N grid
around the lepton, and (2) the lepton transverse momentum [p]:

ρℓ =
ΣiET (i)
pT(ℓ)

, i in N × N grid centred onℓ.

3.2. Jet reconstruction

A realistic analysis requires a correct treatment of partons
which have hadronised. Therefore, the most widely currently
used jet algorithms have been integrated into theDelphes
framework using the FastJet tools2. Six different jet reconstruc-
tion schemes are available [8, r]. For all of them, the calori-
metric cells are used as inputs. Jet algorithms differ in their
sensitivity to soft particles or collinear splittings, andin their
computing speed performances.

Cone algorithms
1. CDF Jet Clusters[9]: Cone algorithm forming jets by

combining cells lying within a circle (default radius∆R=
0.7) in the (η, φ) space. Jets are seeded by all cells with
transverse energyET above a given threshold (default:
ET > 1 GeV) [t].

2. CDF MidPoint[10]: Cone algorithm with additional “mid-
points” (energy barycentres) in the list of seeds.

3. Seedless Infrared Safe Cone[11]: The SISCone algorithm
is simultaneously insensitive to additional soft particles
and collinear splittings.

Recombination algorithms
The next three jet algorithms rely on recombination schemes

where calorimeter cell pairs are successively merged:

4. Longitudinally invariant kt jet [12],

5. Cambridge/Aachen jet[13],

6. Anti kt jet [14], where hard jets are exactly circular in the
(y, φ) plane.

The recombination algorithms are safe with respect to soft
radiations (infrared) and collinear splittings. Their implemen-
tations are similar except for the definition of thedistancesused
during the merging procedure.

By default, reconstruction uses the CDF cone algorithm. Jets
are stored if their transverse energy is higher than 20 GeV [s].

Energy flow
In jets, several particle can leave their energy into a given

calorimetric cell, which broadens the jet energy resolution.
However, the energy of charged particles associated to jetscan
be deduced from their associated track, thus providing a way
to identify some of the components of cells with multiple hits.
When theenergy flowis switched on inDelphes, the energy of
tracks pointing to calorimetric cells is subtracted and smeared
separately, before running the chosen jet reconstruction algo-
rithm. This option allows a better jet energy reconstruction [u].

2A more detailed description of the jet algorithms is given inthe User Man-
ual, in appendix.
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3.3. b-tagging

A jet is tagged asb-jets if its direction lies in the acceptance
of the tracker and if it is associated to a parentb-quark. The
(mis)tagging relies on the identity of the most energetic parton
within a cone around the jet axis, with a radius equal to the
one used to reconstruct the jet (default:∆R of 0.7). By default,
a b-tagging efficiency of 40% is assumed if the jet has a par-
ent b quark. Forc-jets and light jets (i.e. originating inu, d,
s quarks or in gluons), a fakeb-tagging efficiency of 10% and
1% is assumed respectively [v]. Therefore, in current version
of Delphes, the displacement of secondary vertices is not taken
into account. As such, theb-tagging efficiency is below the
expected 40%.

3.4. Identification of hadronicτ decays

Jets originating fromτ-decays are identified using a proce-
dure consistent with the one applied in a full detector simula-
tion [5]. The tagging relies on two properties of theτ lepton.
First, 77% of theτ hadronic decays contain only one charged
hadron associated to a few neutrals (1-prong). Secondly, the
particles arisen from theτ lepton produce narrow jets in the
calorimeter (this is defined as the jetcollimation).

Figure 4: Illustration of the identification ofτ-jets (1−prong). The jet cone
is narrow and contains only one track. The small cone serves to apply the
electromagnetic collimation, while the broader cone is used to reconstruct the
jet originating from theτ-decay.

Table 3: Default values for parameters used inτ-jet reconstruction algorithm.
Electromagnetic collimation requirements involve the inner small cone radius
Rem, the minimum transverse energy for calorimetric cellsEcell

T and the col-
limation factorCτ. Tracking isolation constrains the number of tracks with a
significant transverse momentumptracks

T in a cone of radiusRtracks. Finally, the
τ-jet collection is purified by the application of a cut on thepT of τ-jet candi-
dates [w].

Electromagnetic collimation
Rem 0.15
min Ecell

T 1.0 GeV
Cτ 0.95

Tracking isolation
Rtracks 0.4
min ptracks

T 2 GeV/c
τ-jet candidate

min pT 10 GeV/c

Electromagnetic collimation
To use the narrowness of theτ-jet, theelectromagnetic col-

limation Cτ is defined as the sum of the energy of cells in a
small cone of radiusRem around the jet axis, divided by the
energy of the reconstructed jet. To be taken into account, a
calorimeter cell should have a transverse energyEcell

T above a
given threshold. A large fraction of the jet energy is expected
in this small cone. This fraction, orcollimation factor, is repre-
sented in Fig.5 for the default values (see Tab.3).
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Figure 5: Distribution of the electromagnetic collimationCτ variable for true
τ-jets, normalised to unity. This distribution is shown for associatedWH pho-
toproduction [16], where the Higgs boson decays into aW+W− pair. EachW
boson decays into aℓνℓ pair, whereℓ = e, µ, τ. Events generated with Mad-
Graph/MadEvent [17]. Final state hadronisation is performed byPythia [18].
Histogram entries correspond to trueτ-jets, matched with generator-level data.

Tracking isolation
The tracking isolation for theτ identification requires that the

number of tracks associated to particles with significant trans-
verse momenta is one and only one in a cone of radiusRtracks

(3−prongτ-jets are rejected). This cone should be entirely in-
corporated into the tracker to be taken into account. Default
values of these parameters are given in Tab.3.

Purity
Once both electromagnetic collimation and tracking isolation

are applied, a threshold on thepT of theτ-jet candidate is re-
quested to purify the collection. This procedure selectsτ lep-
tons decaying hadronically with a typical efficiency of 66%.

3.5. Missing transverse energy

In an ideal detector, momentum conservation imposes the
transverse momentum of the observed final state−→pT

obs to be
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true τ-jets, normalised to unity. PhotoproducedWH events, whereW bosons
decay leptonically (e, µ, τ), as in Fig.5. Histogram entries correspond to true
τ-jets, matched with generator-level data.

equal and in opposite direction to the−→pT vector sum of the in-
visible particles, written−→pT

miss. The true missing transverse
energy, i.e. at generator-level, is calculated as the opposite of
the vector sum of the transverse momenta of all visible parti-
cles – or equivalently, to the vector sum of invisible particle
transverse momenta. In a real experiment, calorimeters mea-
sure energy and not momentum. Any problem affecting the de-
tector (dead channels, misalignment, noisy cells, cracks)wors-

ens directly the measured missing transverse energy
−→
ET

miss. In
Delphes, MET is based on the calorimetric cells only. Muons
and neutrinos are therefore not taken into account for its evalu-
ation:

−→
ET

miss= −
cells
∑

i

−→
ET (i) (3)

However, as muon candidates, tracks and calorimetric cellsare
available in the output file, the missing transverse energy can
always be reprocessed a posteriori with more specialised algo-
rithms.

4. Trigger emulation

Most of the usual trigger algorithms select events containing
leptons, jets, and MET with an energy scale above some thresh-
old. This is often expressed in terms of a cut on the transverse
momentum of one or several objects of the measured event.
Logical combinations of several conditions are also possible.
For instance, a trigger path could select events containingat
least one jet and one electron such aspjet

T > 100 GeV/c and
pe

T > 50 GeV/c.

A trigger emulation is included inDelphes, using a fully
parametrisabletrigger table[x]. When enabled, this trigger is
applied on analysis-object data. In a real experiment, the online
selection is often divided into several steps (orlevels). corre-
sponding to the different trigger levels. First-level triggers are
fast and simple but based only on partial data as not all detec-
tor front-ends are readable within the decision latency. Higher
level triggers are more complex, of finer-but-not-final quality
and based on full detector data.

Real triggers are thus intrinsically based on reconstructed
data with a worse resolution than final analysis information.
On the contrary, the same information is used inDelphesfor
the trigger emulation and for final analyses.

5. Very forward detector simulation

Collider experiments often have additional instrumentation
along the beamline. These extend theη coverage to higher val-
ues, for the detection of very forward final-state particles. In
Delphes, Zero Degree Calorimeters, roman pots and forward
taggers have been implemented (Fig.7), similarly as for CMS
and ATLAS collaborations [5, 6].
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Figure 7: Default location of the very forward detectors, including ZDC, RP220
and FP420 in the LHC beamline. Incoming (beam 1, red) and outgoing (beam
2, black) beams on one side of the fifth interaction point (IP5, s = 0 m on the
plot). The Zero Degree Calorimeter is located in perfect alignment with the
beamline axis at the interaction point, at 140 m, where the beam paths are well
separated. The forward taggers are near-beam detectors located at 220 m and
420 m. Beamline simulation withHector [7]. All very forward detectors are
located symmetrically around the interaction point.

5.1. Zero Degree Calorimeters

In direct sight of the interaction point, on both sides of the
central detector, the Zero Degree Calorimeters (ZDCs) are lo-
cated at zero angle, i.e. are aligned with the beamline axis at
the interaction point. They are placed beyond the point where
the paths of incoming and outgoing beams separate. These al-
low the measurement of stable neutral particles (γ andn) com-
ing from the interaction point, with large pseudorapidities (e.g.
|ηn,γ| > 8.3 in ATLAS and CMS).

The trajectory of the neutrals observed in the ZDCs is a
straight line, while charged particles are deflected away from
their acceptance window by the powerful magnets located in
front of them. The fact that additional charged particles may
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Table 4: Default parameters for the forward detectors: distance from the inter-
action point and detector acceptance. The LHC beamline is assumed around
the fifth LHC interaction point (IP). For the ZDC, the acceptance depends only
on the pseudorapidityη of the particle, which should be neutral and stable. It is
expressed in terms of the particle energy (E). All detectors are located on both
sides of the interaction point.

Detector Distance Acceptance
ZDC ±140 m |η| > 8.3 for n andγ
RP220 ±220 m E ∈ [6100; 6880] (GeV) at 2 mm
FP420 ±420 m E ∈ [6880; 6980] (GeV) at 4 mm

enter the ZDC acceptance is neglected in the current versions
of Delphes.

The ZDCs have the ability to measure the time-of-flight of
the particle. This corresponds to the delayt after which the
particle is observed in the detector, with respect to the bunch
crossing reference time at the interaction point (t0):

t = t0 +
1
v
×

( s− z
cosθ

)

≈ 1
c
× (s− z), (4)

where t0 is thus the true time coordinate of the vertex from
which the particle originates,v the particle velocity,s is the
ZDC distance to the interaction point,z is the longitudinal co-
ordinate of the vertex,θ is the particle emission angle. It is
assumed that the neutral particle observed in the ZDC is highly
relativistic and very forward. For the time-of-flight measure-
ment, a Gaussian smearing can be applied according to the de-
tector resolution (Tab.5) [g].

The ZDCs are composed of an electromagnetic and a
hadronic sections, for the measurement of photons and neu-
trons, respectively. The energy of the observed neutral is
smeared according to Eq.1 and the corresponding section res-
olutions (Tab.5). The ZDC hits do not enter in the calorimeter
cell list used for reconstruction of jets and missing transverse
energy.

Table 5: Default values for the resolution of the zero degreecalorimeters. Res-
olution on energy measurement is parametrised by thestochastic(S), noise(N)
andconstant(C) terms (Eq.1) [g]. The time-of-flight is smeared according to
a Gaussian function.

ZDC, electromagnetic part hadronic part
S (GeV1/2) 0.7 1.38
N (GeV) 0 0
C 0.08 0.13

ZDC, timing resolution
σt (s) 0

The reconstructed ZDC hits correspond to neutral particles
with a lifetime long enough to reach these detectors (default:
cτ ≥ 140 m) and very large pseudorapidities (default:|η| > 8.3).
Photons and neutrons are identified if their energy overpasses a
given threshold (def.Eγ ≤ 20 GeV andEn ≤ 50 GeV) [q].

5.2. Forward taggers

Forward taggers (called here RP220, for “roman pots at
220 m” and FP420 for “forward proton taggers at 420 m”, as at
the LHC) are meant for the measurement of particles following
very closely the beam path. Such devices, also used at HERA
and Tevatron, are located very far away from the interaction
point (further than 150 m in the LHC case).

To be able to reach these detectors, particles must have a
charge identical to the beam particles, and a momentum very
close to the nominal value of the beam particules. These tag-
gers are near-beam detectors located a few millimetres fromthe
true beam trajectory and this distance defines their acceptance
(Tab. 4). For instance, roman pots at 220 m from the IP and
2 mm from the beam will detect all forward protons with an
energy between 120 and 900 GeV [7]. In Delphes, extra hits
coming from the beam-gas events or secondary particles hitting
the beampipe in front of the detectors are not taken into account.

While neutral particles propagate along a straight line to the
ZDC, a dedicated simulation of the transport of charged parti-
cles is needed for RP220 and FP420. This fast simulation uses
the Hector software [7], which includes the chromaticity ef-
fects and the geometrical aperture of the beamline elementsof
any arbitrary collider.

Forward taggers are able to measure the hit positions (x, y)
and angles (θx, θy) in the transverse plane at the location of the
detector (s meters away from the IP), as well as the time-of-
flight3 (t). Out of these the particle energy (E) and the mo-
mentum transfer it underwent during the interaction (q2) can
be reconstructed at the analysis level (it is not implemented in
the current versions ofDelphes). The time-of-flight measure-
ment can be smeared with a Gaussian distribution (default value
σt = 0 s) [y].

6. Validation

Delphesperforms a fast simulation of a collider experiment.
Its performances in terms of computing time and data size are
directly proportional to the number of simulated events and
on the considered physics process. As an example, 10, 000
pp → tt̄X events are processed in 110 s on a regular laptop
and use less than 250 MB of disk space. The quality and valid-
ity of the output are assessed by comparing the resolutions on
the reconstructed data to the expectations of both CMS [5] and
ATLAS [6] detectors.

Electrons and muons resolutions inDelphesmatch by con-
struction the experiment designs, as the Gaussian smearingof
their kinematics properties is defined according to the detec-
tor specifications. Similarly, theb-tagging efficiency (for real
b-jets) and misidentification rates (for fakeb-jets) are taken di-
rectly from the expected values of the experiment. Unlike these
simple objects, jets and missing transverse energy should be
carefully cross-checked.

3It is worth noting that for both CMS and ATLAS experiments, the taggers
located at 220 m are not able to measure the time-of-flight, contrary to FP420
detectors.
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6.1. Jet resolution

The majority of interesting processes at the LHC contain jets
in the final state. The jet resolution obtained usingDelphes
is therefore a crucial point for its validation, both for CMS-
and ATLAS-like detectors. This validation is based onpp →
gg events produced with MadGraph/MadEvent and hadronised
usingPythia[17, 18].

