Fork me on GitHub

source: svn/trunk/src/VeryForward.cc@ 488

Last change on this file since 488 was 443, checked in by Xavier Rouby, 15 years ago

new header in all files

File size: 14.3 KB
RevLine 
[260]1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
[374]6** \------------- arXiv:0903.2225v1 ------------/ **
[260]7** **
8** **
9** This package uses: **
10** ------------------ **
[443]11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]14** FROG: [hep-ex/0901.2718v1] **
[443]15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
[443]22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
[260]24** **
[443]25** Center for Particle Physics and Phenomenology (CP3) **
26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
28** **
[260]29** Copyright (C) 2008-2009, **
[443]30** All rights reserved. **
[260]31** **
32***********************************************************************/
[53]33
[219]34#include "VeryForward.h"
[405]35#include "PdgParticle.h"
[219]36#include "H_RomanPot.h"
[405]37
[53]38#include <iostream>
[405]39#include <fstream>
[53]40#include<cmath>
41
42using namespace std;
43
[405]44/* Notes on the correct initialisation for Hector
45 * -- these notes apply to the LHC beamlines
46 *
47 * beam1 : forward direction is for increasing 's' values
48 * beamline1 = new H_BeamLine(1,...);
49 * beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
50 * beam2 : forward direction is for decreasing 's' values
51 * beamline2 = new H_BeamLine(-1,...);
52 * beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
53 *
54 * relative_energy should be false -- kickers_on should be 1
55 *
56 */
[53]57
58//------------------------------------------------------------------------------
[374]59VeryForward::VeryForward() :
60 DET(new RESOLution()), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
[405]61 beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(-1,d_max)),
62 rel_energy(true), // should always be true
63 kickers(1) // should always be 1
[374]64 {
65 init(); //Initialisation of Hector
[219]66}
67
[374]68VeryForward::VeryForward(const string& DetDatacard) :
69 DET(new RESOLution())
70 {
[219]71 DET->ReadDataCard(DetDatacard);
[374]72 const float d_max = 1.+std::max(DET->RP_420_s,DET->RP_220_s);
73 beamline1 = new H_BeamLine(1,d_max);
[405]74 beamline2 = new H_BeamLine(-1,d_max);
[374]75 init(); //Initialisation of Hector
[405]76 rel_energy = true; // should always be true
77 kickers = 1; // should always be 1
[219]78}
79
[374]80VeryForward::VeryForward(const RESOLution * DetDatacard) :
81 DET(new RESOLution(*DetDatacard)), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
[405]82 beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(-1,d_max)),
83 rel_energy(true), // should always be true
84 kickers(1) // should always be 1
[374]85 {
86 init(); //Initialisation of Hector
[219]87}
88
[374]89VeryForward::VeryForward(const VeryForward& vf) :
90 DET(new RESOLution(*(vf.DET))), d_max(vf.d_max),
91 beamline1(new H_BeamLine(*(vf.beamline1))), beamline2(new H_BeamLine(*(vf.beamline2))),
[405]92 rel_energy(vf.rel_energy),
93 kickers(vf.kickers) {
[219]94}
95
96VeryForward& VeryForward::operator=(const VeryForward& vf){
97 if (this==&vf) return *this;
98 DET = new RESOLution(*(vf.DET));
[374]99 d_max = vf.d_max;
[219]100 beamline1 = new H_BeamLine(*(vf.beamline1));
101 beamline2 = new H_BeamLine(*(vf.beamline2));
[405]102 rel_energy =vf.rel_energy;
103 kickers = vf.kickers;
[219]104 return *this;
105}
106
107
108void VeryForward::init() {
[53]109 //Initialisation of Hector
[385]110 static unsigned int counter;
111 counter =0;
[405]112 extern bool relative_energy;
113 extern int kickers_on;
114 relative_energy = rel_energy; // should always be true
115 kickers_on = kickers; // should always be 1
[257]116 beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
[405]117 beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x); // relative energy: does not change anything
118 H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*1E6);
119 // RP 220m, 2mm, beam 1
120 H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*1E6);
121 // RP 420m, 4mm, beam 1
122 //rp220_1->printProperties();
123 //rp420_1->printProperties();
[242]124 beamline1->add(rp220_1);
[53]125 beamline1->add(rp420_1);
126
[257]127 beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
[405]128 beamline2->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x); // relative energy: does not change anything
129 H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*1E6);
130 // RP 220m, 2mm, beam 2
131 H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*1E6);
132 // RP 420m, 4mm, beam 2
133 //rp220_2->printProperties();
134 //rp420_2->printProperties();
[53]135 beamline2->add(rp220_2);
136 beamline2->add(rp420_2);
[242]137 // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine
138 // do not put explicit delete
[53]139}
140
[242]141
[405]142float VeryForward::time_of_flight(TRootGenParticle *particle, const float detector_s, const float detector_etamin, const float detector_t_resolution) {
143 // time of flight t is t = T + d/[ cos(theta) v ]
144 float cos_theta = 1; //very good approximation, if detector_etamin >3
145 if (detector_etamin<3) { // if smaller eta -> make the complete calculation
146 double tx = atan(particle->Px/particle->Pz);
147 double ty = atan(particle->Py/particle->Pz);
148 double theta = sqrt( pow(tx,2) + pow(ty,2) );
149 // cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
150 // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
151 // eta = 2.6 <-> cos(theta) = 0.99
152 // eta = 3.0 <-> cos(theta) = 0.995
153 cos_theta = cos(theta);
154 }
155 // units from StdHEP : Z [mm] T[mm/c]
156 // units from Delphes : VFD_s_zdc [m] speed_of_light [m/s]
157 double flight_distance = (detector_s - particle->Z*(1E-3))/cos_theta ;
158 // assumes highly relativistic particles
159 double flight_time = (flight_distance + 1E-3 * particle->T )/speed_of_light;
160 double timeS = gRandom->Gaus(flight_time,detector_t_resolution);
161 return timeS;
162}
[377]163
[405]164
165
[374]166void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC, TRootGenParticle *particle)
[53]167{
168 TRootZdcHits *elementZdc;
[374]169 float energy = particle->E;
170
[53]171 // Zero degree calorimeter, for forward neutrons and photons
[374]172 if (particle->Status ==1 && ( (particle->PID==pN && energy>DET->ZDC_n_E) ||
173 (particle->PID==pGAMMA && energy>DET->ZDC_gamma_E) )
174 && fabs(particle->Eta) > DET->VFD_min_zdc ) {
[53]175 elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
[377]176
177 TLorentzVector genMomentum;
178 genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
[405]179 elementZdc->Set(genMomentum); // initialises the gen-level data
180 elementZdc->pid = particle->PID;
[377]181
[374]182 // 1) energy smearing
183 float energyS = -1.;
184 if (particle->PID == pGAMMA)
185 energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->ELG_Nzdc,2) +
186 pow(DET->ELG_Czdc*particle->E,2) +
187 pow(DET->ELG_Szdc*sqrt(particle->E),2) ));
188 else // smearing with hadronic resolution
189 energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->HAD_Nzdc,2) +
190 pow(DET->HAD_Czdc*particle->E,2) +
191 pow(DET->HAD_Szdc*sqrt(particle->E),2) ));
192 elementZdc->E = energyS;
193
[405]194 // 2) time of flight t is t = T + d/[ cos(theta) v ] + detector smearing on time
195 elementZdc->T = time_of_flight(particle, DET->VFD_s_zdc, DET->VFD_min_zdc, DET->ZDC_T_resolution);
[374]196
197 // 3) side: which ZDC has been hit?
[355]198 elementZdc->side = sign(particle->Eta);
[374]199
200 // 4) object nature : e.m. (photon) or had (neutron) ?
[405]201 elementZdc->hadronic_hit = (bool) (particle->PID!=pGAMMA);
202 } // if neutrons or photons over E_threshold
203
[53]204}
[377]205
206
[53]207void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle)
208{
[405]209 if(particle->Status != 1) return; // reject particles that are not final ones
210 extern bool relative_energy;
211 relative_energy = rel_energy;
212 extern int kickers_on;
213 kickers_on = kickers;
214
[377]215 float charge = particle->Charge, mass = particle->M;
[405]216 //float charge, mass, ctau;
217 //charge = mass = ctau = UNDEFINED;
[377]218 if (mass<-999) { // unitialised!
219 PdgParticle pdg_part = DET->PDGtable[particle->PID];
[405]220 charge = pdg_part.charge(); // e+
221 mass = pdg_part.mass(); // GeV
222 // ctau = pdg_part.ctau(); // m
223 // cout << "ctau = " << ctau << endl;
[377]224 }
[405]225
226
227 if(particle->Charge==0) return; // only particles with Q=+1 can hope to reach RP200/FP420
228 //cout << "particle ("<< particle->PID << "): m = " << mass << " \t Q= " << charge << endl;
[53]229 TRootRomanPotHits* elementRP220;
[377]230 //TRootForwardTaggerHits* elementFP420;
231 TRootRomanPotHits* elementFP420;
[53]232
233 TLorentzVector genMomentum;
234 genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
[377]235
236 // to go faster, why not rejecting particles already going into the ZDC?
