/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class TimeSmearing
*
* Performs transverse momentum resolution smearing.
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/TimeSmearing.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "TDatabasePDG.h"
#include "TFormula.h"
#include "TLorentzVector.h"
#include "TMath.h"
#include "TObjArray.h"
#include "TRandom3.h"
#include "TString.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
TimeSmearing::TimeSmearing() :
fItInputArray(0)
{
}
//------------------------------------------------------------------------------
TimeSmearing::~TimeSmearing()
{
}
//------------------------------------------------------------------------------
void TimeSmearing::Init()
{
// read resolution formula
fTimeResolution = GetDouble("TimeResolution", 1.);
// import input array
fEtaMax = GetDouble("EtaMax", 6.);
fInputArray = ImportArray(GetString("InputArray", "MuonMomentumSmearing/muons"));
fItInputArray = fInputArray->MakeIterator();
// create output array
fOutputArray = ExportArray(GetString("OutputArray", "muons"));
}
//------------------------------------------------------------------------------
void TimeSmearing::Finish()
{
if(fItInputArray) delete fItInputArray;
}
//------------------------------------------------------------------------------
void TimeSmearing::Process()
{
Candidate *candidate, *mother;
Double_t ti, tf_smeared, tf;
Double_t pt, eta, phi, e, p, l;
Double_t sigma_t, beta_particle;
const Double_t c_light = 2.99792458E8;
cout << " STARTINNNGG ---------->" << endl;
fItInputArray->Reset();
while((candidate = static_cast(fItInputArray->Next())))
{
ti = candidate->InitialPosition.T()*1.0E-3/c_light;
tf = candidate->Position.T()*1.0E-3/c_light;
// dummy, only need to properly call TFormula
const TLorentzVector &candidatePosition = candidate->Position;
const TLorentzVector &candidateMomentum = candidate->Momentum;
eta = candidatePosition.Eta();
phi = candidatePosition.Phi();
pt = candidateMomentum.Pt();
e = candidateMomentum.E();
p = candidateMomentum.P();
beta_particle = p/e;
l = candidate->L;
// apply smearing formula
if(candidate->Charge != 0)
{
tf_smeared = tf + fTimeResolution*gRandom->Gaus(0, 1);
//mother = candidate;
//candidate = static_cast(candidate->Clone()); // I am not sure that we need these lines !!!
//candidate->AddCandidate(mother);
candidate->InitialPosition.SetT((100+ti)*1.0E3*c_light);
candidate->Position.SetT(tf_smeared*1.0E3*c_light);
candidate->ErrorT = fTimeResolution*1.0E3*c_light;
fOutputArray->Add(candidate);
}
else
{
sigma_t = sqrt(pow(20,2) + pow(150,2)/e);
ti = sigma_t - l*1.0E3/(c_light*beta_particle);
candidate->InitialPosition.SetT(ti);
candidate->ErrorT = sigma_t*1.0E3*c_light; // Do we need to sum with 100 like in upside ?
fOutputArray->Add(candidate);
}
}
}
//------------------------------------------------------------------------------