/*********************************************************************** ** ** ** /----------------------------------------------\ ** ** | Delphes, a framework for the fast simulation | ** ** | of a generic collider experiment | ** ** \----------------------------------------------/ ** ** ** ** ** ** This package uses: ** ** ------------------ ** ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] ** ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] ** ** FROG: [hep-ex/0901.2718v1] ** ** ** ** ------------------------------------------------------------------ ** ** ** ** Main authors: ** ** ------------- ** ** ** ** Severine Ovyn Xavier Rouby ** ** severine.ovyn@uclouvain.be xavier.rouby@cern ** ** ** ** Center for Particle Physics and Phenomenology (CP3) ** ** Universite catholique de Louvain (UCL) ** ** Louvain-la-Neuve, Belgium ** ** ** ** Copyright (C) 2008-2009, ** ** All rights reserved. ** ** ** ***********************************************************************/ #include "BFieldProp.h" #include using namespace std; //------------------------------------------------------------------------------ extern const float UNDEFINED; TrackPropagation::TrackPropagation(){ DET = new RESOLution(); init(); } TrackPropagation::TrackPropagation(const string& DetDatacard){ DET = new RESOLution(); DET->ReadDataCard(DetDatacard); init(); } TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){ DET= new RESOLution(*DetDatacard); init(); } TrackPropagation::TrackPropagation(const TrackPropagation & tp){ MAXITERATION = tp.MAXITERATION; DET = new RESOLution(*(tp.DET)); R_max = tp.R_max; z_max = tp.z_max; B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z; q = tp.q; phi_0 = tp.phi_0; gammam= tp.gammam; omega = tp.omega; r = tp.r; rr = tp.rr; x_c = tp.x_c; y_c = tp.y_c; R_c = tp.R_c; Phi_c = tp.Phi_c; t = tp.t; t_z = tp.t_z; t_T = tp.t_T; x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t; R_t = tp.R_t; Phi_t = tp.Phi_t; Theta_t=tp.Theta_t; Eta_t = tp.Eta_t; Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t; PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t; loop_overflow_counter = tp.loop_overflow_counter; } TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) { if(this==&tp) return *this; MAXITERATION = tp.MAXITERATION; DET = new RESOLution(*(tp.DET)); R_max = tp.R_max; z_max = tp.z_max; B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z; q = tp.q; phi_0 = tp.phi_0; gammam= tp.gammam; omega = tp.omega; r = tp.r; rr = tp.rr; x_c = tp.x_c; y_c = tp.y_c; R_c = tp.R_c; Phi_c = tp.Phi_c; t = tp.t; t_z = tp.t_z; t_T = tp.t_T; x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t; R_t = tp.R_t; Phi_t = tp.Phi_t; Theta_t=tp.Theta_t; Eta_t = tp.Eta_t; Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t; PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t; loop_overflow_counter = tp.loop_overflow_counter; return *this; } void TrackPropagation::init() { MAXITERATION = 10000; q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED; x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED; rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED; x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED; R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED; Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED; // DET has been initialised in the constructors // magnetic field parameters R_max = DET->TRACK_radius; z_max = DET->TRACK_length/2.; B_x = DET->TRACK_bfield_x; B_y = DET->TRACK_bfield_y; B_z = DET->TRACK_bfield_z; loop_overflow_counter=0; } void TrackPropagation::Propagation(const TRootGenParticle *Part,TLorentzVector &momentum) { q = Charge(Part->PID); if(q==0) return; if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;} if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;} if (B_x== 0 && B_y== 0) { // faster if only B_z if (B_z==0) return; // nothing to do // initial conditions: // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT; // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z; // 1. initial transverse momentum p_{T0} : Part->PT // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0) // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m // giration frequency \omega = q/(gamma m) B_z // helix radius r = p_T0 / (omega gamma m) phi_0 = -atan2(Part->Px,Part->Py); gammam = Part->E; // here c==1 //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl; omega = q * B_z /gammam; r = Part->PT / (omega * gammam); // 2. Helix parameters : center coordinates in transverse plane // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0) // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c} x_c = Part->X - r*cos(phi_0); /// TEST !! y_c = Part->Y - r*sin(phi_0); R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) ); Phi_c = atan2(y_c,x_c); // 3. time evaluation t = min(t_T, t_z) // t_T : time to exit from the sides // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega // t_z : time to exit from the front or the back // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0)) rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable t_T=0; int sign_pz= (Part->Pz >0) ? 