For a CMS-like detector, a similar procedure as the one ex-
plained in published results is applied here. The events were
arranged in 14 bins of gluon transverse momentum ˆpT . In each
p̂T bin, every jet inDelphesis matched to the closest jet of
generator-level particles, using the spatial separation between
the two jet axes

∆R=
√

(

ηrec− ηMC
)2
+

(

φrec− φMC
)2
< 0.25. (5)

The jets made of generator-level particles, here referred as MC
jets, are obtained by applying the algorithm to all particles con-
sidered as stable after hadronisation. Jets produced byDelphes
and satisfying the matching criterion are called hereafterrecon-
structed jets. All jets are computed with the clustering algo-
rithm (JetCLU) with a cone radiusRof 0.7.

The ratio of the transverse energies of every reconstructedjet
Erec

T to its corresponding MC jetEMC
T is calculated in each ˆpT

bin. TheErec
T /E

MC
T histogram is fitted with a Gaussian distri-

bution in the interval±2 RMS centred around the mean value.
The resolution in each ˆpT bin is obtained by the fit mean〈x〉
and varianceσ2(x):

σ
( Erec

T

EMC
T

)

fit
〈 Erec

T

EMC
T

〉

fit

(

p̂T(i)
)

, for all i. (6)
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Figure 8: Resolution of the transverse energy of reconstructed jetsErec
T as a

function of the transverse energy of the closest jet of generator-level particles
EMC

T , in a CMS-like detector. The jets events are reconstructed with the JetCLU
clustering algorithm with a cone radius of 0.7. The maximum separation be-
tween the reconstructed and MC-jets is∆R = 0.25. Dotted line is the fit result
for comparison to the CMS resolution [5], in blue. Thepp→ gg dijet events
have been generated with MadGraph/MadEvent and hadronised withPythia.

The resulting jet resolution as a function ofEMC
T is shown in

Fig.8. This distribution is fitted with a function of the following
form:

a

EMC
T

⊕ b
√

EMC
T

⊕ c, (7)

wherea, b andc are the fit parameters. It is then compared to
the resolution published by the CMS collaboration [5]. The res-
olution curves fromDelphesand CMS are in good agreement.

Similarly, the jet resolution is evaluated for an ATLAS-like
detector. Thepp→ gg events are here arranged in 8 adjacent
bins in pT . A kT reconstruction algorithm withR = 0.6 is cho-
sen and the maximal matching distance between the MC-jets
and the reconstructed jets is set to∆R = 0.2. The relative en-
ergy resolution is evaluated in each bin by:

σ(E)
E
=

√

〈 (

Erec− EMC

Erec

)2 〉

−
〈

Erec− EMC

Erec

〉2

. (8)

Figure9 shows a good agreement between the resolution ob-
tained withDelphes, the result of the fit with Equation7 and the
corresponding curve provided by the ATLAS collaboration [6].

 [GeV]MCE
0 100 200 300 400 500 600 700

(E
)/

E
σ

0

5

10

15

20

25

30

35

40

45

50

|<0.5 η|

 ggX →Events: pp 

 R = 0.6∆ algorithm Tk

MG/ME + Pythia + Delphes

ATLAS resolution

MCE
434.0 ⊕ 1.1 ⊕ 

MCE

100.0 = 
E
(E)σ

Delphes resolution: 

Figure 9: Relative energy resolution of reconstructed jetsas a function of the
energy of the closest jet of generator-level particlesEMC, in an ATLAS-like
detector. The jets are reconstructed with thekT algorithm with a radiusR =
0.6. The maximal matching distance between MC- and reconstructed jets is
∆R = 0.2. Only central jets are considered (|η| < 0.5). Dotted line is the fit
result for comparison to the ATLAS resolution [6], in blue. Thepp→ gg di-
jet events have been generated with MadGraph/MadEvent and hadronised with
Pythia.

6.2. MET resolution

All major detectors at hadron colliders have been designed
to be as hermetic as possible in order to detect the presence of
one or more neutrinos and/or new weakly interacting particles
through apparent missing transverse energy. The resolution of

the
−→
ET

miss variable, as obtained withDelphes, is then crucial.
The samples used to study the MET performance are identi-

cal to those used for the jet validation. It is worth noting that
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the contribution toEmiss
T from muons is negligible in the studied

sample. The input samples are divided in five bins of scalarET

sums (ΣET). This sum, calledtotal visible transverse energy, is
defined as the scalar sum of transverse energy in all cells. The
quality of the MET reconstruction is checked via the resolution
on its horizontal componentEmiss

x .
The Emiss

x resolution is evaluated in the following way. The
distribution of the difference betweenEmiss

x in Delphesand at
generator-level is fitted with a Gaussian function in each (ΣET)
bin. The fit RMS gives the MET resolution in each bin. The
resulting value is presented in Fig.10 as a function of the total
visible transverse energy, for CMS- and ATLAS-like detectors.
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Figure 10: σ(Emis
x ) as a function on the scalar sum of all cells (ΣET ) for

pp → gg events, for a CMS-like detector (top) and an ATLAS-like detector
(bottom), for di-jet events produced with MadGraph/MadEvent and hadronised
with Pythia.

The resolutionσx of the horizontal component of MET is
observed to behave like

σx = α
√

ET (GeV1/2), (9)

where theα parameter depends on the resolution of the
calorimeters.

The MET resolution expected for the CMS detector for sim-
ilar events isσx = (0.6− 0.7)

√
ET GeV1/2 with no pile-up (i.e.

extra simultaneousppcollision occurring at high-luminosity in
the same bunch crossing) [5], which compares very well with
the α = 0.63 obtained withDelphes. Similarly, for an AT-
LAS-like detector, a value of 0.53 is obtained byDelphesfor
theα parameter, while the experiment expects it in the range
[0.53 ; 0.57] [6].

6.3. τ-jet efficiency

Table6 lists the reconstruction efficiencies inDelphesfor the
hadronicτ-jets fromH,Z → τ+τ−. The mass of the Higgs bo-
son is set successively to 140 and 300 GeV/c2. The inclusive
gauge boson productions (pp→ HX and pp → ZX) are per-
formed with MadGraph/MadEvent and theτ lepton decay and
further hadronisation are handled byPythia/Tauola. All recon-
structedτ-jets are 1−prong, and follow the definition described
in section3.3, which is very close to an algorithm of the CMS
experiment [19]. At last, corresponding efficiencies published
by the CMS and ATLAS experiments are quoted for compar-
ison. The level of agreement is satisfactory provided possible
differences due to the event generation chain and the detail of
reconstruction algorithms.

Table 6: Reconstruction efficiencies ofτ-jets in τ+τ− decays fromZ or H
bosons, inDelphes, CMS and ATLAS experiments [19, 6]. Two scenarios for
the mass of the Higgs boson are investigated. Events generated with Mad-
Graph/MadEvent and hadronised withPythia. The decays ofτ leptons is han-
dled by theTauolaversion embedded inPythia.

CMS Delphes ATLAS Delphes
Z→ τ+τ− 38.2% 32.4± 1.8% 33% 28.6± 1.9%
H(140)→ τ+τ− 36.3% 39.9± 1.6% 32.8± 1.8%
H(300)→ τ+τ− 47.3% 49.7± 1.5% 43.8± 1.6%

7. Visualisation

When performing an analysis, a visualisation tool is useful
to convey information about the detector layout and the event
topology in a simple way. TheFast and Realistic OpenGL Dis-
playerFROG [20] has been interfaced inDelphes, allowing an
easy display of the defined detector configuration [z].

