/*********************************************************************** ** ** ** /----------------------------------------------\ ** ** | Delphes, a framework for the fast simulation | ** ** | of a generic collider experiment | ** ** \----------------------------------------------/ ** ** ** ** ** ** This package uses: ** ** ------------------ ** ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] ** ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] ** ** FROG: [hep-ex/0901.2718v1] ** ** ** ** ------------------------------------------------------------------ ** ** ** ** Main authors: ** ** ------------- ** ** ** ** Severine Ovyn Xavier Rouby ** ** severine.ovyn@uclouvain.be xavier.rouby@cern ** ** ** ** Center for Particle Physics and Phenomenology (CP3) ** ** Universite catholique de Louvain (UCL) ** ** Louvain-la-Neuve, Belgium ** ** ** ** Copyright (C) 2008-2009, ** ** All rights reserved. ** ** ** ***********************************************************************/ #include "VeryForward.h" #include "H_RomanPot.h" #include #include using namespace std; //------------------------------------------------------------------------------ VeryForward::VeryForward() { DET = new RESOLution(); beamline1 = new H_BeamLine(1,500.); beamline2 = new H_BeamLine(1,500.); init(); //Initialisation of Hector relative_energy = true; // should always be true kickers_on = 1; // should always be 1 } VeryForward::VeryForward(const string& DetDatacard) { DET = new RESOLution(); DET->ReadDataCard(DetDatacard); beamline1 = new H_BeamLine(1,500.); beamline2 = new H_BeamLine(1,500.); init(); //Initialisation of Hector relative_energy = true; // should always be true kickers_on = 1; // should always be 1 } VeryForward::VeryForward(const RESOLution * DetDatacard) { DET = new RESOLution(*DetDatacard); beamline2 = new H_BeamLine(1,500.); beamline1 = new H_BeamLine(1,500.); init(); //Initialisation of Hector relative_energy = true; // should always be true kickers_on = 1; // should always be 1 } VeryForward::VeryForward(const VeryForward& vf) { DET = new RESOLution(*(vf.DET)); beamline1 = new H_BeamLine(*(vf.beamline1)); beamline2 = new H_BeamLine(*(vf.beamline2)); } VeryForward& VeryForward::operator=(const VeryForward& vf){ if (this==&vf) return *this; DET = new RESOLution(*(vf.DET)); beamline1 = new H_BeamLine(*(vf.beamline1)); beamline2 = new H_BeamLine(*(vf.beamline2)); return *this; } void VeryForward::init() { //Initialisation of Hector relative_energy = true; // should always be true kickers_on = 1; // should always be 1 // user should provide : (1) optics file for each beamline, and IPname, // and offset data (s,x) for optical elements beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name); beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x); H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*(1E6)); // RP 220m, 2mm, beam 1 H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*(1E6)); // RP 420m, 4mm, beam 1 beamline1->add(rp220_1); beamline1->add(rp420_1); beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name); beamline2->offsetElements(DET->RP_offsetEl_s,+DET->RP_offsetEl_x); H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*(1E6));// RP 220m, 2mm, beam 2 H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*(1E6));// RP 420m, 4mm, beam 2 beamline2->add(rp220_2); beamline2->add(rp420_2); // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine // do not put explicit delete } void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC,TRootGenParticle *particle) { int pid=abs(particle->PID); TRootZdcHits *elementZdc; TLorentzVector genMomentum; // Zero degree calorimeter, for forward neutrons and photons if (particle->Status ==1 && (pid == pN || pid == pGAMMA ) && fabs(particle->Eta) > DET->VFD_min_zdc ) { genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E); // !!!!!!!!! vérifier que particle->Z est bien en micromètres!!! // !!!!!!!!! vérifier que particle->T est bien en secondes!!! // !!!!!!!!! pas de smearing ! on garde trop d'info ! elementZdc = (TRootZdcHits*) branchZDC->NewEntry(); elementZdc->Set(genMomentum); // time of flight t is t = T + d/[ cos(theta) v ] //double tx = acos(particle->Px/particle->Pz); //double ty = acos(particle->Py/particle->Pz); //double theta = (1E-6)*sqrt( pow(tx,2) + pow(ty,2) ); //double flight_distance = (DET->ZDC_S - particle->Z*(1E-6))/cos(theta) ; // assumes that Z is in micrometers double flight_distance = DET->VFD_s_zdc - particle->Z*(1E-6); // assumes also that the emission angle is so small that 1/(cos theta) = 1 elementZdc->T = particle->T + flight_distance/speed_of_light; // assumes highly relativistic particles cout << "ZDC: T = " << particle->T << " ; " << flight_distance/speed_of_light << endl; elementZdc->side = sign(particle->Eta); } } void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle) { int pid=particle->PID; TRootRomanPotHits* elementRP220; TRootRomanPotHits* elementFP420; TLorentzVector genMomentum; genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E); // if forward proton if( (pid == pP) && (particle->Status == 1) && (fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd) ) { // !!!!!!!! put here particle->CHARGE and particle->MASS H_BeamParticle p1; /// put here particle->CHARGE and particle->MASS p1.smearAng(); p1.smearPos(); p1.setPosition(p1.getX()+DET->RP_cross_x,p1.getY()+DET->RP_cross_y,p1.getTX()-1*kickers_on*DET->RP_cross_ang,p1.getTY(),0); p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E); H_BeamLine *beamline; if(genMomentum.Eta() >0) beamline = beamline1; else beamline = beamline2; p1.computePath(beamline,1); if(p1.stopped(beamline)) { if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") { p1.propagate(DET->RP_220_s); elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry(); elementRP220->X = (1E-6)*p1.getX(); // [m] elementRP220->Y = (1E-6)*p1.getY(); // [m] elementRP220->Tx = (1E-6)*p1.getTX(); // [rad] elementRP220->Ty = (1E-6)*p1.getTY(); // [rad] elementRP220->S = p1.getS(); // [m] // in first approximation only ! this number is always lower than the real distance-of-flight double flight_distance = p1.getS() - particle->Z*(1E-6); elementRP220->T = particle->T + flight_distance/speed_of_light; // assumes highly relativistic particles cout << "T = " << particle->T << " ; " << flight_distance/speed_of_light << endl; elementRP220->E = p1.getE(); // not yet implemented elementRP220->q2 = -1; // not yet implemented elementRP220->side = sign(particle->Eta); } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") { p1.propagate(DET->RP_420_s); elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry(); elementFP420->X = (1E-6)*p1.getX(); // [m] elementFP420->Y = (1E-6)*p1.getY(); // [m] elementFP420->Tx = (1E-6)*p1.getTX(); // [rad] elementFP420->Ty = (1E-6)*p1.getTY(); // [rad] elementFP420->S = p1.getS(); // [m] // in first approximation only ! this number is always lower than the real distance-of-flight double flight_distance = p1.getS() - particle->Z*(1E-6); cout << "T = " << particle->T << " ; " << flight_distance/speed_of_light << endl; elementFP420->T = particle->T + flight_distance/speed_of_light; elementFP420->E = p1.getE(); // not yet implemented elementFP420->q2 = -1; // not yet implemented elementFP420->side = sign(particle->Eta); } } // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100)) // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl; } // if forward proton } // Forward particles in CASTOR ? // if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD) // && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) { // // // } // CASTOR // */