/* ---- Delphes ---- A Fast Simulator for general purpose LHC detector S. Ovyn ~~~~ severine.ovyn@uclouvain.be Center for Particle Physics and Phenomenology (CP3) Universite Catholique de Louvain (UCL) Louvain-la-Neuve, Belgium */ /// \file SmearUtil.cc /// \brief RESOLution class, and some generic definitions #include "interface/SmearUtil.h" #include "TRandom.h" #include #include #include #include using namespace std; //------------------------------------------------------------------------------ RESOLution::RESOLution() { MAX_TRACKER = 2.5; // tracker coverage MAX_CALO_CEN = 3.0; // central calorimeter coverage MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage MAX_MU = 2.4; // muon chambers pseudorapidity coverage MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR MIN_ZDC = 8.3; // zero-degree calorimeter, coverage ZDC_S = 140.; // ZDC distance to IP RP220_S = 220; // distance of the RP to the IP, in meters RP220_X = 0.002;// distance of the RP to the beam, in meters FP420_S = 420; // distance of the RP to the IP, in meters FP420_X = 0.004;// distance of the RP to the beam, in meters ELG_Scen = 0.05; // S term for central ECAL ELG_Ncen = 0.25 ; // N term for central ECAL ELG_Ccen = 0.0055 ; // C term for central ECAL ELG_Cfwd = 0.107 ; // S term for forward ECAL ELG_Sfwd = 2.084 ; // C term for forward ECAL ELG_Nfwd = 0.0 ; // N term for central ECAL HAD_Shcal = 1.5 ; // S term for central HCAL // hadronic calorimeter HAD_Nhcal = 0.0 ; // N term for central HCAL HAD_Chcal = 0.05 ; // C term for central HCAL HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter HAD_Nhf = 0.0 ; // N term for central HF HAD_Chf = 0.13 ; // C term for central HF MU_SmearPt = 0.01 ; ELEC_pt = 10.0; MUON_pt = 10.0; JET_pt = 20.0; TAUJET_pt = 10.0; TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation" TAU_EM_COLLIMATION = 0.95; TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ???? PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????) TRACKING_EFF = 90; TAGGING_B = 40; MISTAGGING_C = 10; MISTAGGING_L = 1; CONERADIUS = 0.7; // generic jet radius ; not for tau's !!! JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm //General jet parameters SEEDTHRESHOLD = 1.0; OVERLAPTHRESHOLD = 0.75; // Define Cone algorithm. C_ADJACENCYCUT = 2; C_MAXITERATIONS = 100; C_IRATCH = 1; //Define MidPoint algorithm. M_CONEAREAFRACTION = 0.25; M_MAXPAIRSIZE = 2; M_MAXITERATIONS = 100; } //------------------------------------------------------------------------------ void RESOLution::ReadDataCard(const string datacard) { string temp_string; istringstream curstring; ifstream fichier_a_lire(datacard.c_str()); if(!fichier_a_lire.good()) { cout << datacard << "Datadard " << datacard << " not found, use default values" << endl; return; } while (getline(fichier_a_lire,temp_string)) { curstring.clear(); // needed when using several times istringstream::str(string) curstring.str(temp_string); string varname; float value; if(strstr(temp_string.c_str(),"#")) { } else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;} else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;} else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;} else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;} else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;} else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;} else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;} else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;} else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;} else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;} else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;} else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;} else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;} else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;} else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;} else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;} else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;} else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;} else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;} else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;} else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;} else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;} else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;} else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;} else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;} else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;} else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;} else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;} else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;} else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;} else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;} } // General jet variables SEEDTHRESHOLD = 1.0; OVERLAPTHRESHOLD = 0.75; // Define Cone algorithm. C_ADJACENCYCUT = 2; C_MAXITERATIONS = 100; C_IRATCH = 1; //Define MidPoint algorithm. M_CONEAREAFRACTION = 0.25; M_MAXPAIRSIZE = 2; M_MAXITERATIONS = 100; //Define SISCone algorithm. NPASS = 0; PROTOJET_PTMIN = 0.0; } void RESOLution::Logfile(string LogName) { //void RESOLution::Logfile(string outputfilename) { ofstream f_out(LogName.c_str()); f_out<<"#*********************************************************************"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n"; f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n"; f_out<<"# severine.ovyn@uclouvain.be *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# http: *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n"; f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n"; f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"#....................................................................*"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# This package uses: *"<<"\n"; f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n"; f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n"; f_out<<"# ExRootAnalysis *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"#....................................................................*"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n"; f_out<<"# necessary to reproduce the detector simulation *"<<"\n"; f_out<<"# *"<<"\n"; f_out<<"#....................................................................