/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include "Pythia.h"
#include "Pythia8Plugins/CombineMatchingInput.h"
#include "TROOT.h"
#include "TApplication.h"
#include "TFile.h"
#include "TObjArray.h"
#include "TStopwatch.h"
#include "TDatabasePDG.h"
#include "TParticlePDG.h"
#include "TLorentzVector.h"
#include "modules/Delphes.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesLHEFReader.h"
#include "ExRootAnalysis/ExRootTreeWriter.h"
#include "ExRootAnalysis/ExRootTreeBranch.h"
#include "ExRootAnalysis/ExRootProgressBar.h"
using namespace std;
//---------------------------------------------------------------------------
void ConvertInput(Long64_t eventCounter, Pythia8::Pythia *pythia,
ExRootTreeBranch *branch, DelphesFactory *factory,
TObjArray *allParticleOutputArray, TObjArray *stableParticleOutputArray, TObjArray *partonOutputArray,
TStopwatch *readStopWatch, TStopwatch *procStopWatch)
{
int i;
HepMCEvent *element;
Candidate *candidate;
TDatabasePDG *pdg;
TParticlePDG *pdgParticle;
Int_t pdgCode;
Int_t pid, status;
Double_t px, py, pz, e, mass;
Double_t x, y, z, t;
// event information
element = static_cast(branch->NewEntry());
element->Number = eventCounter;
element->ProcessID = pythia->info.code();
element->MPI = 1;
element->Weight = pythia->info.weight();
element->Scale = pythia->info.QRen();
element->AlphaQED = pythia->info.alphaEM();
element->AlphaQCD = pythia->info.alphaS();
element->ID1 = pythia->info.id1();
element->ID2 = pythia->info.id2();
element->X1 = pythia->info.x1();
element->X2 = pythia->info.x2();
element->ScalePDF = pythia->info.QFac();
element->PDF1 = pythia->info.pdf1();
element->PDF2 = pythia->info.pdf2();
element->ReadTime = readStopWatch->RealTime();
element->ProcTime = procStopWatch->RealTime();
pdg = TDatabasePDG::Instance();
for(i = 1; i < pythia->event.size(); ++i)
{
Pythia8::Particle &particle = pythia->event[i];
pid = particle.id();
status = particle.statusHepMC();
px = particle.px(); py = particle.py(); pz = particle.pz(); e = particle.e(); mass = particle.m();
x = particle.xProd(); y = particle.yProd(); z = particle.zProd(); t = particle.tProd();
candidate = factory->NewCandidate();
candidate->PID = pid;
pdgCode = TMath::Abs(candidate->PID);
candidate->Status = status;
candidate->M1 = particle.mother1() - 1;
candidate->M2 = particle.mother2() - 1;
candidate->D1 = particle.daughter1() - 1;
candidate->D2 = particle.daughter2() - 1;
pdgParticle = pdg->GetParticle(pid);
candidate->Charge = pdgParticle ? Int_t(pdgParticle->Charge()/3.0) : -999;
candidate->Mass = mass;
candidate->Momentum.SetPxPyPzE(px, py, pz, e);
candidate->Position.SetXYZT(x, y, z, t);
allParticleOutputArray->Add(candidate);
if(!pdgParticle) continue;
if(status == 1)
{
stableParticleOutputArray->Add(candidate);
}
else if(pdgCode <= 5 || pdgCode == 21 || pdgCode == 15)
{
partonOutputArray->Add(candidate);
}
}
}
//---------------------------------------------------------------------------
static bool interrupted = false;
void SignalHandler(int sig)
{
interrupted = true;
}
// Single-particle gun. The particle must be a colour singlet.
// Input: flavour, energy, direction (theta, phi).
// If theta < 0 then random choice over solid angle.
// Optional final argument to put particle at rest => E = m.