Two and three-dimensional representations of the detector
configuration can be used for communication purposes, as they
clearly illustrate the geometric coverage of the different detec-
tor subsystems. As an example, the generic detector geometry
assumed in this paper is shown in Fig.2 and11. The extensions
of the central tracking system, the central calorimeters and both
forward calorimeters are visible. Note that only the geometri-
cal coverage is depicted and that the calorimeter segmentation
is not taken into account in the drawing of the detector.

Deeper understanding of interesting physics processes is pos-
sible by displaying the events themselves. The visibility of each
set of objects (e±, µ±, τ±, jets, transverse missing energy) is en-
hanced by a colour coding. Moreover, kinematics information
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Figure 11: Layout of the generic detector geometry assumed in Delphes. Open
3D-view of the detector with solid volumes. Same colour codes as for Fig.2
are applied. Additional forward detectors are not depicted.

of each object is visible by a simple mouse action. As an il-
lustration, an associated photoproduction of aW boson and at
quark [21] is shown in Fig.12.

Figure 12: Example ofpp(γp→ Wt)pY event display in side (left) and trans-
verse (right) views, witht → Wb. OneW boson decays into aµνµ pair and the
second one into aeνe pair. The surviving proton leaves a forward hemisphere
with no hadronic activity. The isolated muon is shown as the dark blue vector.
Around the electron, in red, is reconstructed a fakeτ-jet (blue cone surrounding
a green arrow). The reconstructed missing energy is visiblein grey.

For comparison, Fig.13 depicts an inclusive gluon pair pro-
ductionpp→ ggX. The event final state contains more jets, in
particular along the beam axis, which is expected as the inter-
acting protons are destroyed by the collision.

Figure 13: Example of inclusive gluon pair productionpp→ ggX. Many jets
are present in the event, in particular along the beam axis (black line).

8. Conclusion and perspectives

We have described here the major features of theDelphes
framework, introduced for the fast simulation of a colliderex-
periment. This framework is a tool meant for feasibility studies
in phenomenology, gauging the observability of model predic-
tions in collider experiments.

Delphestakes as an input the output of event-generators and
yields analysis-object data in the form ofTTree in a *.root

file. The simulation includes central and forward detectorsto
produce realistic observables using standard reconstruction al-
gorithms. Moreover, the framework allows trigger emulation
and 3D event visualisation.

Delpheshas been developed using the parameters of the
CMS experiment but can be easily extended to ATLAS and
other non-LHC experiments, as at Tevatron or at the ILC. Fur-
ther developments include a more flexible design for the sub-
detector assembly, a betterb-tag description and possibly the
implementation of an event mixing module for pile-up event
simulation. This framework has already been used for several
analyses [21, 22, 23], in particular in photon-induced interac-
tions at the LHC.
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Internal code references

[a] The standard Monte Carlo event structuresStdHEP [25] and HepMC [26]
can be used as an input. Besides,Delphes can also provide de-
tector response for events read in “Les Houches Event Format”
(LHEF [27]) and *.root files obtained from*.hbook using the
h2root utility from the ROOT framework [3]. See the follow-
ing classes: HEPEVTConverter, HepMCConverter, LHEFConverter,
STDHEPConverter andDelphesRootConverter.

[b] The ROOT output files are created using theExRootAnalysis utility [ 4].
Generator-level data are located under theGEN tree, the analysis data ob-
jects after reconstruction under theAnalysis tree, and the results of the
trigger emulation under theTrigger tree.

[c] Set theFLAG LHCO variable to 1 or 0 in the detector card to switch on/off
the creation of*.lhco output file.

[d] The list of particles considered as invisible is accessible in the
PdgParticle class. This list currently contains the PIDs 12, 14, 16,
1000022, 1000023, 1000025, 1000035 and 1000045, in absolute values.

[e] The detector card is thedata/DetectorCard.dat file. This file is parsed
by theSmearUtil class.

[f] Detector and trigger cards for the ATLAS and CMS experiments are also
provided indata/ directory.

[g] The resolution terms in the detector card are namedELG Xyyy or
HAD Xyyy, refering to electromagnetic and hadronic terms (resp.);X is re-
placed byS, N, C for the stochastic, noise and constant terms; and finally
yyy is cen for central part,ec for end-caps,fwd for the forward calorime-
ters andzdc for the zero-degree calorimeters.

[h] See theTrackPropagation class.
[i] See theTRACK eff andTRACK ptmin terms in the detector card.
[j] The response of the detector is applied to the electromagnetic and the

hadronic particles through theSmearElectron andSmearHadron meth-
ods in theSmearUtil class.

[k] To implement different ratios for other particles, see theBlockClasses
class.

[l] As the detector is assumed to be cylindrical (e.g. symmetric in φ and with
respect to theη = 0 plane), the detector card stores the number of calori-
metric cells withφ = 0 andη > 0 (default: 40 cells). For a givenη,
the size of theφ segmentation is also specified. See theTOWER number,
TOWER eta edges andTOWER dphi variables in the detector card.

[m] All these processed data are located under theAnalysis tree.
[n] See theSmearMuon method in theSmearUtil class.
[o] See theIsolFlag andIsolPt values in theElectron or Muon collec-

tions in theAnalysis tree, as well as theISOL PT andISOL Cone vari-
ables in the detector card.

[p] Calorimetric isolation parameters in the detector cardareISOL Calo ET

andISOL Calo Grid in the detector card.
[q] These thresholds are defined by theZDC gamma E andZDC n E variables

in the detector card.
[r] The choice is done by allocating theJET jetalgo input parameter in the

detector card.
[s] See thePTCUT jet variable in the detector card.
[t] See theJET coneradius and JET seed variables in the detector card.

The existing FastJet code has been modified to allow easy modification of
the cell pattern in (η, φ) space. In following versions ofDelphes, a new
dedicated plug-in will be created on this purpose.

[u] SetJET Eflow to 1 or 0 in the detector card in order to switch on or off the
energy flow for jet reconstruction.

[v] Corresponding to theBTAG b, BTAG mistag c andBTAG mistag l con-
stants, for the efficiency of tagging of ab-jet, the efficiency of mistagging
a c-jet as ab-jet, and the efficiency of mistagging a light jet (u,d,s,g) as a
b-jet.

[w] See the following parameters in the detector card:
TAU energy scone for Rem; JET M seed for min Ecell

T ;
TAU energy frac for Cτ; TAU track scone for Rtracks; PTAU track pt

for min ptracks
T andTAUJET pt for min pT .

[x] The trigger card is thedata/TriggerCard.dat file. Default trigger files
are also available for CMS-like and ATLAS-like detectors

[y] The resolution is defined by theRP220 T resolution and
RP420 T resolution parameters in the detector card.

[z] To prepare the visualisation, theFLAG FROG parameter should be equal to
1.
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A. User manual

The availableC++-code is compressed in a zipped tar file which contains everything needed to run theDelphespackage, assuming
a running ROOT installation. The package includesExRootAnalysis [4], Hector [7], FastJet [8], and FROG [20], as well as the
conversion codes to read standard StdHEP input files (mcfio andstdhep) [24] and HepMC [26]. In order to visualise the events
with the FROG software, a few additional external librariesmay be required, as explained inhttp://projects.hepforge.org/FROG/.

