/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class ParticlePropagator
*
* Propagates charged and neutral particles
* from a given vertex to a cylinder defined by its radius,
* its half-length, centered at (0,0,0) and with its axis
* oriented along the z-axis.
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/ParticlePropagator.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "TMath.h"
#include "TString.h"
#include "TFormula.h"
#include "TRandom3.h"
#include "TObjArray.h"
#include "TDatabasePDG.h"
#include "TLorentzVector.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
ParticlePropagator::ParticlePropagator() :
fItInputArray(0)
{
}
//------------------------------------------------------------------------------
ParticlePropagator::~ParticlePropagator()
{
}
//------------------------------------------------------------------------------
void ParticlePropagator::Init()
{
fRadius = GetDouble("Radius", 1.0);
fRadius2 = fRadius*fRadius;
fHalfLength = GetDouble("HalfLength", 3.0);
fBz = GetDouble("Bz", 0.0);
if(fRadius < 1.0E-2)
{
cout << "ERROR: magnetic field radius is too low\n";
return;
}
if(fHalfLength < 1.0E-2)
{
cout << "ERROR: magnetic field length is too low\n";
return;
}
fRadiusMax = GetDouble("RadiusMax", fRadius);
fHalfLengthMax = GetDouble("HalfLengthMax", fHalfLength);
// import array with output from filter/classifier module
fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
fItInputArray = fInputArray->MakeIterator();
// import beamspot
try
{
fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle"));
}
catch(runtime_error &e)
{
fBeamSpotInputArray = 0;
}
// create output arrays
fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
fNeutralOutputArray = ExportArray(GetString("NeutralOutputArray", "neutralParticles"));
fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
}
//------------------------------------------------------------------------------
void ParticlePropagator::Finish()
{
if(fItInputArray) delete fItInputArray;
}
//------------------------------------------------------------------------------
void ParticlePropagator::Process()
{
Candidate *candidate, *mother;
TLorentzVector candidatePosition, candidateMomentum, beamSpotPosition;
Double_t px, py, pz, pt, pt2, e, q;
Double_t x, y, z, t, r, phi;
Double_t x_c, y_c, r_c, phi_c, phi_0;
Double_t x_t, y_t, z_t, r_t;
Double_t t1, t2, t3, t4, t5, t6;
Double_t t_z, t_r, t_ra, t_rb;
Double_t tmp, discr, discr2;
Double_t delta, gammam, omega, asinrho;
Double_t rcu, rc2, xd, yd, zd;
Double_t l, d0, dz, p, ctgTheta, phip, etap, alpha;
Double_t bsx, bsy, bsz;
const Double_t c_light = 2.99792458E8;
if (!fBeamSpotInputArray || fBeamSpotInputArray->GetSize () == 0)
beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
else
{
Candidate &beamSpotCandidate = *((Candidate *) fBeamSpotInputArray->At(0));
beamSpotPosition = beamSpotCandidate.Position;
}
fItInputArray->Reset();
while((candidate = static_cast(fItInputArray->Next())))
{
candidatePosition = candidate->Position;
candidateMomentum = candidate->Momentum;
x = candidatePosition.X()*1.0E-3;
y = candidatePosition.Y()*1.0E-3;
z = candidatePosition.Z()*1.0E-3;
bsx = beamSpotPosition.X()*1.0E-3;
bsy = beamSpotPosition.Y()*1.0E-3;
bsz = beamSpotPosition.Z()*1.0E-3;
q = candidate->Charge;
// check that particle position is inside the cylinder
if(TMath::Hypot(x, y) > fRadiusMax || TMath::Abs(z) > fHalfLengthMax)
{
continue;
}
px = candidateMomentum.Px();
py = candidateMomentum.Py();
pz = candidateMomentum.Pz();
pt = candidateMomentum.Pt();
pt2 = candidateMomentum.Perp2();
e = candidateMomentum.E();
if(pt2 < 1.0E-9)
{
continue;
}
if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
{
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = candidatePosition;
candidate->Position = candidatePosition;
candidate->L = 0.0;
candidate->Momentum = candidateMomentum;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
}
else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
{
// solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
tmp = px*y - py*x;
discr2 = pt2*fRadius2 - tmp*tmp;
if(discr2 < 0.0)
{
// no solutions
continue;
}
tmp = px*x + py*y;
discr = TMath::Sqrt(discr2);
t1 = (-tmp + discr)/pt2;
t2 = (-tmp - discr)/pt2;
t = (t1 < 0.0) ? t2 : t1;
z_t = z + pz*t;
if(TMath::Abs(z_t) > fHalfLength)
{
t3 = (+fHalfLength - z) / pz;
t4 = (-fHalfLength - z) / pz;
t = (t3 < 0.0) ? t4 : t3;
}
x_t = x + px*t;
y_t = y + py*t;
z_t = z + pz*t;
l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z));
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = candidatePosition;
candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*e*1.0E3);
candidate->L = l*1.0E3;
candidate->Momentum = candidateMomentum;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
if(TMath::Abs(q) > 1.0E-9)
{
switch(TMath::Abs(candidate->PID))
{
case 11:
fElectronOutputArray->Add(candidate);
break;
case 13:
fMuonOutputArray->Add(candidate);
break;
default:
fChargedHadronOutputArray->Add(candidate);
}
}
else
{
fNeutralOutputArray->Add(candidate);
}
}
else
{
// 1. initial transverse momentum p_{T0}: Part->pt
// initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
// relativistic gamma: gamma = E/mc^2; gammam = gamma * m
// gyration frequency omega = q/(gamma m) fBz
// helix radius r = p_{T0} / (omega gamma m)
gammam = e*1.0E9 / (c_light*c_light); // gammam in [eV/c^2]
omega = q * fBz / (gammam); // omega is here in [89875518/s]
r = pt / (q * fBz) * 1.0E9/c_light; // in [m]
phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
// 2. helix axis coordinates
x_c = x + r*TMath::Sin(phi_0);
y_c = y - r*TMath::Cos(phi_0);
r_c = TMath::Hypot(x_c, y_c);
phi_c = TMath::ATan2(y_c, x_c);
phi = phi_c;
if(x_c < 0.0) phi += TMath::Pi();
rcu = TMath::Abs(r);
rc2 = r_c*r_c;
// calculate coordinates of closest approach to track circle in transverse plane xd, yd, zd
xd = x_c*x_c*x_c - x_c*rcu*r_c + x_c*y_c*y_c;
xd = (rc2 > 0.0) ? xd / rc2 : -999;
yd = y_c*(-rcu*r_c + rc2);
yd = (rc2 > 0.0) ? yd / rc2 : -999;
zd = z + (TMath::Sqrt(xd*xd + yd*yd) - TMath::Sqrt(x*x + y*y))*pz/pt;
// use perigee momentum rather than original particle
// momentum, since the orignal particle momentum isn't known
px = TMath::Sign(1.0, r) * pt * (-y_c / r_c);
py = TMath::Sign(1.0, r) * pt * (x_c / r_c);
etap = candidateMomentum.Eta();
phip = TMath::ATan2(py, px);
candidateMomentum.SetPtEtaPhiE(pt, etap, phip, candidateMomentum.E());
// calculate additional track parameters (correct for beamspot position)
d0 = ((x - bsx) * py - (y - bsy) * px) / pt;
dz = z - ((x - bsx) * px + (y - bsy) * py) / pt * (pz / pt);
p = candidateMomentum.P();
ctgTheta = 1.0 / TMath::Tan (candidateMomentum.Theta());
// 3. time evaluation t = TMath::Min(t_r, t_z)
// t_r : time to exit from the sides
// t_z : time to exit from the front or the back
t_r = 0.0; // in [ns]
int sign_pz = (pz > 0.0) ? 1 : -1;
if(pz == 0.0) t_z = 1.0E99;
else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
if(r_c + TMath::Abs(r) < fRadius)
{
// helix does not cross the cylinder sides
t = t_z;
}
else
{
asinrho = TMath::ASin((fRadius*fRadius - r_c*r_c - r*r) / (2*TMath::Abs(r)*r_c));
delta = phi_0 - phi;
if(delta <-TMath::Pi()) delta += 2*TMath::Pi();
if(delta > TMath::Pi()) delta -= 2*TMath::Pi();
t1 = (delta + asinrho) / omega;
t2 = (delta + TMath::Pi() - asinrho) / omega;
t3 = (delta + TMath::Pi() + asinrho) / omega;
t4 = (delta - asinrho) / omega;
t5 = (delta - TMath::Pi() - asinrho) / omega;
t6 = (delta - TMath::Pi() + asinrho) / omega;
if(t1 < 0.0) t1 = 1.0E99;
if(t2 < 0.0) t2 = 1.0E99;
if(t3 < 0.0) t3 = 1.0E99;
if(t4 < 0.0) t4 = 1.0E99;
if(t5 < 0.0) t5 = 1.0E99;
if(t6 < 0.0) t6 = 1.0E99;
t_ra = TMath::Min(t1, TMath::Min(t2, t3));
t_rb = TMath::Min(t4, TMath::Min(t5, t6));
t_r = TMath::Min(t_ra, t_rb);
t = TMath::Min(t_r, t_z);
}
// 4. position in terms of x(t), y(t), z(t)
x_t = x_c + r * TMath::Sin(omega * t - phi_0);
y_t = y_c + r * TMath::Cos(omega * t - phi_0);
z_t = z + pz*1.0E9 / c_light / gammam * t;
r_t = TMath::Hypot(x_t, y_t);
// compute path length for an helix
alpha = pz*1.0E9 / c_light / gammam;
l = t * TMath::Sqrt(alpha*alpha + r*r*omega*omega);
if(r_t > 0.0)
{
// store these variables before cloning
candidate->D0 = d0*1.0E3;
candidate->DZ = dz*1.0E3;
candidate->P = p;
candidate->PT = pt;
candidate->CtgTheta = ctgTheta;
candidate->Phi = phip;
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = candidatePosition;
candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*c_light*1.0E3);
candidate->Momentum = candidateMomentum;
candidate->L = l*1.0E3;
candidate->Xd = xd*1.0E3;
candidate->Yd = yd*1.0E3;
candidate->Zd = zd*1.0E3;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
switch(TMath::Abs(candidate->PID))
{
case 11:
fElectronOutputArray->Add(candidate);
break;
case 13:
fMuonOutputArray->Add(candidate);
break;
default:
fChargedHadronOutputArray->Add(candidate);
}
}
}
}
}
//------------------------------------------------------------------------------