1 : -1; t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ; if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z; else { t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega; t = min(t_T,t_z); } // 4. position in terms of x(t), y(t), z(t) // x(t) = x_c + r cos (omega t + phi_0) // y(t) = y_c + r sin (omega t + phi_0) // z(t) = z_0 + (p_Z0/gammam) t x_t = x_c + r * cos(omega * t + phi_0); y_t = y_c + r * sin(omega * t + phi_0); z_t = Part->Z + Part->Pz / gammam * t; // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t) // R(t) = sqrt(x(t)² + y(t)²) // Phi(t) = atan(y(t)/x(t)) // Theta(t) = atan(R(t)/z(t)) // Eta(t) = -ln tan (Theta(t)/2) R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) ); Phi_t = atan2( y_t, x_t); if(R_t>0) { Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t)); Eta_t = - log(tan(Theta_t/2.)); } else{ Theta_t=0; Eta_t = 9999; } Px_t = - Part->PT * sin(omega*t + phi_0); Py_t = Part->PT * cos(omega*t + phi_0); Pz_t = Part->Pz; PT_t = sqrt(Px_t*Px_t + Py_t*Py_t); p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t); E_t=sqrt(Part->M*Part->M +p_t); //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.; //if(p_t>0) Theta_t = acos(Pz_t/p_t); momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t); // test zone --- /* cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl; double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.; double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.; if(0 && fabs(Eta_t -Eta_t2)>1e-310) { cout << "ERROR-BUG: Eta_t != Eta_t2\n"; cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl; } double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check if(fabs(R_t - R_t2) > 1e-7) cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl; if( fabs(E - gammam) > 1e-3 ) { cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n"; cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; } if( fabs(PT_t - Part->PT) > 1e-10 ) { cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. "; cout << "(at " << 100*(PT_t - Part->PT) << "%)\n"; } if(momentum.Pz() != Pz_t) cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n"; double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz); if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) { cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n"; cout << temp_p << "\t" << temp_p0 << endl; } // if x_c == y_c ==0 (set it by hand!), easy cross-check //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl; */ } else { // if B_x or B_y are non zero: longer computation float Xvertex1 = Part->X; float Yvertex1 = Part->Y; float Zvertex1 = Part->Z; //out of tracking coverage? if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;} if(fabs(Zvertex1) > z_max){return;} double px = Part->Px / 0.003; double py = Part->Py / 0.003; double pz = Part->Pz / 0.003; double pt = Part->PT / 0.003; // sqrt(px*px+py*py); double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz); double M = Part->M; double vx = px/M; double vy = py/M; double vz = pz/M; double qm = q/M; double ax = qm*(B_z*vy - B_y*vz); double ay = qm*(B_x*vz - B_z*vx); double az = qm*(B_y*vx - B_x*vy); double dt = 1/p; if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ????? double xold=Xvertex1; double x=xold; double yold=Yvertex1; double y=yold; double zold=Zvertex1; double z=zold; double VTold = pt/M; //=sqrt(vx*vx+vy*vy); unsigned int k = 0; double VTratio=0; double R_max2 = R_max*R_max; double r2=0; // will be x*x+y*y while(k < MAXITERATION){ k++; vx += ax*dt; vy += ay*dt; vz += az*dt; VTratio = VTold/sqrt(vx*vx+vy*vy); vx *= VTratio; vy *= VTratio; ax = qm*(B_z*vy - B_y*vz); ay = qm*(B_x*vz - B_z*vx); az = qm*(B_y*vx - B_x*vy); x += vx*dt; y += vy*dt; z += vz*dt; r2 = x*x + y*y; if( r2 > R_max2 ){ x /= r2/R_max2; y /= r2/R_max2; break; } if( fabs(z)>z_max)break; xold = x; yold = y; zold = z; } // while loop if(k == MAXITERATION) loop_overflow_counter++; //cout << "too short loop in " << loop_overflow_counter << " cases" << endl; if(x!=0 && y!=0 && z!=0) { float Theta = atan2(sqrt(r2),z); double eta = -log(tan(Theta/2.)); double phi = atan2(y,x); momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E); } } // if b_x or b_y non zero } void TrackPropagation::bfield(TRootGenParticle *Part) { // initialisation, valid for z_max==0, R_max==0 and q==0 Part->EtaCalo = Part->Eta; Part->PhiCalo = Part->Phi;//-atan2(Part->Px,Part->Py); if (!DET->FLAG_bfield ) return; q = Charge(Part->PID); if(q==0) return; if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;} if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;} if (B_x== 0 && B_y== 0) { // faster if only B_z if (B_z==0) return; // nothing to do // initial conditions: // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT; // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z; // 1. initial transverse momentum p_{T0} : Part->PT // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0) // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m // giration frequency \omega = q/(gamma m) B_z // helix radius r = p_T0 / (omega gamma m) phi_0 = -atan2(Part->Px,Part->Py); gammam = Part->E; // here c==1 //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl; omega = q * B_z /gammam; r = Part->PT / (omega * gammam); // 2. Helix parameters : center coordinates in transverse plane // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0) // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c} x_c = Part->X - r*cos(phi_0); /// TEST !! y_c = Part->Y - r*sin(phi_0); R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) ); Phi_c = atan2(y_c,x_c); // 3. time evaluation t = min(t_T, t_z) // t_T : time to exit from the sides // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega // t_z : time to exit from the front or the back // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0)) rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable t_T=0; int sign_pz= (Part->Pz >0) ? 1 : -1; t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ; if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z; else { t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega; t = min(t_T,t_z); } // 4. position in terms of x(t), y(t), z(t) // x(t) = x_c + r cos (omega t + phi_0) // y(t) = y_c + r sin (omega t + phi_0) // z(t) = z_0 + (p_Z0/gammam) t x_t = x_c + r * cos(omega * t + phi_0); y_t = y_c + r * sin(omega * t + phi_0); z_t = Part->Z + Part->Pz / gammam * t; // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t) // R(t) = sqrt(x(t)² + y(t)²) // Phi(t) = atan(y(t)/x(t)) // Theta(t) = atan(R(t)/z(t)) // Eta(t) = -ln tan (Theta(t)/2) R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) ); Phi_t = atan2( y_t, x_t); if(R_t>0) { Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t)); Eta_t = - log(tan(Theta_t/2.)); } else{ Theta_t=0; Eta_t = UNDEFINED; } /* Not needed here. but these formulae are correct ------- Px_t = - Part->PT * sin(omega*t + phi_0); Py_t = Part->PT * cos(omega*t + phi_0); Pz_t = Part->Pz; PT_t = sqrt(Px_t*Px_t + Py_t*Py_t); p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t); E_t=sqrt(Part->M*Part->M +p_t); //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.; //if(p_t>0) Theta_t = acos(Pz_t/p_t); momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t); */ Part->EtaCalo = Eta_t; Part->PhiCalo = Phi_t; return; // test zone --- /* cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl; double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.; double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.; if(0 && fabs(Eta_t -Eta_t2)>1e-310) { cout << "ERROR-BUG: Eta_t != Eta_t2\n"; cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl; } double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check if(fabs(R_t - R_t2) > 1e-7) cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl; if( fabs(E - gammam) > 1e-3 ) { cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n"; cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; } if( fabs(PT_t - Part->PT) > 1e-10 ) { cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. "; cout << "(at " << 100*(PT_t - Part->PT) << "%)\n"; } if(momentum.Pz() != Pz_t) cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n"; double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz); if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) { cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n"; cout << temp_p << "\t" << temp_p0 << endl; } // if x_c == y_c ==0 (set it by hand!), easy cross-check //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl; */ } else { // if B_x or B_y are non zero: longer computation //cout << "bfield de loic\n"; float Xvertex1 = Part->X; float Yvertex1 = Part->Y; float Zvertex1 = Part->Z; //out of tracking coverage? if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;} if(fabs(Zvertex1) > z_max){return;} double px = Part->Px / 0.003; double py = Part->Py / 0.003; double pz = Part->Pz / 0.003; double pt = Part->PT / 0.003; // sqrt(px*px+py*py); double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz); double M = Part->M; double vx = px/M; double vy = py/M; double vz = pz/M; double qm = q/M; double ax = qm*(B_z*vy - B_y*vz); double ay = qm*(B_x*vz - B_z*vx); double az = qm*(B_y*vx - B_x*vy); double dt = 1/p; if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ????? double xold=Xvertex1; double x=xold; double yold=Yvertex1; double y=yold; double zold=Zvertex1; double z=zold; double VTold = pt/M; //=sqrt(vx*vx+vy*vy); unsigned int k = 0; double VTratio=0; double R_max2 = R_max*R_max; double r2=0; // will be x*x+y*y while(k < MAXITERATION){ k++; vx += ax*dt; vy += ay*dt; vz += az*dt; VTratio = VTold/sqrt(vx*vx+vy*vy); vx *= VTratio; vy *= VTratio; ax = qm*(B_z*vy - B_y*vz); ay = qm*(B_x*vz - B_z*vx); az = qm*(B_y*vx - B_x*vy); x += vx*dt; y += vy*dt; z += vz*dt; r2 = x*x + y*y; if( r2 > R_max2 ){ x /= r2/R_max2; y /= r2/R_max2; break; } if( fabs(z)>z_max)break; xold = x; yold = y; zold = z; } // while loop if(k == MAXITERATION) loop_overflow_counter++; //cout << "too short loop in " << loop_overflow_counter << " cases" << endl; float Theta=0; if(x!=0 && y!=0 && z!=0) { Theta = atan2(sqrt(r2),z); Part->EtaCalo = -log(tan(Theta/2.)); Part->PhiCalo = atan2(y,x); //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E); } } // if b_x or b_y non zero }