// from pythia8 example 21
void fillParticle(int id, double ee_max, double thetaIn, double phiIn,
Pythia8::Event& event, Pythia8::ParticleData& pdt, Pythia8::Rndm& rndm, bool atRest = false) {
// Reset event record to allow for new event.
event.reset();
// Angles uniform in solid angle.
double cThe, sThe, phi, ee;
cThe = 2. * rndm.flat() - 1.;
sThe = Pythia8::sqrtpos(1. - cThe * cThe);
phi = 2. * M_PI * rndm.flat();
ee = pow(10,1+(log10(ee_max)-1)*rndm.flat());
double mm = pdt.mSel(id);
double pp = Pythia8::sqrtpos(ee*ee - mm*mm);
// Store the particle in the event record.
event.append( id, 1, 0, 0, pp * sThe * cos(phi), pp * sThe * sin(phi), pp * cThe, ee, mm);
}
void fillPartons(int type, double ee_max, Pythia8::Event& event, Pythia8::ParticleData& pdt,
Pythia8::Rndm& rndm) {
// Reset event record to allow for new event.
event.reset();
// Angles uniform in solid angle.
double cThe, sThe, phi, ee;
// Information on a q qbar system, to be hadronized.
cThe = 2. * rndm.flat() - 1.;
sThe = Pythia8::sqrtpos(1. - cThe * cThe);
phi = 2. * M_PI * rndm.flat();
ee = pow(10,1+(log10(ee_max)-1)*rndm.flat());
double mm = pdt.m0(type);
double pp = Pythia8::sqrtpos(ee*ee - mm*mm);
if (type == 21)
{
event.append( 21, 23, 101, 102, pp * sThe * cos(phi), pp * sThe * sin(phi), pp * cThe, ee);
event.append( 21, 23, 102, 101, -pp * sThe * cos(phi), -pp * sThe * sin(phi), -pp * cThe, ee);
}
else
{
event.append( type, 23, 101, 0, pp * sThe * cos(phi), pp * sThe * sin(phi), pp * cThe, ee, mm);
event.append( -type, 23, 0, 101, -pp * sThe * cos(phi), -pp * sThe * sin(phi), -pp * cThe, ee, mm);
}
}
//---------------------------------------------------------------------------
int main(int argc, char *argv[])
{
char appName[] = "DelphesPythia8";
stringstream message;
FILE *inputFile = 0;
TFile *outputFile = 0;
TStopwatch readStopWatch, procStopWatch;
ExRootTreeWriter *treeWriter = 0;
ExRootTreeBranch *branchEvent = 0;
ExRootTreeBranch *branchEventLHEF = 0, *branchWeightLHEF = 0;
ExRootConfReader *confReader = 0;
Delphes *modularDelphes = 0;
DelphesFactory *factory = 0;
TObjArray *stableParticleOutputArray = 0, *allParticleOutputArray = 0, *partonOutputArray = 0;
TObjArray *stableParticleOutputArrayLHEF = 0, *allParticleOutputArrayLHEF = 0, *partonOutputArrayLHEF = 0;
DelphesLHEFReader *reader = 0;
Long64_t eventCounter, errorCounter;
Long64_t numberOfEvents, timesAllowErrors;
Pythia8::Pythia *pythia = 0;
// for matching
Pythia8::CombineMatchingInput *combined = 0;
Pythia8::UserHooks* matching = 0;
if(argc != 4)
{
cout << " Usage: " << appName << " config_file" << " pythia_card" << " output_file" << endl;
cout << " config_file - configuration file in Tcl format," << endl;
cout << " pythia_card - Pythia8 configuration file," << endl;
cout << " output_file - output file in ROOT format." << endl;
return 1;
}
signal(SIGINT, SignalHandler);
gROOT->SetBatch();
int appargc = 1;
char *appargv[] = {appName};
TApplication app(appName, &appargc, appargv);
try
{
outputFile = TFile::Open(argv[3], "CREATE");
if(outputFile == NULL)
{
message << "can't create output file " << argv[3];
throw runtime_error(message.str());
}
treeWriter = new ExRootTreeWriter(outputFile, "Delphes");
branchEvent = treeWriter->NewBranch("Event", HepMCEvent::Class());
confReader = new ExRootConfReader;
confReader->ReadFile(argv[1]);
modularDelphes = new Delphes("Delphes");
modularDelphes->SetConfReader(confReader);
modularDelphes->SetTreeWriter(treeWriter);
factory = modularDelphes->GetFactory();
allParticleOutputArray = modularDelphes->ExportArray("allParticles");
stableParticleOutputArray = modularDelphes->ExportArray("stableParticles");
partonOutputArray = modularDelphes->ExportArray("partons");