*"<<"\n"; f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n"; f_out<<"* *"<<"\n"; f_out<<"#******************************** *"<<"\n"; f_out<<"# Central detector caracteristics *"<<"\n"; f_out<<"#******************************** *"<<"\n"; f_out<<"* *"<<"\n"; f_out << left << setw(30) <<"* Maximum tracking system: "<<"" << left << setw(10) <>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n"; } // **********Provides the smeared TLorentzVector for the electrons******** // Smears the electron energy, and changes the 4-momentum accordingly // different smearing if the electron is central (eta < 2.5) or forward void RESOLution::SmearElectron(TLorentzVector &electron) { // the 'electron' variable will be changed by the function float energy = electron.E(); // before smearing float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E} if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker energyS = gRandom->Gaus(energy, sqrt( pow(ELG_Ncen,2) + pow(ELG_Ccen*energy,2) + pow(ELG_Scen*sqrt(energy),2) )); } if(fabs(electron.Eta()) > MAX_TRACKER && fabs(electron.Eta()) < MAX_CALO_FWD){ energyS = gRandom->Gaus(energy, sqrt( pow(ELG_Nfwd,2) + pow(ELG_Cfwd*energy,2) + pow(ELG_Sfwd*sqrt(energy),2) ) ); } electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS); if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing ! } // **********Provides the smeared TLorentzVector for the muons******** // Smears the muon pT and changes the 4-momentum accordingly void RESOLution::SmearMu(TLorentzVector &muon) { // the 'muon' variable will be changed by the function float pt = muon.Pt(); // before smearing float ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E} muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta())); if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing ! } // **********Provides the smeared TLorentzVector for the hadrons******** // Smears the hadron 4-momentum void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac) // the 'hadron' variable will be changed by the function // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise { float energy = hadron.E(); // before smearing float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E} float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter float energy_hcal = frac*energy; // hadronic calorimeter // frac takes into account the decay of long-living particles, that decay in the calorimeters // some of the particles decay mostly in the ecal, some mostly in the hcal float energyS1,energyS2; if(fabs(hadron.Eta()) < MAX_CALO_CEN) { energyS1 = gRandom->Gaus(energy_hcal, sqrt( pow(HAD_Nhcal,2) + pow(HAD_Chcal*energy_hcal,2) + pow(HAD_Shcal*sqrt(energy_hcal),2) )) ; energyS2 = gRandom->Gaus(energy_ecal, sqrt( pow(ELG_Ncen,2) + pow(ELG_Ccen*energy_ecal,2) + pow(ELG_Scen*sqrt(energy_ecal),2) ) ); energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0); } if(abs(hadron.Eta()) > MAX_CALO_CEN && fabs(hadron.Eta()) < MAX_CALO_FWD){ energyS = gRandom->Gaus(energy, sqrt( pow(HAD_Nhf,2) + pow(HAD_Chf*energy,2) + pow(HAD_Shf*sqrt(energy),2) )); } hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS); if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0); } // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification******** // to be taken into account, a calo tower should // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold // 2) be inside a cone with a radius R and the axis defined by (eta,phi) double RESOLution::EnergySmallCone(const vector &towers, const float eta, const float phi) { double Energie=0; for(unsigned int i=0; i < towers.size(); i++) { if(towers[i].fourVector.pt() < SEEDTHRESHOLD) continue; if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) { Energie += towers[i].fourVector.E; } } return Energie; } // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification******** // to be taken into account, a track should // 1) avec a transverse momentum \$f p_T \$ above a given threshold // 2) be inside a cone with a radius R and the axis defined by (eta,phi) // IMPORTANT REMARK !!!!! // previously, the argument 'phi' was before the argument 'eta' // this has been changed for consistency with the other functions // double check your running code that uses NumTracks ! unsigned int RESOLution::NumTracks(const vector &tracks, const float pt_track, const float eta, const float phi) { unsigned int numtrack=0; for(unsigned int i=0; i < tracks.size(); i++) { if((tracks[i].Pt() < pt_track )|| (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS) )continue; numtrack++; } return numtrack; } //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) ********* //used by Btaggedjet ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !! int RESOLution::Bjets(const TSimpleArray &subarray, const float eta, const float phi) { float emax=0; int Ppid=0; if(subarray.GetEntries()>0) { for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (rPhi,subarray[i]->Eta,phi,eta); if(genDeltaR < CONERADIUS && subarray[i]->E > emax) { emax=subarray[i]->E; Ppid=abs(subarray[i]->PID); } } } return Ppid; } //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets**************** bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray &subarray) { if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40% else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10% else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1% return false; } //***********************Isolation criteria*********************** //**************************************************************** bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector &tracks,float PT_TRACK2) { bool isolated = false; Float_t deltar=5000.; // Initial value; should be high; no further repercussion // loop on all final charged particles, with p_t >2, close enough from the electron for(unsigned int i=0; i < tracks.size(); i++) { if(tracks[i].Pt() < PT_TRACK2)continue; Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate if( (genDeltaR > deltar) || (genDeltaR==0) ) continue ; deltar=genDeltaR; } if(deltar > 0.5)isolated = true; // returns the closest distance return isolated; } //**************************** Returns the delta Phi **************************** float DeltaPhi(const float phi1, const float phi2) { float deltaphi=phi1-phi2; // in here, -PI < phi < PI if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI else deltaphi=fabs(deltaphi); return deltaphi; } //**************************** Returns the delta R**************************** float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) { return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2)); } int sign(const int myint) { if (myint >0) return 1; else if (myint <0) return -1; else return 0; } int sign(const float myfloat) { if (myfloat >0) return 1; else if (myfloat <0) return -1; else return 0; } int Charge(int pid) { int charge; if( (pid == pGAMMA) || (pid == pPI0) || (pid == pK0L) || (pid == pN) || (pid == pSIGMA0) || (pid == pDELTA0) || (pid == pK0S) // not charged particles : invisible by tracker ) charge = 0; else charge = (sign(pid)); cout<<"charge "<