/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class SimpleCalorimeter
*
* Fills SimpleCalorimeter towers, performs SimpleCalorimeter resolution smearing,
* and creates energy flow objects (tracks, photons, and neutral hadrons).
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/SimpleCalorimeter.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "TMath.h"
#include "TString.h"
#include "TFormula.h"
#include "TRandom3.h"
#include "TObjArray.h"
#include "TDatabasePDG.h"
#include "TLorentzVector.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
SimpleCalorimeter::SimpleCalorimeter() :
fResolutionFormula(0),
fItParticleInputArray(0), fItTrackInputArray(0)
{
Int_t i;
fResolutionFormula = new DelphesFormula;
for(i = 0; i < 2; ++i)
{
fTowerTrackArray[i] = new TObjArray;
fItTowerTrackArray[i] = fTowerTrackArray[i]->MakeIterator();
}
}
//------------------------------------------------------------------------------
SimpleCalorimeter::~SimpleCalorimeter()
{
Int_t i;
if(fResolutionFormula) delete fResolutionFormula;
for(i = 0; i < 2; ++i)
{
if(fTowerTrackArray[i]) delete fTowerTrackArray[i];
if(fItTowerTrackArray[i]) delete fItTowerTrackArray[i];
}
}
//------------------------------------------------------------------------------
void SimpleCalorimeter::Init()
{
ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
Double_t fraction;
TBinMap::iterator itEtaBin;
set< Double_t >::iterator itPhiBin;
vector< Double_t > *phiBins;
// read eta and phi bins
param = GetParam("EtaPhiBins");
size = param.GetSize();
fBinMap.clear();
fEtaBins.clear();
fPhiBins.clear();
for(i = 0; i < size/2; ++i)
{
paramEtaBins = param[i*2];
sizeEtaBins = paramEtaBins.GetSize();
paramPhiBins = param[i*2 + 1];
sizePhiBins = paramPhiBins.GetSize();
for(j = 0; j < sizeEtaBins; ++j)
{
for(k = 0; k < sizePhiBins; ++k)
{
fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
}
}
}
// for better performance we transform map of sets to parallel vectors:
// vector< double > and vector< vector< double >* >
for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
{
fEtaBins.push_back(itEtaBin->first);
phiBins = new vector< double >(itEtaBin->second.size());
fPhiBins.push_back(phiBins);
phiBins->clear();
for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
{
phiBins->push_back(*itPhiBin);
}
}
// read energy fractions for different particles
param = GetParam("EnergyFraction");
size = param.GetSize();
// set default energy fractions values
fFractionMap.clear();
fFractionMap[0] = 1.0;
for(i = 0; i < size/2; ++i)
{
paramFractions = param[i*2 + 1];
fraction = paramFractions[0].GetDouble();
fFractionMap[param[i*2].GetInt()] = fraction;
}
// read min E value for towers to be saved
fEnergyMin = GetDouble("EnergyMin", 0.0);
fEnergySignificanceMin = GetDouble("EnergySignificanceMin", 0.0);
// flag that says if current calo is Ecal of Hcal (will then fill correct values of Eem and Ehad)
fIsEcal = GetBool("IsEcal", false);
// switch on or off the dithering of the center of calorimeter towers
fSmearTowerCenter = GetBool("SmearTowerCenter", true);
// read resolution formulas
fResolutionFormula->Compile(GetString("ResolutionFormula", "0"));
// import array with output from other modules
fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
fItParticleInputArray = fParticleInputArray->MakeIterator();
fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
fItTrackInputArray = fTrackInputArray->MakeIterator();
// create output arrays
fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
fEFlowTowerOutputArray = ExportArray(GetString("EFlowTowerOutputArray", "eflowTowers"));
}
//------------------------------------------------------------------------------
void SimpleCalorimeter::Finish()
{
vector< vector< Double_t >* >::iterator itPhiBin;
if(fItParticleInputArray) delete fItParticleInputArray;
if(fItTrackInputArray) delete fItTrackInputArray;
for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
{
delete *itPhiBin;
}
}
//------------------------------------------------------------------------------
void SimpleCalorimeter::Process()
{
Candidate *particle, *track;
TLorentzVector position, momentum;
Short_t etaBin, phiBin, flags;
Int_t number;
Long64_t towerHit, towerEtaPhi, hitEtaPhi;
Double_t fraction;
Double_t energy;
Double_t sigma;
Int_t pdgCode;
TFractionMap::iterator itFractionMap;
vector< Double_t >::iterator itEtaBin;
vector< Double_t >::iterator itPhiBin;
vector< Double_t > *phiBins;
vector< Long64_t >::iterator itTowerHits;
DelphesFactory *factory = GetFactory();
fTowerHits.clear();
fTowerFractions.clear();
fTrackFractions.clear();
// loop over all particles
fItParticleInputArray->Reset();
number = -1;
while((particle = static_cast(fItParticleInputArray->Next())))
{
const TLorentzVector &particlePosition = particle->Position;
++number;
pdgCode = TMath::Abs(particle->PID);
itFractionMap = fFractionMap.find(pdgCode);
if(itFractionMap == fFractionMap.end())
{
itFractionMap = fFractionMap.find(0);
}
fraction = itFractionMap->second;
fTowerFractions.push_back(fraction);
if(fraction < 1.0E-9) continue;
// find eta bin [1, fEtaBins.size - 1]
itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
etaBin = distance(fEtaBins.begin(), itEtaBin);
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// find phi bin [1, phiBins.size - 1]
itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
phiBin = distance(phiBins->begin(), itPhiBin);
flags = 0;
flags |= (pdgCode == 11 || pdgCode == 22) << 1;
// make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
fTowerHits.push_back(towerHit);
}
// loop over all tracks
fItTrackInputArray->Reset();
number = -1;
while((track = static_cast(fItTrackInputArray->Next())))
{
const TLorentzVector &trackPosition = track->Position;
++number;
pdgCode = TMath::Abs(track->PID);
itFractionMap = fFractionMap.find(pdgCode);
if(itFractionMap == fFractionMap.end())
{
itFractionMap = fFractionMap.find(0);
}
fraction = itFractionMap->second;
fTrackFractions.push_back(fraction);
// find eta bin [1, fEtaBins.size - 1]
itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
etaBin = distance(fEtaBins.begin(), itEtaBin);
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// find phi bin [1, phiBins.size - 1]
itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
phiBin = distance(phiBins->begin(), itPhiBin);
flags = 1;
// make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
fTowerHits.push_back(towerHit);
}
// all hits are sorted first by eta bin number, then by phi bin number,
// then by flags and then by particle or track number
sort(fTowerHits.begin(), fTowerHits.end());
// loop over all hits
towerEtaPhi = 0;
fTower = 0;
for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
{
towerHit = (*itTowerHits);
flags = (towerHit >> 24) & 0x00000000000000FFLL;
number = (towerHit) & 0x0000000000FFFFFFLL;
hitEtaPhi = towerHit >> 32;
if(towerEtaPhi != hitEtaPhi)
{
// switch to next tower
towerEtaPhi = hitEtaPhi;
// finalize previous tower
FinalizeTower();
// create new tower
fTower = factory->NewCandidate();
phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// calculate eta and phi of the tower's center
fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
fTowerEdges[0] = fEtaBins[etaBin - 1];
fTowerEdges[1] = fEtaBins[etaBin];
fTowerEdges[2] = (*phiBins)[phiBin - 1];
fTowerEdges[3] = (*phiBins)[phiBin];
fTowerEnergy = 0.0;
fTrackEnergy[0] = 0.0;
fTrackEnergy[1] = 0.0;
fTowerTime = 0.0;
fTrackTime = 0.0;
fTowerTimeWeight = 0.0;
fTowerTrackHits = 0;
fTowerPhotonHits = 0;
fTowerTrackArray[0]->Clear();
fTowerTrackArray[1]->Clear();
}
// check for track hits
if(flags & 1)
{
++fTowerTrackHits;
track = static_cast(fTrackInputArray->At(number));
momentum = track->Momentum;
position = track->Position;
energy = momentum.E() * fTrackFractions[number];
fTrackTime += energy*position.T();
fTrackTimeWeight += energy;
if(fTrackFractions[number] > 1.0E-9)
{
sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
if(sigma/momentum.E() < track->TrackResolution)
{
fTrackEnergy[0] += energy;
fTowerTrackArray[0]->Add(track);
}
else
{
fTrackEnergy[1] += energy;
fTowerTrackArray[1]->Add(track);
}
}
else
{
fEFlowTrackOutputArray->Add(track);
}
continue;
}
// check for photon and electron hits in current tower
if(flags & 2) ++fTowerPhotonHits;
particle = static_cast(fParticleInputArray->At(number));
momentum = particle->Momentum;
position = particle->Position;
// fill current tower
energy = momentum.E() * fTowerFractions[number];
fTowerEnergy += energy;
fTowerTime += energy*position.T();
fTowerTimeWeight += energy;
fTower->AddCandidate(particle);
}
// finalize last tower
FinalizeTower();
}
//------------------------------------------------------------------------------
void SimpleCalorimeter::FinalizeTower()
{
Candidate *tower, *track, *mother;
Double_t energy, pt, eta, phi;
Double_t sigma;
Double_t time;
TLorentzVector momentum;
TFractionMap::iterator itFractionMap;
if(!fTower) return;
sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerEnergy);
energy = LogNormal(fTowerEnergy, sigma);
time = (fTowerTimeWeight < 1.0E-09 ) ? 0.0 : fTowerTime/fTowerTimeWeight;
sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
if(energy < fEnergyMin || energy < fEnergySignificanceMin*sigma) energy = 0.0;
if(fSmearTowerCenter)
{
eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
}
else
{
eta = fTowerEta;
phi = fTowerPhi;
}
pt = energy / TMath::CosH(eta);
fTower->Position.SetPtEtaPhiE(1.0, eta, phi, time);
fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
fTower->Eem = (!fIsEcal) ? 0 : energy;
fTower->Ehad = (fIsEcal) ? 0 : energy;
fTower->Edges[0] = fTowerEdges[0];
fTower->Edges[1] = fTowerEdges[1];
fTower->Edges[2] = fTowerEdges[2];
fTower->Edges[3] = fTowerEdges[3];
// fill SimpleCalorimeter towers
if(energy > 0.0) fTowerOutputArray->Add(fTower);
// fill e-flow candidates
energy -= fTrackEnergy[1];
fItTowerTrackArray[0]->Reset();
while((track = static_cast(fItTowerTrackArray[0]->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
track->Momentum *= energy/fTrackEnergy[0];
fEFlowTrackOutputArray->Add(track);
}
fItTowerTrackArray[1]->Reset();
while((track = static_cast(fItTowerTrackArray[1]->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
fEFlowTrackOutputArray->Add(track);
}
if(fTowerTrackArray[0]->GetEntriesFast() > 0) energy = 0.0;
sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
if(energy < fEnergyMin || energy < fEnergySignificanceMin*sigma) energy = 0.0;
// save energy excess as an energy flow tower
if(energy > 0.0)
{
// create new photon tower
tower = static_cast(fTower->Clone());
pt = energy / TMath::CosH(eta);
tower->Eem = (!fIsEcal) ? 0 : energy;
tower->Ehad = (fIsEcal) ? 0 : energy;
tower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
tower->PID = (fIsEcal) ? 22 : 0;
fEFlowTowerOutputArray->Add(tower);
}
}
//------------------------------------------------------------------------------
Double_t SimpleCalorimeter::LogNormal(Double_t mean, Double_t sigma)
{
Double_t a, b;
if(mean > 0.0)
{
b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
a = TMath::Log(mean) - 0.5*b*b;
return TMath::Exp(a + b*gRandom->Gaus(0.0, 1.0));
}
else
{
return 0.0;
}
}