[405]237
238 // K_L^0 has a ctau of ~16m ; only pi+ and p+ can beat it ;
239 // so if RP/FP too far away, the particle must be a proton or a mu+
240 if( std::min(DET->RP_420_s,DET->RP_220_s) > 17 && (particle->PID != pP && particle->PID != 13)) return;
241
242 if( fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd )
[53]243 {
[385]244 H_BeamParticle p1(mass,charge);
[405]245 double tx = 1E6*atan(particle->Px/particle->Pz); // in microrad
246 double ty = 1E6*atan(particle->Py/particle->Pz); // in microrad
247 //p1.smearAng(); p1.smearPos(); // vertex smearing do not put it here !!!
248
249 /* cout << "x = " << particle->X << " + " << p1.getX() << " + " << DET->RP_cross_x
250 << " y= " << particle->Y << " + " << p1.getY() << " + " << DET->RP_cross_y
251 << " tx= " << tx << " + " << p1.getTX() << " - " << kickers_on*DET->RP_cross_ang_x
252 << " ty= " << ty << " + " << p1.getTY() << " - " << kickers_on*DET->RP_cross_ang_y
253 << " z= " << particle->Z << endl;*/
254
255 // here below, p1.getX(), p1.getY(), p1.getTX() and p1.getTY() =0 unless some smearing is done
256 // all in micrometers or microradians
257 p1.setPosition((1E3)*particle->X + p1.getX() + DET->RP_cross_x,
258 (1E3)*particle->Y + p1.getY() + DET->RP_cross_y,
259 tx + p1.getTX()- kickers_on*DET->RP_cross_ang_x,
260 ty + p1.getTY()- kickers_on*DET->RP_cross_ang_y,
[411]261 0*(1E3)*particle->Z);
[385]262 p1.setE(particle->E);
263
[53]264 H_BeamLine *beamline;
265 if(genMomentum.Eta() >0) beamline = beamline1;
266 else beamline = beamline2;
267
268 p1.computePath(beamline,1);
269
270 if(p1.stopped(beamline)) {
[405]271 // roman pots at 220 m
[53]272 if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
[405]273
274 /*static unsigned int counter;
275 counter++;
276 if (counter==1) {
277 p1.getPath(0,"p1path.txt");
278 cout << "RP : " << particle->PID << "\t" << charge << "=" << particle->Charge
279 << "\t" << mass << "=" << particle->M << "\t E=" << particle->E << endl;
280 }*/
281
[100]282 p1.propagate(DET->RP_220_s);
[53]283 elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
[405]284
285 // detector measurements
[53]286 elementRP220->X = (1E-6)*p1.getX(); // [m]
287 elementRP220->Y = (1E-6)*p1.getY(); // [m]
288 elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
289 elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
290 elementRP220->S = p1.getS(); // [m]
[405]291 elementRP220->T = time_of_flight(particle, DET->RP_220_s, DET->CEN_max_calo_fwd, DET->RP220_T_resolution);
292 elementRP220->side = sign(particle->Eta);
293
294 // reconstructed data
295 float sE = p1.getE(); // apply the smearing here!!!
296 elementRP220->E = sE; // not yet implemented
297 elementRP220->q2 = UNDEFINED; // not yet implemented
[374]298
[405]299 // generator level data
300 elementRP220->pid = particle->PID;
301 elementRP220->Set(genMomentum);
302 } // if RP220
[385]303
[405]304 // proton taggers at 420 m
305 else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
[385]306
[100]307 p1.propagate(DET->RP_420_s);
[405]308 elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry();
[377]309 //elementFP420 = (TRootForwardTaggerHits*) branchFP420->NewEntry();
[405]310
311 // detector measurements
[53]312 elementFP420->X = (1E-6)*p1.getX(); // [m]
313 elementFP420->Y = (1E-6)*p1.getY(); // [m]
314 elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
315 elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
[355]316 elementFP420->S = p1.getS(); // [m]
[405]317 elementFP420->T = time_of_flight(particle, DET->RP_420_s, DET->CEN_max_calo_fwd, DET->RP420_T_resolution);
318 elementFP420->side = sign(particle->Eta);
[374]319
[405]320 // reconstructed data
[53]321 elementFP420->E = p1.getE(); // not yet implemented
[405]322 elementFP420->q2 = UNDEFINED; // not yet implemented
[385]323
[405]324 // generator level data
325 elementFP420->pid = particle->PID;
326 elementFP420->Set(genMomentum);
327 } // if FP420
[385]328
[405]329 } // if stopped
330 } // if forward proton
[53]331
332}
Note: See TracBrowser for help on using the repository browser.