//STARTHEADER
// $Id: GridMedianBackgroundEstimator.cc 999 2013-03-04 11:48:06Z pavel $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//ENDHEADER
#include "fastjet/tools/GridMedianBackgroundEstimator.hh"
using namespace std;
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//----------------------------------------------------------------------
// setting a new event
//----------------------------------------------------------------------
// tell the background estimator that it has a new event, composed
// of the specified particles.
void GridMedianBackgroundEstimator::set_particles(const vector & particles) {
fill(_scalar_pt.begin(), _scalar_pt.end(), 0.0);
for (unsigned i = 0; i < particles.size(); i++) {
int j = igrid(particles[i]);
if (j >= 0){
if (_rescaling_class == 0)
_scalar_pt[j] += particles[i].perp();
else
_scalar_pt[j] += particles[i].perp()/(*_rescaling_class)(particles[i]);
}
}
sort(_scalar_pt.begin(), _scalar_pt.end());
_has_particles = true;
}
//----------------------------------------------------------------------
// retrieving fundamental information
//----------------------------------------------------------------------
// get rho, the median background density per unit area
double GridMedianBackgroundEstimator::rho() const {
verify_particles_set();
return _percentile(_scalar_pt, 0.5) / _cell_area;
}
//----------------------------------------------------------------------
// get sigma, the background fluctuations per unit area; must be
// multipled by sqrt(area) to get fluctuations for a region of a
// given area.
double GridMedianBackgroundEstimator::sigma() const{
verify_particles_set();
// watch out: by definition, our sigma is the standard deviation of
// the pt density multiplied by the square root of the cell area
return (_percentile(_scalar_pt, 0.5) -
_percentile(_scalar_pt, (1.0-0.6827)/2.0)
)/sqrt(_cell_area);
}
//----------------------------------------------------------------------
// get rho, the background density per unit area, locally at the
// position of a given jet. Note that this is not const, because a
// user may then wish to query other aspects of the background that
// could depend on the position of the jet last used for a rho(jet)
// determination.
double GridMedianBackgroundEstimator::rho(const PseudoJet & jet) {
verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*rho();
}
//----------------------------------------------------------------------
// get sigma, the background fluctuations per unit area, locally at
// the position of a given jet. As for rho(jet), it is non-const.
double GridMedianBackgroundEstimator::sigma(const PseudoJet & jet){
verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*sigma();
}
//----------------------------------------------------------------------
// verify that particles have been set and throw an error if not
void GridMedianBackgroundEstimator::verify_particles_set() const {
if (!_has_particles) throw Error("GridMedianBackgroundEstimator::rho() or sigma() called without particles having been set");
}
//----------------------------------------------------------------------
// description
//----------------------------------------------------------------------
string GridMedianBackgroundEstimator::description() const {
ostringstream desc;
desc << "GridMedianBackgroundEstimator, with grid extension |y| < " << _ymax
<< " and requested grid spacing = " << _requested_grid_spacing;
return desc.str();
}
//----------------------------------------------------------------------
// configuring the behaviour
//----------------------------------------------------------------------
// Set a pointer to a class that calculates the rescaling factor as
// a function of the jet (position). Note that the rescaling factor
// is used both in the determination of the "global" rho (the pt/A
// of each jet is divided by this factor) and when asking for a
// local rho (the result is multiplied by this factor).
//
// The BackgroundRescalingYPolynomial class can be used to get a
// rescaling that depends just on rapidity.
//
// Note that this has to be called BEFORE any attempt to do an
// actual computation
void GridMedianBackgroundEstimator::set_rescaling_class(const FunctionOfPseudoJet * rescaling_class_in) {
// The rescaling is taken into account when particles are set. So
// you need to call set_particles again if you set the rescaling
// class. We thus warn if there are already some available
// particles
if (_has_particles)
_warning_rescaling.warn("GridMedianBackgroundEstimator::set_rescaling_class(): trying to set the rescaling class when there are already particles that have been set is dangerous: the rescaling will not affect the already existing particles resulting in mis-estimation of rho. You need to call set_particles() again before proceeding with any background estimation.");
BackgroundEstimatorBase::set_rescaling_class(rescaling_class_in);
}
//----------------------------------------------------------------------
// protected material
//----------------------------------------------------------------------
// configure the grid
void GridMedianBackgroundEstimator::setup_grid() {
// since we've exchanged the arguments of the grid constructor,
// there's a danger of calls with exchanged ymax,spacing arguments --
// the following check should catch most such situations.
assert(_ymax>0 && _ymax - _ymin >= _requested_grid_spacing);
// this grid-definition code is becoming repetitive -- it should
// probably be moved somewhere central...
double ny_double = (_ymax-_ymin) / _requested_grid_spacing;
_ny = int(ny_double+0.5);
_dy = (_ymax-_ymin) / _ny;
_nphi = int (twopi / _requested_grid_spacing + 0.5);
_dphi = twopi / _nphi;
// some sanity checking (could throw a fastjet::Error)
assert(_ny >= 1 && _nphi >= 1);
_ntotal = _nphi * _ny;
_scalar_pt.resize(_ntotal);
_cell_area = _dy * _dphi;
}
//----------------------------------------------------------------------
// retrieve the grid cell index for a given PseudoJet
int GridMedianBackgroundEstimator::igrid(const PseudoJet & p) const {
// directly taking int does not work for values between -1 and 0
// so use floor instead
// double iy_double = (p.rap() - _ymin) / _dy;
// if (iy_double < 0.0) return -1;
// int iy = int(iy_double);
// if (iy >= _ny) return -1;
// writing it as below gives a huge speed gain (factor two!). Even
// though answers are identical and the routine here is not the
// speed-critical step. It's not at all clear why.
int iy = int(floor( (p.rap() - _ymin) / _dy ));
if (iy < 0 || iy >= _ny) return -1;
int iphi = int( p.phi()/_dphi );
assert(iphi >= 0 && iphi <= _nphi);
if (iphi == _nphi) iphi = 0; // just in case of rounding errors
int igrid_res = iy*_nphi + iphi;
assert (igrid_res >= 0 && igrid_res < _ny*_nphi);
return igrid_res;
}
FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh