/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class PhotonID
*
* Applies complex photon Id. Reconstructed photon candidtes are first separated into matched and non-matched to gen particles.
* Non-matched pass the "fake" efficiency. Matched photons get further splitted into isolated and non-isolated (user can choose criterion for isolation)
* Isolated photons pass the "prompt" efficiency while the non-isolated pass the "non-prompt" efficiency
*
* \author M. Selvaggi CERN
*
*/
#include "modules/PhotonID.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "TMath.h"
#include "TString.h"
#include "TFormula.h"
#include "TRandom3.h"
#include "TObjArray.h"
#include "TDatabasePDG.h"
#include "TLorentzVector.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
PhotonID::PhotonID() :
fPromptFormula(0), fNonPromptFormula(0), fFakeFormula(0), fItInputPhotonArray(0), fItInputGenArray(0)
{
fPromptFormula = new DelphesFormula;
fNonPromptFormula = new DelphesFormula;
fFakeFormula = new DelphesFormula;
}
//------------------------------------------------------------------------------
PhotonID::~PhotonID()
{
if(fPromptFormula) delete fPromptFormula;
if(fNonPromptFormula) delete fNonPromptFormula;
if(fFakeFormula) delete fFakeFormula;
}
//------------------------------------------------------------------------------
void PhotonID::Init()
{
// read PhotonID formulae
fPromptFormula->Compile(GetString("PromptFormula", "1.0"));
fNonPromptFormula->Compile(GetString("NonPromptFormula", "1.0"));
fFakeFormula->Compile(GetString("FakeFormula", "1.0"));
// import input arrays
fInputPhotonArray = ImportArray(GetString("InputPhotonArray", "PhotonIsolation/photons"));
fItInputPhotonArray = fInputPhotonArray->MakeIterator();
// use filtered collection for speed
fInputGenArray = ImportArray(GetString("InputGenArray", "GenParticleFilter/filteredParticles"));
fItInputGenArray = fInputGenArray->MakeIterator();
// min pt to be considered, make sure this threshold is higher than threshold in particle filter
fPTMin = GetDouble("PTMin", 10.0);
// to be tuned, since FS and delphes have different isolation profiles
fRelIsoMax = GetDouble("fRelIsoMax", 0.3);
// create output array
fOutputArray = ExportArray(GetString("OutputArray", "photons"));
}
//------------------------------------------------------------------------------
void PhotonID::Finish()
{
if(fItInputPhotonArray) delete fItInputPhotonArray;
if(fItInputGenArray) delete fItInputGenArray;
}
//------------------------------------------------------------------------------
void PhotonID::Process()
{
Candidate *candidate, *mother;
Double_t pt, eta, phi, e;
Double_t relIso;
Bool_t isolated;
//cout<< "---- new event ---------"<Reset();
while((candidate = static_cast(fItInputPhotonArray->Next())))
{
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->AddCandidate(mother);
const TLorentzVector &candidatePosition = candidate->Position;
const TLorentzVector &candidateMomentum = candidate->Momentum;
eta = candidatePosition.Eta();
phi = candidatePosition.Phi();
pt = candidateMomentum.Pt();
e = candidateMomentum.E();
if (pt < fPTMin) continue;
//cout<< " ---- photon -----: "<Uniform() > fFakeFormula->Eval(pt, eta, phi, e)) continue;
//cout<<" passed"<Status = 3;
fOutputArray->Add(candidate);
}
// if matches photon in gen collection
else
{
relIso = candidate->IsolationVar;
isolated = (relIso < 0.3);
//cout<<" Prompt!: "<Uniform() > fPromptFormula->Eval(pt, eta, phi, e)) continue;
//cout<<" passed"<Status = 1;
fOutputArray->Add(candidate);
}
// if non-isolated apply non-prompt formula
else
{
//cout<<" non-isolated!: "<Uniform() > fNonPromptFormula->Eval(pt, eta, phi, e)) continue;
//cout<<" passed"<Status = 2;
fOutputArray->Add(candidate);
}
}
}
}
//------------------------------------------------------------------------------
Bool_t PhotonID::isFake(const Candidate *obj){
const TLorentzVector &mom_rec = obj->Momentum;
Bool_t matches = false;
fItInputGenArray->Reset();
Candidate *gen;
while((gen = static_cast(fItInputGenArray->Next())))
{
const TLorentzVector &mom_gen = gen->Momentum;
Int_t status = gen->Status;
Int_t pdgCode = TMath::Abs(gen->PID);
Float_t dPtOverPt = TMath::Abs((mom_gen.Pt() - mom_rec.Pt())/mom_rec.Pt());
Float_t deltaR = mom_gen.DeltaR(mom_rec);
if (status != 1) continue;
if (pdgCode != 22) continue;
if (dPtOverPt > 0.5) continue;
if (deltaR > 0.1) continue;
matches = true;
break;
}
return !matches;
}