A.1. Getting started

In order to runDelpheson your system, first download its sources and compile them:

wget http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/files/Delphes V *.tar.gz

Replace the* symbol by the proper version number. Always refer to the download page on theDelphes website
http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/download.html. Current version of Delphes for this manual is V 1.8 (July 2009).

me@mylaptop:~$ tar -xvf Delphes_V_*.tar.gz

me@mylaptop:~$ cd Delphes_V_*.*

me@mylaptop:~$ ./genMakefile.tcl > Makefile

me@mylaptop:~$ make

Due to the large number of external utilities, the number of printed lines during the compilation can be high. The user should
not pay attention to possible warning messages, which are due to the external packages used byDelphes. When compilation is
completed, the following message is printed:

me@mylaptop:~$ Delphes has been compiled

me@mylaptop:~$ Ready to run

A.2. Running Delphes on your events

In this sub-appendix, we will explain how to useDelphesto perform a fast simulation of a general-purpose detector on your event
files. The first step to useDelphesis to create the list of input event files (e.g.inputlist.list). It is important to notice that all
the files comprised in the list file should have the same of extension (*.hep, *.lhe, *.hepmc or *.root). In the simplest way to
run Delphes, you need this input file and you need to specify the name of theoutput file that will contain the generator-level data
(GEN tree), the analysis data objects after reconstruction (Analysis tree), and the results of the trigger emulation (Trigger tree).

me@mylaptop:~$ ./Delphes inputlist.list OutputRootFileName.root

A.2.1. Setting up the configuration
The program is driven by two datacards (default cards aredata/DetectorCard.dat anddata/TriggerCard.dat) which

allow the user to choose among a large spectrum of running conditions. Please note that if the user does not provide these datacards,
the running will be done using the default parameters definedin the constructor of the classRESOLution (see next). If you choose a
different detector or running configuration, you will need to edit the datacards accordingly. Detector and trigger cards areprovided
in thedata/ subdirectory for the CMS and ATLAS experiments.

1. The detector card It contains all pieces of information needed to runDelphes:

• detector parameters, including calorimeter and tracking coverage and resolutions, transverse energy thresholds forobject
reconstruction and jet algorithm parameters.

• six flags (FLAG_bfield, FLAG_vfd, FLAG_RP, FLAG_trigger, FLAG_FROG andFLAG_LHCO), should be set in order
to configure the magnetic field propagation, the very forwarddetectors simulation, the use of very forward taggers, the
trigger selection, the preparation for FROG display and thecreation of an output file in*.LHCO text format (respectively).

If no datacard is provided by the user, the default smearing and running parameters are used (corresponding to tables1, 2).
Definition of the sub-detector extensions:

CEN_max_tracker 2.5 // Maximum tracker coverage

CEN_max_calo_cen 1.7 // central calorimeter coverage

CEN_max_calo_ec 3.0 // calorimeter endcap coverage

CEN_max_calo_fwd 5.0 // forward calorimeter pseudorapidity coverage

CEN_max_mu 2.4 // muon chambers pseudorapidity coverage
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Definition of the sub-detector resolutions:

# Energy resolution for electron/photon in central/endcap/fwd/zdc calos

# \sigma/E = C + N/E + S/\sqrt{E}, E in GeV

ELG_Scen 0.05 // S term for central ECAL

ELG_Ncen 0.25 // N term

ELG_Ccen 0.005 // C term

ELG_Sec 0.05 // S term for ECAL endcap

ELG_Nec 0.25 // N term

ELG_Cec 0.005 // C term

ELG_Sfwd 2.084 // S term for FCAL

ELG_Nfwd 0. // N term

ELG_Cfwd 0.107 // C term

ELG_Szdc 0.70 // S term for ZDC

ELG_Nzdc 0. // N term

ELG_Czdc 0.08 // C term

# Energy resolution for hadrons in central/endcap/fwd/zdc calos

# \sigma/E = C + N/E + S/\sqrt{E}, E in GeV

HAD_Scen 1.5 // S term for central HCAL

HAD_Ncen 0. // N term

HAD_Ccen 0.05 // C term

HAD_Sec 1.5 // S term for HCAL endcap

HAD_Nec 0. // N term

HAD_Cec 0.05 // C term

HAD_Sfwd 2.7 // S term for FCAL

HAD_Nfwd 0. // N term

HAD_Cfwd 0.13 // C term

HAD_Szdc 1.38 // S term for ZDC

HAD_Nzdc 0. // N term

HAD_Czdc 0.13 // C term

# Time resolution for ZDC/RP220/RP420

ZDC_T_resolution 0 // in s

RP220_T_resolution 0 // in s

RP420_T_resolution 0 // in s

# Muon smearing

MU_SmearPt 0.01 // transverse momentum Pt in GeV/c

# Tracking efficiencies

TRACK_ptmin 0.9 // minimal pT

TRACK_eff 90 // efficiency associated to the tracking (%)

Definitions related to the calorimetric cells:

# Calorimetric towers

TOWER_number 40

TOWER_eta_edges 0. 0.087 0.174 0.261 0.348 0.435 0.522 0.609 0.696 0.783

0.870 0.957 1.044 1.131 1.218 1.305 1.392 1.479 1.566 1.653

1.740 1.830 1.930 2.043 2.172 2.322 2.500 2.650 2.868 2.950

3.125 3.300 3.475 3.650 3.825 4.000 4.175 4.350 4.525 4.700

5.000

TOWER_dphi 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 20

TOWER eta edges is the list of the edges inη of all cells, in theη > 0 hemisphere (the detector is supposed to be symmetric
with respect to theη = 0 plane, as well as around thez-axis). Starts with the lower edge of the most central tower (default:
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η = 0) and ends with the higher edge of the most forward tower.TOWER dphi lists the tower size inφ (in degree), assuming
that all cells are similar inφ for a givenη.
Thresholds applied for storing the reconstructed objects in the final collections:

# Thresholds for reconstructed objects, in GeV/c

PTCUT_elec 10.0

PTCUT_muon 10.0

PTCUT_jet 20.0

PTCUT_gamma 10.0

PTCUT_taujet 10.0

# Thresholds for reconstructed objects in ZDC, E in GeV

ZDC_gamma_E 20

ZDC_n_E 50

Definitions of variables related to the charged lepton isolation:

# Charged lepton isolation. Pt and Et in GeV

ISOL_PT 2.0 //minimal pt of tracks for isolation criteria

ISOL_Cone 0.5 //Cone for isolation criteria

ISOL_Calo_Cone 0.4 //Cone for calorimetric isolation

ISOL_Calo_ET 2.0 //minimal tower E_T for isolation criteria. 1E99 means "off"

ISOL_Calo_Grid 3 //Grid size (N x N) for calorimetric isolation

Definitions of variables related to the jet reconstruction:

# General jet variable

JET_coneradius 0.7 // generic jet radius

JET_jetalgo 1 // 1 for Cone algorithm,

// 2 for MidPoint algorithm,

// 3 for SIScone algorithm,

// 4 for kt algorithm

// 5 for Cambridge/Aachen algorithm

// 6 for anti-kt algorithm

JET_seed 1.0 // minimum seed to start jet reconstruction, in GeV

JET_Eflow 1 // Energy flow: perfect energy assumed in the tracker coverage.

