/*********************************************************************** ** ** ** /----------------------------------------------\ ** ** | Delphes, a framework for the fast simulation | ** ** | of a generic collider experiment | ** ** \----------------------------------------------/ ** ** ** ** ** ** This package uses: ** ** ------------------ ** ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] ** ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] ** ** FROG: [hep-ex/0901.2718v1] ** ** ** ** ------------------------------------------------------------------ ** ** ** ** Main authors: ** ** ------------- ** ** ** ** Severine Ovyn Xavier Rouby ** ** severine.ovyn@uclouvain.be xavier.rouby@cern ** ** ** ** Center for Particle Physics and Phenomenology (CP3) ** ** Universite catholique de Louvain (UCL) ** ** Louvain-la-Neuve, Belgium ** ** ** ** Copyright (C) 2008-2009, ** ** All rights reserved. ** ** ** ***********************************************************************/ #include "BFieldProp.h" #include "PdgParticle.h" #include "SystemOfUnits.h" #include "PhysicalConstants.h" #include using namespace std; //------------------------------------------------------------------------------ extern const float UNDEFINED; TrackPropagation::TrackPropagation(){ DET = new RESOLution(); init(); } TrackPropagation::TrackPropagation(const string& DetDatacard){ DET = new RESOLution(); DET->ReadDataCard(DetDatacard); init(); } TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){ DET= new RESOLution(*DetDatacard); init(); } TrackPropagation::TrackPropagation(const TrackPropagation & tp){ MAXITERATION = tp.MAXITERATION; DET = new RESOLution(*(tp.DET)); R_max = tp.R_max; z_max = tp.z_max; B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z; q = tp.q; phi_0 = tp.phi_0; gammam= tp.gammam; omega = tp.omega; r = tp.r; rr = tp.rr; x_c = tp.x_c; y_c = tp.y_c; R_c = tp.R_c; Phi_c = tp.Phi_c; t = tp.t; t_z = tp.t_z; t_T = tp.t_T; x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t; R_t = tp.R_t; Phi_t = tp.Phi_t; Theta_t=tp.Theta_t; Eta_t = tp.Eta_t; Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t; PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t; loop_overflow_counter = tp.loop_overflow_counter; } TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) { if(this==&tp) return *this; MAXITERATION = tp.MAXITERATION; DET = new RESOLution(*(tp.DET)); R_max = tp.R_max; z_max = tp.z_max; B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z; q = tp.q; phi_0 = tp.phi_0; gammam= tp.gammam; omega = tp.omega; r = tp.r; rr = tp.rr; x_c = tp.x_c; y_c = tp.y_c; R_c = tp.R_c; Phi_c = tp.Phi_c; t = tp.t; t_z = tp.t_z; t_T = tp.t_T; x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t; R_t = tp.R_t; Phi_t = tp.Phi_t; Theta_t=tp.Theta_t; Eta_t = tp.Eta_t; Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t; PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t; loop_overflow_counter = tp.loop_overflow_counter; return *this; } void TrackPropagation::init() { MAXITERATION = 10000; q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED; x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED; rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED; x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED; R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED; Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED; // DET has been initialised in the constructors // magnetic field parameters R_max = DET->TRACK_radius/100.; //[m] z_max = DET->TRACK_length/100.; //[m] B_x = DET->TRACK_bfield_x*tesla; B_y = DET->TRACK_bfield_y*tesla; B_z = DET->TRACK_bfield_z; loop_overflow_counter=0; } void TrackPropagation::bfield(TRootGenParticle *Part) { // initialisation, valid for z_max==0, R_max==0 and q==0 Part->EtaCalo = Part->Eta; Part->PhiCalo = Part->Phi;//-atan2(Part->Px,Part->Py); // trivial cases if (!DET->FLAG_bfield ) return; double M; // GeV/c² //int q1 = ChargeVal(Part->PID) *eplus; // in units of 'e' if(Part->M < -999) { // unitialised! PdgParticle pdg_part = DET->PDGtable[Part->PID]; q = pdg_part.charge() *eplus; // in units of 'e' M = pdg_part.mass(); // GeV/c² } else { q = Part->Charge; M = Part->M; } if(q==0) return; if(R_max==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;} if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;} double X = Part->X/1000.;//[m] double Y = Part->Y/1000.;//[m] double Z = Part->Z/1000.;//[m] // out of tracking coverage? if(sqrt(X*X+Y*Y) > R_max){return;} if(fabs(Z) > z_max){return;} if (B_x== 0 && B_y== 0) { // faster if only B_z if (B_z==0) return; // nothing to do //in test mode, just run once if (loop_overflow_counter) return; // initial conditions: // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT; // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z; // 1. initial transverse momentum p_{T0} : Part->PT // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0) // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m // giration frequency \omega = q/(gamma m) B_z // helix radius r = p_T0 / (omega gamma m) double Px = Part->Px; // [GeV/c] double Py = Part->Py; double Pz = Part->Pz; double PT = Part->PT; double E = Part->E; // [GeV] double Phi = UNDEFINED; float c_light = 2.99792458E+8; gammam = E*1E9/(c_light*c_light); // gammam in [eV/c²] omega = q * B_z / (gammam); // omega is here in [ 89875518 / s] //cout << "omega*gammam = B_z in BFieldProp.cc: " << fabs(omega*gammam) - B_z << endl; r = PT / (omega * gammam) *1E9/c_light; // in [m] // test mode ? bool test=false; if(test) loop_overflow_counter++; double delta= UNDEFINED; phi_0 = atan2(Py,Px); // [rad] in [-pi ; pi ] // 2. helix axis coordinates x_c = X + r*sin(phi_0); y_c = Y - r*cos(phi_0); R_c = sqrt( pow(x_c,2.) + pow(y_c,2.) ); Phi_c = atan2(y_c,x_c); Phi = Phi_c; if(x_c<0) Phi += pi; // 3. time evaluation t = min(t_T, t_z) // t_T : time to exit from the sides // t_z : time to exit from the front or the back rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable [m] t_T=0; //[ns] int sign_pz= (Pz >0) ? 1 : -1; if(Pz==0) t_z = 1E99; else t_z = gammam / (Pz*1E9/c_light) * (-Z + z_max*sign_pz ); if( t_z <0) cout << "ERROR: t_z <0 !" << endl; if ( fabs(R_c - fabs(r)) > R_max || R_c + fabs(r) < R_max ) t = t_z; else { if(r==0) cout << "r ==0 !" << endl; if(R_c==0) cout << "R_c ==0 !" << endl; if(r==0|| R_c ==0) t_T=1E99; else { double asinrho = asin( (R_max + rr)*(R_max - rr) / (2*fabs(r)*R_c) ); delta = phi_0 - Phi; if(delta<-pi) delta += 2*pi; if(delta> pi) delta -= 2*pi; double t1 = (delta + asinrho) / omega; double t2 = (delta + pi - asinrho) / omega; double t3 = (delta + pi + asinrho) / omega; double t4 = (delta - asinrho) / omega; double t5 = (delta - pi - asinrho) / omega; double t6 = (delta - pi + asinrho) / omega; if(test) { cout << "t4 = " << t4 << "\t t5 = " << t5 << "\t t_6=" << t6 << "\t t_3 = " << t3 << endl; cout << "t1 = " << t1 << "\t t2 = " << t2 << "\t t_T=" << t_T << "\t t_z = " << t_z << endl; cout << "delta= " << delta << endl; } if(t1<0)t1=1E99; if(t2<0)t2=1E99; if(t3<0)t3=1E99; if(t4<0)t4=1E99; if(t5<0)t5=1E99; if(t6<0)t6=1E99; double t_Ta = min(t1,min(t2,t3)); double t_Tb = min(t4,min(t5,t6)); t_T = min(t_Ta,t_Tb); t = min(t_T,t_z); } } // 4. position in terms of x(t), y(t), z(t) x_t = x_c + r * sin(omega * t - phi_0); y_t = y_c + r * cos(omega * t - phi_0); z_t = Z + Pz*1E9/c_light / gammam * t; // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t) R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) ); Phi_t = atan2( y_t, x_t); if(R_t>0) { Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t)); Eta_t = - log(tan(Theta_t/2.)); } else { Theta_t=0; Eta_t = UNDEFINED; } if(test) { cout << endl << endl; cout << "x0,y0,z0= " << X << ", " << Y << ", " << Z << endl; cout << "px0,py0,pz0= " << Px << ", " << Py << ", " << Pz << endl; cout << "r = " << r << "R_max = " << R_max << "\t phi_0=" << phi_0 << endl; cout << "gammam= " << gammam << "\t omega=" << omega << "\t PT = " << PT << endl; cout << "x_c = " << x_c << "\t y_c = " << y_c << "\t R_c = " << R_c << "\t Phi = " << Phi << endl; cout << "omega t = " << omega*t << "\t"; cout << "cos(omega t -phi0)= " << cos(omega*t-phi_0) << "\t sin(omega t -phi0)= " << sin(omega*t-phi_0) << endl; cout << "t_T = " << t_T << "\t t_z = " << t_z << "\t r = " << r << endl; cout << "x_t = " << x_t << "\t y_t = " << y_t << "\t z_t = " << z_t << endl; cout << "R_t = " << R_t << "\t Phi_t = " << Phi_t << "\t"; cout << "Theta_t = " << Theta_t << "\t Eta_t = " << Eta_t << endl; } /* Not needed here. but these formulae are correct ------- // method1 (removed) Px_t = - PT * sin(omega*t + phi_0); Py_t = PT * cos(omega*t + phi_0); // method2 Px_t = PT * cos(phi_0 - omega*t); Py_t = PT * sin(phi_0 - omega*t); Pz_t = Pz; PT_t = sqrt(Px_t*Px_t + Py_t*Py_t); p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t); E_t=sqrt(M*M +p_t*p_t); //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.; //if(p_t>0) Theta_t = acos(Pz_t/p_t)>; momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t); */ Part->EtaCalo = Eta_t; Part->PhiCalo = Phi_t; // test zone --- /* cout << "r = " << r << " et " << fabs(PT/(q*B_z)) << endl; cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl; double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.; double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.; if(0 && fabs(Eta_t -Eta_t2)>1e-310) { cout << "ERROR-BUG: Eta_t != Eta_t2\n"; cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl; } double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check if(fabs(R_t - R_t2) > 1e-7) cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl; if( fabs(E - gammam) > 1e-3 ) { cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n"; cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; } if( fabs(PT_t - Part->PT) > 1e-10 ) { cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. "; cout << "(at " << 100*(PT_t - Part->PT) << "%)\n"; } if(momentum.Pz() != Pz_t) cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n"; double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz); if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) { cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n"; cout << temp_p << "\t" << temp_p0 << endl; } // if x_c == y_c ==0 (set it by hand!), easy cross-check //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl; */ return; } else { // if B_x or B_y are non zero: longer computation //cout << "bfield de loic\n"; float Xvertex1 = Part->X; float Yvertex1 = Part->Y; float Zvertex1 = Part->Z; double px = Part->Px / 0.003; double py = Part->Py / 0.003; double pz = Part->Pz / 0.003; double pt = Part->PT / 0.003; // sqrt(px*px+py*py); double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz); //double M = Part->M; // see above double vx = px/M; double vy = py/M; double vz = pz/M; double qm = q/M; //double v = sqrt(vx*vx + vy*vy + vz*vz)/3E8; //cout << "v = " << v; //double gamma = 1./sqrt(1-v*v); //cout << "gamma = " << gamma << endl; double ax = qm*(B_z*vy - B_y*vz); double ay = qm*(B_x*vz - B_z*vx); double az = qm*(B_y*vx - B_x*vy); double dt = 1/p; if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ????? double xold=Xvertex1; double x=xold; double yold=Yvertex1; double y=yold; double zold=Zvertex1; double z=zold; double VTold = pt/M; //=sqrt(vx*vx+vy*vy); unsigned int k = 0; double VTratio=0; double R_max2 = R_max*R_max; double r2=0; // will be x*x+y*y while(k < MAXITERATION){ k++; vx += ax*dt; vy += ay*dt; vz += az*dt; VTratio = VTold/sqrt(vx*vx+vy*vy); vx *= VTratio; vy *= VTratio; ax = qm*(B_z*vy - B_y*vz); ay = qm*(B_x*vz - B_z*vx); az = qm*(B_y*vx - B_x*vy); x += vx*dt; y += vy*dt; z += vz*dt; r2 = x*x + y*y; if( r2 > R_max2 ){ x /= r2/R_max2; y /= r2/R_max2; break; } if( fabs(z)>z_max)break; xold = x; yold = y; zold = z; } // while loop if(k == MAXITERATION) loop_overflow_counter++; //cout << "too short loop in " << loop_overflow_counter << " cases" << endl; float Theta=0; if(x!=0 && y!=0 && z!=0) { Theta = atan2(sqrt(r2),z); Part->EtaCalo = -log(tan(Theta/2.)); Part->PhiCalo = atan2(y,x); //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E); } } // if b_x or b_y non zero }