// Initialize Pythia
pythia = new Pythia8::Pythia;
// jet matching
matching = combined->getHook(*pythia);
if (!matching)
{
throw runtime_error("can't do matching");
}
pythia->setUserHooksPtr(matching);
if(pythia == NULL)
{
throw runtime_error("can't create Pythia instance");
}
// Read in commands from configuration file
if(!pythia->readFile(argv[2]))
{
message << "can't read Pythia8 configuration file " << argv[2] << endl;
throw runtime_error(message.str());
}
// Extract settings to be used in the main program
numberOfEvents = pythia->mode("Main:numberOfEvents");
timesAllowErrors = pythia->mode("Main:timesAllowErrors");
// Check if particle gun
if (!pythia->flag("Main:spareFlag1"))
{
inputFile = fopen(pythia->word("Beams:LHEF").c_str(), "r");
if(inputFile)
{
reader = new DelphesLHEFReader;
reader->SetInputFile(inputFile);
branchEventLHEF = treeWriter->NewBranch("EventLHEF", LHEFEvent::Class());
branchWeightLHEF = treeWriter->NewBranch("WeightLHEF", LHEFWeight::Class());
allParticleOutputArrayLHEF = modularDelphes->ExportArray("allParticlesLHEF");
stableParticleOutputArrayLHEF = modularDelphes->ExportArray("stableParticlesLHEF");
partonOutputArrayLHEF = modularDelphes->ExportArray("partonsLHEF");
}
}
modularDelphes->InitTask();
pythia->init();
// ExRootProgressBar progressBar(numberOfEvents - 1);
ExRootProgressBar progressBar(-1);
// Loop over all events
errorCounter = 0;
treeWriter->Clear();
modularDelphes->Clear();
readStopWatch.Start();
for(eventCounter = 0; eventCounter < numberOfEvents && !interrupted; ++eventCounter)
{
while(reader && reader->ReadBlock(factory, allParticleOutputArrayLHEF,
stableParticleOutputArrayLHEF, partonOutputArrayLHEF) && !reader->EventReady());
if (pythia->flag("Main:spareFlag1"))
{
if (pythia->mode("Main:spareMode1") == 11 || pythia->mode("Main:spareMode1") == 13 || pythia->mode("Main:spareMode1") == 15 || pythia->mode("Main:spareMode1") == 22)
{
fillParticle( pythia->mode("Main:spareMode1"), pythia->parm("Main:spareParm1"), -1., 0.,pythia->event, pythia->particleData, pythia->rndm, 0);
}
else fillPartons( pythia->mode("Main:spareMode1"), pythia->parm("Main:spareParm1"), pythia->event, pythia->particleData, pythia->rndm);
}
if(!pythia->next())
{
// If failure because reached end of file then exit event loop
if(pythia->info.atEndOfFile())
{
cerr << "Aborted since reached end of Les Houches Event File" << endl;
break;
}
// First few failures write off as "acceptable" errors, then quit
if(++errorCounter > timesAllowErrors)
{
cerr << "Event generation aborted prematurely, owing to error!" << endl;
break;
}
modularDelphes->Clear();
reader->Clear();
continue;
}
readStopWatch.Stop();
procStopWatch.Start();
ConvertInput(eventCounter, pythia, branchEvent, factory,
allParticleOutputArray, stableParticleOutputArray, partonOutputArray,
&readStopWatch, &procStopWatch);
modularDelphes->ProcessTask();
procStopWatch.Stop();
if(reader)
{
reader->AnalyzeEvent(branchEventLHEF, eventCounter, &readStopWatch, &procStopWatch);
reader->AnalyzeWeight(branchWeightLHEF);
}
treeWriter->Fill();
treeWriter->Clear();
modularDelphes->Clear();
if(reader) reader->Clear();
readStopWatch.Start();
progressBar.Update(eventCounter, eventCounter);
}
progressBar.Update(eventCounter, eventCounter, kTRUE);
progressBar.Finish();
pythia->stat();
modularDelphes->FinishTask();
treeWriter->Write();
cout << "** Exiting..." << endl;
delete reader;
delete pythia;
delete modularDelphes;
delete confReader;
delete treeWriter;
delete outputFile;
return 0;
}
catch(runtime_error &e)
{
if(treeWriter) delete treeWriter;
if(outputFile) delete outputFile;
cerr << "** ERROR: " << e.what() << endl;
return 1;
}
}