// 1 is ’on’ ; 0 is ’off’

# Tagging definition

BTAG_b 40 // b-tag efficiency (%)

BTAG_mistag_c 10 // mistagging (%)

BTAG_mistag_l 1 // mistagging (%)

Switches for options

# FLAGS

FLAG_bfield 1 //1 to run the bfield propagation else 0

FLAG_vfd 1 //1 to run the very forward detectors else 0

FLAG_RP 1 //1 to run the very forward detectors else 0

FLAG_trigger 1 //1 to run the trigger selection else 0

FLAG_FROG 1 //1 to run the FROG event display

FLAG_LHCO 1 //1 to run the LHCO

Parameters for the magnetic field simulation:

# In case BField propagation allowed

TRACK_radius 129 // radius of the BField coverage, in cm

TRACK_length 300 // length of the BField coverage, in cm

TRACK_bfield_x 0 // X component of the BField, in T

TRACK_bfield_y 0 // Y component of the BField, in T

TRACK_bfield_z 3.8 // Z component of the BField, in T
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Parameters related to the very forward detectors

# Very forward detector extension, in pseudorapidity

# if allowed

VFD_min_zdc 8.3 // Zero-Degree neutral Calorimeter

VFD_s_zdc 140 // distance of the ZDC, from the IP, in [m]

#\textit{Hector} parameters

RP_220_s 220 // distance of the RP to the IP, in meters

RP_220_x 0.002 // distance of the RP to the beam, in meters

RP_420_s 420 // distance of the RP to the IP, in meters

RP_420_x 0.004 // distance of the RP to the beam, in meters

RP_beam1Card data/LHCB1IR5_v6.500.tfs // beam optics file, beam 1

RP_beam2Card data/LHCB2IR5_v6.500.tfs // beam optics file, beam 2

RP_IP_name IP5 // tag for IP in \textit{Hector} ; ’IP1’ for ATLAS

RP_offsetEl_x 0.097 // horizontal separation between both beam, in meters

RP_offsetEl_y 0 // vertical separation between both beam, in meters

RP_offsetEl_s 120 // distance of beam separation point, from IP

RP_cross_x -500 // IP offset in horizontal plane, in micrometers

RP_cross_y 0 // IP offset in vertical plane, in micrometers

RP_cross_ang_x 142.5 // half-crossing angle in horizontal plane, in microrad

RP_cross_ang_y 0 // half-crossing angle in vertical plane, in microrad

Others parameters:

# In case FROG event display allowed

NEvents_FROG 100

# Number of events to process

NEvents -1 // -1 means ’all’

# input PDG tables

PdgTableFilename data/particle.tbl // table with particle pid,mass,charge,...

In general, energies, momenta and masses are expressed in GeV, GeV/c, GeV/c2 respectively, and magnetic fields in T.
Geometrical extension are often referred in terms of pseudorapidity η, as the detectors are supposed to be symmetric inφ.
From version 1.8 onwards, the number of events to run is also be included in the detector card (NEvents). For version 1.7
and earlier, the parameters related to the calorimeter endcaps (CEN max calo ec, ELG Sec, ELG Nec, ELG Cec, HAD Sec,
HAD Nec andHAD Cec) did not exist in the detector cards; in addition, some othervariables had different names (HAD Scen

wasHAD Sfcal, HAD Ncen wasHAD Nfcal, HAD Ccen wasHAD Cfcal, HAD Sfwd wasHAD Shf, HAD Nfwd wasHAD Nhf,
HAD Cfwd wasHAD Chf). However, these cards are still completely compatible with new versions ofDelphes. In such a
case, the calorimeter endcaps are simply assumed to be located at the edge of the central calorimeter volumes, with the same
resolution values.

2. The trigger card

This card contains the definitions of all trigger-bits. Cutscan be applied on the transverse momentumpT of electrons, muons,
jets, τ-jets, photons and the missing transverse energy. The following codes should be used so thatDelphescan correctly
translate the input list of trigger-bits into selection algorithms:

Trigger code Corresponding object
ELEC_PT electron
IElec_PT isolated electron
MUON_PT muon
IMuon_PT isolated muon
JET_PT jet
TAU_PT τ-jet
ETMIS_PT missing transverse energy
GAMMA_PT photon
Bjet_PT b-jet
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Each line in the trigger datacard is allocated to exactly onetrigger-bit and starts with the name of the corresponding trigger.
Logical combination of several conditions is also possible. If the trigger-bit requires the presence of multiple identical objects,
the order of theirpT thresholds is very important: they must be defined indecreasingorder. The transverse momentumpT is
expressed in GeV/c. Finally, the different requirements on the objects must be separated by a&& flag. The default trigger card
can be found in the data repository ofDelphes(data/TriggerCard.dat), as well as for both CMS and ATLAS experiments
at the LHC. An example of trigger table consistent with the previous rules is given here:

SingleJet >> JET_PT: ’200’

DoubleElec >> ELEC_PT: ’20’ && ELEC_PT: ’10’

SingleElec and Single Muon >> ELEC_PT: ’20’ && MUON_PT: ’15’

A.2.2. Running the code
First, create the detector and trigger cards (data/DetectorCard.dat anddata/TriggerCard.dat).

Then, create a text file containing the list of input files thatwill be used byDelphes(with extension*.lhe, *.hepmc, *.root or
*.hep). To run the code, type the following command (in one line)

me@mylaptop:~$ ./Delphes inputlist.list OutputRootFileName.root

data/DetectorCard.dat data/TriggerCard.dat

As a reminder, typing the./Delphes command simply displays the correct usage:

me@mylaptop:~$ ./Delphes

Usage: ./Delphes input_file output_file [detector_card] [trigger_card]

input_list - list of files in Ntpl, StdHep, HepMC or LHEF format,

output_file - output file.

detector_card - Card containing resolution variables for detector simulation (optional)

trigger_card - Card containing the trigger algorithms (optional)

A.3. Getting the Delphes information
A.3.1. Contents of the Delphes ROOT trees

TheDelphesoutput file (*.root) is subdivided into threetrees, corresponding to generator-level data, analysis-objectdata and
trigger output. Thesetreesare structures that organise the output data intobranchescontaining data (orleaves) related with each
others, like the kinematics properties (E, px, η, . . .) of a given particle.

Here is the exhaustive list ofbranchesavailables in thesetrees, together with their corresponding physical objet and
ExRootAnalysisC++ class name:

GEN Tree

Particle generator particles from GenParticle

Trigger Tree
TrigResult Acceptance of different trigger-bits TRootTrigger

Analysis Tree
Tracks Collection of tracks TRootTracks

CaloTower Calorimetric cells TRootCalo

Electron Collection of electrons TRootElectron

Photon Collection of photons TRootPhoton

Muon Collection of muons TRootMuon

Jet Collection of jets TRootJet

TauJet Collection of jets tagged asτ-jets TRootTauJet

ETmis Transverse missing energy informationTRootETmis
ZDChits Hits in the Zero Degree Calorimeters TRootZdcHits

RP220hits Hits in the first proton taggers TRootRomanPotHits

FP420hits Hits in the next proton taggers TRootRomanPotHits

The third column shows the names of the corresponding classes to be written in a ROOT tree. The bin number in the unique leafin
thetrigger tree (namely,TrigResult.Accepted) corresponds to the trigger number in the provided list. In addition, the result
of the global trigger decision upon each event (i.e. the logicalOR of all trigger conditions) is stored in the first bin (number 0) of this
leaf. In Analysis tree, all classes exceptTRootTracks, TRootCalo, TRootTrigger, TRootETmis andTRootRomanPotHits
inherit from the classTRootParticlewhich includes the following data members (stored asleavesin branchesof thetrees):
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Most common leaves
float E; // particle energy in GeV

float Px; // particle momentum vector (x component) in GeV/c
float Py; // particle momentum vector (y component) in GeV/c
float Pz; // particle momentum vector (z component) in GeV/c
float PT; // particle transverse momentum in GeV/c
float Eta; // particle pseudorapidity

float Phi; // particle azimuthal angle in rad

In addition to their kinematics, some additional properties are available for specific objects:

Leaves in the Particle branch (GEN tree)
int PID; // particle HEP ID number

int Status; // particle status

int M1; // particle 1st mother

int M2; // particle 2nd mother

int D1; // particle 1st daughter

int D2; // particle 2nd daughter

float Charge; // electrical charge in units of e

float T; // particle vertex position (t component, in mm/c)
float X; // particle vertex position (x component, in mm)

float Y; // particle vertex position (y component, in mm)

float Z; // particle vertex position (z component, in mm)

float M; // particle mass in GeV/c2

Additional leaves in Electron and Muon branches (Analysis tree)
int Charge // particle Charge

bool IsolFlag // stores the result of the tracking isolation test

float IsolPt // sum of all track pt in isolation cone (GeV/c)

float EtaCalo // particle pseudorapidity when entering the calo

float PhiCalo // particle azimuthal angle in rad when entering the calo

float EHoverEE // hadronic energy over electromagnetic energy

float EtRatio // calo Et in NxN-cell grid around the muon over the muon Et

Additional leaf in the Jet branch (Analysis tree)
bool Btag // stores the result of the b-tagging

int NTracks // number of tracks associated to the jet

float EHoverEE // hadronic energy over electromagnetic energy

Leaves in the Tracks branch (Analysis tree)
float Eta // pseudorapidity at the beginning of the track

float Phi // azimuthal angle at the beginning of the track

float EtaOuter // pseudorapidity at the end of the track

float PhiOuter // azimuthal angle at the end of the track

float PT // track transverse momentum in GeV/c
float E // track energy in GeV

float Px // track momentum vector (x component) in GeV/c
float Py // track momentum vector (y component) in GeV/c
float Pz // track momentum vector (z component) in GeV/c
float Charge // track charge in units of e
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Leaves in the CaloTower branch (Analysis tree)
float Eta // pseudorapidity of the cell

float Phi // azimuthal angle of the cell in rad

float E // cell energy in GeV

float E em // electromagnetic component of the cell energy in GeV

float E had // hadronic component of the cell energy in GeV

float ET // cell transverse energy in GeV

Leaves in the ETmis branch (Analysis tree)
float Phi // azimuthal angle of the transverse missing energy in rad

float ET // transverse missing energy in GeV

float Px // x component of the transverse missing energy in GeV

float Py // y component of the transverse missing energy in GeV

The hits in very forward detector (ZDC, RP220, FP420) have some common data. In particular, theside variable tells in which
detector (left:-1 or right:+1 of the interaction point) the hit has been seen. Moreover, some generator level data is provided for
information, as the correspondance with the contents of theGEN tree is not possible. These generator-level data correspond to the
particle kinematics (energy, momentum, angle) and identification (pid).

Common leaves for ZDC, RP220, FP420
float T // time of flight in s

float E // measured/smeared energy in GeV

int side // -1 or +1

Generator level data
int pid; // particle ID

float genPx; // particle momentum vector (x component) in GeV/c
float genPy; // particle momentum vector (y component) in GeV/c
float genPz; // particle momentum vector (z component) in GeV/c
float genPT; // particle transverse momentum in GeV/c
float genEta; // particle pseudorapidity

float genPhi; // particle azimuthal angle in rad

Additional leaves in the ZDChits branch (Analysis tree)
int hadronic hit // 0(is not hadronic) or 1(is hadronic)

Additional leaves in the RP220hits and FP420hits branches (Analysis tree)
flaot S // detector position from IP in m

float X // hit horizontal position in m

float Y // hit vertical position in m

float TX // hit horizontal angle in rad

float TY // hit vertical angle in rad

float q2 // reconstructed momentum transfer in GeV2

The hit position is computed from the center of the beam position, not from the edge of the detector.

A.4. Deeper description of jet algorithms
In this section, we briefly describe the differences between the six jet algorithms interfaced inDelphes, via the FastJet utiliy [8].

Jet algorithms differ in their sensitivity to soft particles or collinear splittings, and in their computing speed performances. The
first three belong to the cone algorithm class while the last three are using a sequential recombination scheme. For all ofthem, the
calorimetric cells are used as inputs for the jet clustering.

Cone algorithms
1. CDF Jet Clusters[9]: Basic cone reconstruction algorithm used by the CDF experiment in Run II). All cells lying in a circular

cone around the jet axis with a transverse energyET higher than a given threshold are used to seed the jet candidates. This
algorithm is fast but sensitive to both soft particles and collinear splittings.

2. CDF MidPoint[10]: Cone reconstruction algorithm developed for the CDF Run II to reduce infrared and collinear sensitivities
compared to purely seed-based cone by adding ‘midpoints’ (energy barycentres) in the list of cone seeds.

3. Seedless Infrared Safe Cone[11]: The SISCone algorithm is simultaneously insensitive to additional soft particles and collinear
splittings, and fast enough to be used in experimental analysis.
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Recombination algorithms
The three sequential recombination jet algorithms are safewith respect to soft radiations (infrared) and collinear splittings. They

rely on recombination schemes where calorimeter cell pairsare successively merged. The definitions of the jet algorithms are
similar except for the definition of thedistances dused during the merging procedure. Two such variables are defined: the distance
di j between each pair of cells (i, j), and a variablediB (beam distance) depending on the transverse momentum of the celli. The
jet reconstruction algorithm browses the calorimetric cell list. It starts by finding the minimum valuedmin of all the distances
di j anddiB. If dmin is a di j , the cellsi and j are merged into a single cell with a four-momentumpµ = pµ(i) + pµ( j) (E-scheme
recombination). If dmin is adiB, the cell is declared as a final jet and is removed from the input list. This procedure is repeated until
no cells are left in the input list. Further information on these jet algorithms is given here below, usingkti , yi andφi as the transverse
momentum, rapidity and azimuth of calorimetric celli and∆Ri j =

√

(yi − y j)2 + (φi − φ j)2 as the jet-radius parameter:

4. Longitudinally invariant kt jet [12], with di j = min(k2
ti , k

2
t j) ×

∆R2
i j

R2 anddiB = k2
ti ,

5. Cambridge/Aachen jet[13], with di j =
∆R2

i j

R2 anddiB = 1,

6. Anti kt jet [14], where hard jets are exactly circular in the (y, φ) plane:di j = min(1/k2
ti, 1/k

2
t j) ×

∆R2
i j

R2 anddiB =
1
k2

ti
.

A.5. Running an analysis on your Delphes events

To analyse the ROOT ntuple produced byDelphes, the simplest way is to use theAnalysis_Ex.cpp code which is coming in
theExamples repository ofDelphes. Note that all of this is optional and done to facilitate the analyses, as the output fromDelphes
is viewable with the standard ROOTTBrowser and can be analysed using theMakeClass facility. As an example, here is a simple
overview of amyoutput.root file created byDelphes:

me@mylaptop:~$ root -l myoutput.root

root [0]

Attaching file myoutput.root as _file0...

root [1] .ls

TFile** myoutput.root

TFile* myoutput.root

KEY: TTree GEN;1 Analysis tree

KEY: TTree Analysis;1 Analysis tree

KEY: TTree Trigger;1 Analysis tree

root [2] TBrowser t;

root [3] Analysis->GetEntries()

(const Long64_t)200

root [4] GEN->GetListOfBranches()->ls()

OBJ: TBranchElement Event Event_ : 0 at: 0x9108f30

OBJ: TBranch Event_size Event_size/I : 0 at: 0x910cfd0

OBJ: TBranchElement Particle Particle_ : 0 at: 0x910c6b0

OBJ: TBranch Particle_size Particle_size/I : 0 at: 0x9111c58

root [5] Trigger->GetListOfLeaves()->ls()

OBJ: TLeafElement TrigResult_ TrigResult_ : 0 at: 0x90f90a0

OBJ: TLeafElement TrigResult.Accepted Accepted[TrigResult_] : 0 at: 0x90f9000

OBJ: TLeafI TrigResult_size TrigResult_size : 0 at: 0x90fb860

The.ls command lists the current keys available and in particular the threetreenames.TBrowser t launches a browser and the
GetEntries() method outputs the number of data in the correspondingtree. The list ofbranchesor leavescan be displayed with
theGetListOfBranches() andGetListOfLeaves() methods, pointing to thels() one. In particular, it is possible to shown
only parts of the output, using wildcard characters (*):

root [6] Analysis->GetListOfLeaves()->ls("*.E")

OBJ: TLeafElement Jet.E E[Jet_] : 0 at: 0xa08bc68

OBJ: TLeafElement TauJet.E E[TauJet_] : 0 at: 0xa148910

OBJ: TLeafElement Electron.E E[Electron_] : 0 at: 0xa1d8a50

OBJ: TLeafElement Muon.E E[Muon_] : 0 at: 0xa28ac80

OBJ: TLeafElement Photon.E E[Photon_] : 0 at: 0xa33cd88

OBJ: TLeafElement Tracks.E E[Tracks_] : 0 at: 0xa3cced0
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OBJ: TLeafElement CaloTower.E E[CaloTower_] : 0 at: 0xa4ba188

OBJ: TLeafElement ZDChits.E E[ZDChits_] : 0 at: 0xa54a3c8

OBJ: TLeafElement RP220hits.E E[RP220hits_] : 0 at: 0xa61e648

OBJ: TLeafElement FP420hits.E E[FP420hits_] : 0 at: 0xa6d0920

To draw a particular leaf, either double-click on the corresponding name in theTBrowser or use theDraw method of the
correspondingtree.

root [7] Trigger->Draw("TrigResult.Accepted");

Mathematical operations on severalleavesare possible within a giventree, following the C++ syntax:

root [8] Analysis->Draw("Muon.Px * Muon.Px");

root [9] Analysis->Draw("sqrt(pow(Muon.E,2) - pow(Muon.Pz,2) + pow(Muon.PT,2))");

Finally, to prepare an deeper analysis, theMakeClass method is useful. It creates two files (*.h and*.C) with automatically
generated code that allows the access to all branches and leaves of the corresponding tree:

root [10] Trigger->MakeClass()

Info in <TTreePlayer::MakeClass>: Files: Trigger.h and

Trigger.C generated from TTree: Trigger

For more information, refer to ROOT documentation. Moreover, an example of code (based on the output ofMakeClass) is
provided in theExamples/ directory.

To run theExamples/Analysis Ex.cpp code, the two following arguments are required: a text file containing the inputDelphes
root files to run, and the name of the outputroot file.

me@mylaptop:~$ ./Analysis_Ex input_file.list output_file.root

One can easily edit, modify and compile (make) changes in this file.

A.5.1. Adding the trigger information
TheExamples/Trigger Only.cpp code permits to run the trigger selection separately from the general detector simulation on

outputDelphesroot files. ADelphesroot file is mandatory as an input argument for theTrigger Only routine. The newtree
containing the trigger result data will be appended to this file. The trigger datacard is also necessary. To run the code:

me@mylaptop:~$ ./Trigger_Only input_file.root data/TriggerCard.dat

A.6. Running the FROG event display
• If the FLAG_FROG was switched on in the smearing card, two files have been created during the running ofDelphes:
DelphesToFROG.vis andDelphesToFROG.geom . They contain all the needed pieces of information to run FROG.

• To display the events and the geometry, you first need to compile FROG. Go to theUtilities/FROG and typemake. This
compilation is done once for all, with this geometry (i.e. aslong as the*vis and*geom files do not change).

• Go back into the main directory and type

me@mylaptop: $ ./Utilities/FROG/FROG

A.7. LHCO file format
The *LHCO file format is a text-ASCII data format briefly discussed here. An exhaustive description is provided on

http://v1.jthaler.net/olympicswiki. This section is based on this webpage. Only final high-levelobjects are available in theLHCO
format, and their properties are arranged in columns. Each row corresponds to an object in the event and all events are written after
each other. Comment-lines starts with a hash# symbol.

# typ eta phi pt jmas ntrk btag had/em dum1 dum2

0 57 0

1 0 1.392 -2.269 19.981 0.000 0.000 0.000 4.605 0.000 0.000

2 3 1.052 2.599 29.796 3.698 -1.000 0.000 0.320 0.000 0.000

3 4 1.542 -2.070 84.308 41.761 7.000 0.000 1.000 0.000 0.000

4 4 1.039 0.856 58.992 34.941 1.000 0.000 1.118 0.000 0.000

5 4 1.052 2.599 29.796 3.698 0.000 0.000 0.320 0.000 0.000

6 4 0.431 -2.190 22.631 3.861 0.000 0.000 1.000 0.000 0.000

7 6 0.000 0.845 62.574 0.000 0.000 0.000 0.000 0.000 0.000
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Each row in an event starts with a unique number (i.e. in first column). Row0 contains the event number (here:57) and some trigger
information (here:0. This very particular trigger encoding is not implemented in Delphes.). Subsequent rows list the reconstructed
high-level objects. Each row is organised in columns, whichdetails the object kinematics as well as more specific information, such
as isolation criteria orb-tagging.

1st column (#). The first column is the line number in the event. Each event starts with a 0 and contains as many lines as needed to
list all high-level objects.

2nd column (typ). The second column gives the object identification code, ortype. The different object types are:
0 for a photon (γ)
1 for an electron (e±)
2 for a muon (µ±)
3 for a hadronically-decaying tau (τ-jet)
4 for a jet
6 for a missing transverse energy (Emiss

T )
Object type5 is not defined. An event always ends with the row corresponding to the missing transverse energy (type6).

3rd (eta) and 4th (phi) columns. The third and forth columns gives the object pseudorapidityη and azimuthφ. This latter quantity
is expressed in radians, ranging from−π to π.

5th (pt) and 6th (jmass) columns. The fifth column provides the object transverse momentum (pT in GeV/c) or energy (ET in
GeV), while the invariant mass (M in GeV/c2) is in the sixth column.

7th column (ntrk). The seventh column reports the total number of tracks associated to the objects. This is0 for photons,± 1 for
charged leptons including taus (where the sign reports the lepton measured charge) and a positive number (≥ 0) for jets.

8th column (btag). The eighth column tells whether a jet is tagged as ab-jet (1) or not (0). This is always0 for electrons, photons
and missing transverse energy. For muons, the closest jet insearched for, in terms of∆R. The integer-part of the quoted number is
the row-number (column 1) of this jet.

9th column (had/em). For jets, electrons and photons, the ninth column is the ration between hadronic and electromagnetic energies
in the calorimetric cells associated to the object. This is always0 for missing transverse energy. For muons, this number (aaa.bb)
reports two values related to the muon isolation (section3.1). The integer part (aaa) is transverse momentum sumPT (in GeV/c)
and the fractional part (bb) is the energy ratioρµ.

10th and 11th columns (dum1 anddum2). The last two columns are currently not used.

Warning. Inherently to the data format itself, the*LHCO output contains only a fraction of the available data. Moreover, dealing
with text file may have various drawbacks, such as the output file size and the time needed for its creation. Whenever possible,
working on the*root output file should be preferred.
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