Fork me on GitHub

source: svn/trunk/src/SmearUtil.cc@ 36

Last change on this file since 36 was 33, checked in by severine ovyn, 16 years ago

add offline Thresholds

File size: 15.9 KB
Line 
1/*
2 ---- Delphes ----
3 A Fast Simulator for general purpose LHC detector
4 S. Ovyn ~~~~ severine.ovyn@uclouvain.be
5
6 Center for Particle Physics and Phenomenology (CP3)
7 Universite Catholique de Louvain (UCL)
8 Louvain-la-Neuve, Belgium
9*/
10
11/// \file SmearUtil.cc
12/// \brief RESOLution class, and some generic definitions
13
14
15#include "interface/SmearUtil.h"
16#include "TRandom.h"
17
18#include <iostream>
19#include <sstream>
20#include <fstream>
21using namespace std;
22
23//------------------------------------------------------------------------------
24
25RESOLution::RESOLution() {
26
27MAX_TRACKER = 2.5; // tracker coverage
28MAX_CALO_CEN = 3.0; // central calorimeter coverage
29MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
30MAX_MU = 2.4; // muon chambers pseudorapidity coverage
31MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
32MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
33MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
34
35ZDC_S = 140.; // ZDC distance to IP
36RP220_S = 220; // distance of the RP to the IP, in meters
37RP220_X = 0.002;// distance of the RP to the beam, in meters
38FP420_S = 420; // distance of the RP to the IP, in meters
39FP420_X = 0.004;// distance of the RP to the beam, in meters
40
41
42ELG_Scen = 0.028; // S term for central ECAL
43ELG_Ncen = 0.124 ; // N term for central ECAL
44ELG_Ccen = 0.0026 ; // C term for central ECAL
45ELG_Cfwd = 0.107 ; // S term for forward ECAL
46ELG_Sfwd = 2.084 ; // C term for forward ECAL
47ELG_Nfwd = 0.0 ; // N term for central ECAL
48
49HAD_Shcal = 0.91 ; // S term for central HCAL // hadronic calorimeter
50HAD_Nhcal = 0. ; // N term for central HCAL
51HAD_Chcal = 0.038 ; // C term for central HCAL
52HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
53HAD_Nhf = 0. ; // N term for central HF
54HAD_Chf = 0.13 ; // C term for central HF
55
56MU_SmearPt = 0.01 ;
57
58ELEC_pt = 10.0;
59MUON_pt = 10.0;
60JET_pt = 20.0;
61TAUJET_pt = 10.0;
62
63
64TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
65TAU_EM_COLLIMATION = 0.95;
66TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
67PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
68
69
70PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
71PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
72TRACKING_EFF = 90;
73
74
75TAGGING_B = 40;
76MISTAGGING_C = 10;
77MISTAGGING_L = 1;
78
79
80CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
81JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
82// Define Cone algorithm.
83C_SEEDTHRESHOLD = 1.0;
84C_ADJACENCYCUT = 2;
85C_MAXITERATIONS = 100;
86C_IRATCH = 1;
87C_OVERLAPTHRESHOLD = 0.75;
88
89//Define MidPoint algorithm.
90M_SEEDTHRESHOLD = 1.0;
91M_CONEAREAFRACTION = 0.25;
92M_MAXPAIRSIZE = 2;
93M_MAXITERATIONS = 100;
94M_OVERLAPTHRESHOLD = 0.75;
95
96}
97
98//------------------------------------------------------------------------------
99void RESOLution::ReadDataCard(const string datacard) {
100
101 string temp_string;
102 istringstream curstring;
103
104 ifstream fichier_a_lire(datacard.c_str());
105 if(!fichier_a_lire.good()) {
106 cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
107 return;
108 }
109
110 while (getline(fichier_a_lire,temp_string)) {
111 curstring.clear(); // needed when using several times istringstream::str(string)
112 curstring.str(temp_string);
113 string varname;
114 float value;
115
116 if(strstr(temp_string.c_str(),"#")) { }
117 else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
118 else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
119 else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
120 else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
121 else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
122 else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
123 else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
124 else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
125 else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
126 else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
127 else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
128 else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
129 else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
130 else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
131 else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
132 else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
133 else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
134 else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
135 else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
136 else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
137 else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
138 else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;}
139 else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;}
140 else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;}
141 else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
142 else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;}
143 else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;}
144 else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;}
145 else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;}
146 else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;}
147 else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;}
148
149 }
150
151// Define Cone algorithm.
152 C_SEEDTHRESHOLD = 1.0;
153 C_ADJACENCYCUT = 2;
154 C_MAXITERATIONS = 100;
155 C_IRATCH = 1;
156 C_OVERLAPTHRESHOLD = 0.75;
157
158//Define MidPoint algorithm.
159 M_SEEDTHRESHOLD = 1.0;
160 M_CONEAREAFRACTION = 0.25;
161 M_MAXPAIRSIZE = 2;
162 M_MAXITERATIONS = 100;
163 M_OVERLAPTHRESHOLD = 0.75;
164
165}
166
167
168// **********Provides the smeared TLorentzVector for the electrons********
169// Smears the electron energy, and changes the 4-momentum accordingly
170// different smearing if the electron is central (eta < 2.5) or forward
171void RESOLution::SmearElectron(TLorentzVector &electron) {
172 // the 'electron' variable will be changed by the function
173 float energy = electron.E(); // before smearing
174 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
175
176 if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker
177 energyS = gRandom->Gaus(energy, sqrt(
178 pow(ELG_Ncen,2) +
179 pow(ELG_Ccen*energy,2) +
180 pow(ELG_Scen*sqrt(energy),2) ));
181 } else { // outside the tracker
182 energyS = gRandom->Gaus(energy, sqrt(
183 pow(ELG_Nfwd,2) +
184 pow(ELG_Cfwd*energy,2) +
185 pow(ELG_Sfwd*sqrt(energy),2) ) );
186 }
187 electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
188 if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
189}
190
191
192// **********Provides the smeared TLorentzVector for the muons********
193// Smears the muon pT and changes the 4-momentum accordingly
194void RESOLution::SmearMu(TLorentzVector &muon) {
195 // the 'muon' variable will be changed by the function
196 float pt = muon.Pt(); // before smearing
197 float ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
198
199 muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
200
201 if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
202}
203
204
205// **********Provides the smeared TLorentzVector for the hadrons********
206// Smears the hadron 4-momentum
207void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
208 // the 'hadron' variable will be changed by the function
209 // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
210{
211 float energy = hadron.E(); // before smearing
212 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
213 float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
214 float energy_hcal = frac*energy; // hadronic calorimeter
215 // frac takes into account the decay of long-living particles, that decay in the calorimeters
216 // some of the particles decay mostly in the ecal, some mostly in the hcal
217
218 float energyS1,energyS2;
219 if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
220 energyS1 = gRandom->Gaus(energy_hcal, sqrt(
221 pow(HAD_Nhcal,2) +
222 pow(HAD_Chcal*energy_hcal,2) +
223 pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
224
225
226 energyS2 = gRandom->Gaus(energy_ecal, sqrt(
227 pow(ELG_Ncen,2) +
228 pow(ELG_Ccen*energy_ecal,2) +
229 pow(ELG_Scen*sqrt(energy_ecal),2) ) );
230
231 energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
232 } else {
233 energyS = gRandom->Gaus(energy, sqrt(
234 pow(HAD_Nhf,2) +
235 pow(HAD_Chf*energy,2) +
236 pow(HAD_Shf*sqrt(energy),2) ));
237 }
238
239
240 hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
241
242 if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
243}
244
245// **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
246// to be taken into account, a calo tower should
247// 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
248// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
249double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
250 double Energie=0;
251 for(unsigned int i=0; i < towers.size(); i++) {
252 if(towers[i].fourVector.pt() < M_SEEDTHRESHOLD) continue;
253 if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
254 Energie += towers[i].fourVector.E;
255 }
256 }
257 return Energie;
258}
259
260
261// **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
262// to be taken into account, a track should
263// 1) avec a transverse momentum \$f p_T \$ above a given threshold
264// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
265// IMPORTANT REMARK !!!!!
266// previously, the argument 'phi' was before the argument 'eta'
267// this has been changed for consistency with the other functions
268// double check your running code that uses NumTracks !
269unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
270 unsigned int numtrack=0;
271 for(unsigned int i=0; i < tracks.size(); i++) {
272 if((tracks[i].Pt() < pt_track )||
273 (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
274 )continue;
275 numtrack++;
276 }
277 return numtrack;
278}
279
280
281//*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
282//used by Btaggedjet
283///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
284int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
285 float emax=0;
286 int Ppid=0;
287 if(subarray.GetEntries()>0) {
288 for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
289 float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
290 if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
291 emax=subarray[i]->E;
292 Ppid=abs(subarray[i]->PID);
293 }
294 }
295 }
296 return Ppid;
297}
298
299
300//******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
301bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
302 if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
303 else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
304 else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
305 return false;
306}
307
308//***********************Isolation criteria***********************
309//****************************************************************
310bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector<TLorentzVector> &tracks,float PT_TRACK2)
311{
312 bool isolated = false;
313 Float_t deltar=5000.; // Initial value; should be high; no further repercussion
314 // loop on all final charged particles, with p_t >2, close enough from the electron
315 for(unsigned int i=0; i < tracks.size(); i++)
316 {
317 if(tracks[i].Pt() < PT_TRACK2)continue;
318 Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate
319 if(
320 (genDeltaR > deltar) ||
321 (genDeltaR==0)
322 ) continue ;
323 deltar=genDeltaR;
324 }
325 if(deltar > 0.5)isolated = true; // returns the closest distance
326 return isolated;
327}
328
329
330//**************************** Returns the delta Phi ****************************
331float DeltaPhi(const float phi1, const float phi2) {
332 float deltaphi=phi1-phi2; // in here, -PI < phi < PI
333 if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
334 else deltaphi=fabs(deltaphi);
335
336 return deltaphi;
337}
338
339//**************************** Returns the delta R****************************
340float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
341 return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
342}
343
344int sign(const int myint) {
345 if (myint >0) return 1;
346 else if (myint <0) return -1;
347 else return 0;
348}
349
350int sign(const float myfloat) {
351 if (myfloat >0) return 1;
352 else if (myfloat <0) return -1;
353 else return 0;
354}
355
356
357float Charge(const long int pid) {
358 // source: RPP chap 34 Monte Carlo Particle Numbering Scheme
359/* switch (abs(pid)) {
360 case 1: case 3: case 5: case 7: return (float) sign(pid)*(-1/3); break; // d, s, b, b'
361 case 2: case 4: case 6: case 8: return (float) sign(pid)*2/3; break; // u, c, t, t'
362
363 case 11: case 13: case 15: return (float) sign(pid)*(-1); break; // e, mu, tau
364 case 12: case 14: case 16: return (float) 0; break; // nu_e, nu_mu, nu_tau
365
366 case 9: case 21: case 22: case 23: case 25:
367 case 32: case 33: case 35: case 36: return (float) 0; break; // neutral gauge/higgs bosons
368 case 24: case 34: case 37: return (float) sign(pid); break; // charged gauge/higgs bosons
369 }
370*/
371 return 0;
372}
Note: See TracBrowser for help on using the repository browser.