/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class TimeOfFlight * * Calculates Time-Of-Flight * * \author Michele Selvaggi - CERN * */ #include "modules/TimeOfFlight.h" #include "classes/DelphesClasses.h" #include "classes/DelphesFactory.h" #include "classes/DelphesFormula.h" #include "ExRootAnalysis/ExRootClassifier.h" #include "ExRootAnalysis/ExRootFilter.h" #include "ExRootAnalysis/ExRootResult.h" #include "TDatabasePDG.h" #include "TFormula.h" #include "TLorentzVector.h" #include "TMath.h" #include "TObjArray.h" #include "TRandom3.h" #include "TString.h" #include #include #include #include using namespace std; //------------------------------------------------------------------------------ TimeOfFlight::TimeOfFlight() : fItTrackInputArray(0), fItVertexInputArray(0) { } //------------------------------------------------------------------------------ TimeOfFlight::~TimeOfFlight() { } //------------------------------------------------------------------------------ void TimeOfFlight::Init() { // method to compute vertex time fVertexTimeMode = GetInt("VertexTimeMode", 0); // import track input array fTrackInputArray = ImportArray(GetString("TrackInputArray", "MuonMomentumSmearing/muons")); fItTrackInputArray = fTrackInputArray->MakeIterator(); // import vertex input array fVertexInputArray = ImportArray(GetString("VertexInputArray", "TruthVertexFinder/vertices")); fItVertexInputArray = fVertexInputArray->MakeIterator(); // create output array fOutputArray = ExportArray(GetString("OutputArray", "tracks")); } //------------------------------------------------------------------------------ void TimeOfFlight::Finish() { if(fItTrackInputArray) delete fItTrackInputArray; if(fItVertexInputArray) delete fItVertexInputArray; } //------------------------------------------------------------------------------ void TimeOfFlight::Process() { Candidate *candidate, *particle, *vertex, *constituent, *mother; Double_t ti, t_truth, tf; Double_t l, tof, beta, p, mass; const Double_t c_light = 2.99792458E8; // first compute momenta of vertices based on reconstructed tracks ComputeVertexMomenta(); fItTrackInputArray->Reset(); while((candidate = static_cast(fItTrackInputArray->Next()))) { particle = static_cast(candidate->GetCandidates()->At(0)); const TLorentzVector &candidateInitialPosition = particle->Position; const TLorentzVector &candidateInitialPositionSmeared = candidate->InitialPosition; const TLorentzVector &candidateFinalPosition = candidate->Position; const TLorentzVector &candidateMomentum = particle->Momentum; // time at vertex from MC truth t_truth = candidateInitialPosition.T() * 1.0E-3 / c_light; if (candidate->Position.Vect().Mag() < 5.) continue; // various options on how to calculate the vertex time ti=0; switch (fVertexTimeMode) { case 0: { // assume ti from MC truth // most aggressive, we are cheating and assume we can perfectly reconstruct time of primary and secondary vertices ti = t_truth; break; } case 1: { // always assume t=0, most conservative assumption // reasonable assumption for particles originating from PV, if beamSpot has small time spread compared to timing resolution // probably bad assumption for particles from highly displaced vertices (i.e Ks) ti=0; break; } case 2: { // same as 2 but attempt at estimate beta from vertex mass and momentum beta = 1.; fItVertexInputArray->Reset(); while((vertex = static_cast(fItVertexInputArray->Next()))) { TIter itGenParts(vertex->GetCandidates()); itGenParts.Reset(); while((constituent = static_cast(itGenParts.Next()))) { if (particle == constituent) { beta = vertex->Momentum.Beta(); break; } } } // end vertex loop // track displacement to be possibily replaced by vertex fitted position ti = candidateInitialPositionSmeared.Vect().Mag() * 1.0E-3 /(beta*c_light); } break; } //ti = ti - t_truth; p = candidateMomentum.P(); // this quantity has already been smeared by another module tf = candidateFinalPosition.T() * 1.0E-3 / c_light; // calculate time-of-flight tof = tf - ti; // path length of the full helix l = candidate->L * 1.0E-3; // particle velocity beta = l/(c_light*tof); // calculate particle mass (i.e particle ID) mass = 0.; if (beta<1) mass = p* TMath::Sqrt(1/(beta*beta) - 1); mother = candidate; candidate = static_cast(candidate->Clone()); // update time at vertex based on option candidate->InitialPosition.SetT(ti * 1.0E3 * c_light); // update particle mass based on TOF-based PID candidate->Momentum.SetVectM(candidateMomentum.Vect(), mass); candidate->AddCandidate(mother); fOutputArray->Add(candidate); } } //------------------------------------------------------------------------------ void TimeOfFlight::ComputeVertexMomenta() { Candidate *track, *constituent, *particle, *vertex; fItVertexInputArray->Reset(); while((vertex = static_cast(fItVertexInputArray->Next()))) { TIter itGenParts(vertex->GetCandidates()); itGenParts.Reset(); while((constituent = static_cast(itGenParts.Next()))) { fItTrackInputArray->Reset(); while((track = static_cast(fItTrackInputArray->Next()))) { // get gen part that generated track particle = static_cast(track->GetCandidates()->At(0)); if (particle == constituent) { vertex->Momentum += track->Momentum; } } // end track loop } // end vertex consitutent loop } // end vertex loop }